SUMMARY OF FLOW MEASUREMENTS IN THE JORDAN VALLEY REGION TABLE 3-1

		Approximate Drainage Area Square	Average Annual Runoff	Approximate Period of	See
oream	rince of Measurement	MICHELES	MCM	DIONA	werence
River Hackani	Ed Dilba Bridge		162	Oct 39-Sept 43	(1)
Banyas	1.25 km south of Town of Dan		162		Ξ
Dan			265	: :	(1)
Jordan	Jisr Banat Yacov	1400	628	Oct. 35-Sept. 43	(1)
Jordan	Outlet of Tiberias	2700	538	Oct. 25-Sept. 46	(1)
Yarmuk	Near Junction with Jordan	7250	475	Oct. 26-Sept. 46	(1)
Jordan	Below Powerhouse at Yarmuk River	0666	964	Jan. 34-Dec. 43	(1)
Jordan	Allenby Bridge	16730	1007	Oct. 32-Sept. 43	(1)
Jordan	3.5 km north of Dead Sea	17300	1079	Feb. 39-Mar. 43	(1)
Wadis and Springs East Side					
Arab	Near Entrance to Ghor	290	15	Dec. 37-Jan. 39	(2)
Ziqlab	¥ 11 11 11	116	œ	:	(2)
Jurm		I	11	:	(2)
Yabes	: :	115	~	:	(2)
Kafrinje	22 22 23	1.19	9	:	(2)
Rajeb		96	~	2	(2)
Zerka	At Sweilih-Jerash Road	2960	45	Jan. 33-Dec. 38	(2)
Sha'eb	At Jisr Sha'eb	216	10	Dec. 37-Jan. 39	(5)
Kefrein	Near Entrance to Ghor	312	12	:	(5)
Rama	5 5 5	1	9	:	(2)
West Side					
Faria	At the Ghor	330	45	j	(3)
Auja	: :	271	15	I	(3)
Qilt	: :	149	60		(3)
Jericho Springs	= = = = = = = = = = = = = = = = = = = =	1	15	1	(3)
Beisan-Herod Springs	: :	1	29	1	(3)

Reference Number — (1) Continuous record at established gaging station. Mean of flows for period of record.

(2) Systematic spot measurements for a period of about one year. Perennial flow only.

(3) Estimates from various sources. Perennial flow only.

TABLE 4-1
ESTIMATED AVERAGE ANNUAL WATER AVAILABLE
JORDAN VALLEY REGION

Point and Tributaries	Estimated Tributary Flow MCM per Year	Estimated Total Flow MCM per Year
The state of the s		
At Proposed Site of Hasbani Dam Total	130	130
Total		
At Point near Dan	120	
Flow from above	130	
Flow from intermediate Hasbani	27	
drainage area	27 258	
Flow from Dan River	157	
Flow from Banyas River	1)/	572
Total		J
At Jist Banat Yacov		
Flow from above	572	
Flow from intermediate drainage area	130	
-		
•	702	
Less evaporation loss from Lake Huleh		
and marshes	_62	
and maistics Total		640
(Continued on)	bage 23)	*
(33.77.77.77.77.77.77.77.77.77.77.77.77.7	0 /	

Tributary Flow ICM per Year	Total Flow MCM per Yea
	•
640	
640	
198	
838	
300	
	538
520	
538 475	
	1013
•	2017
1013	
•	
•	
	*
105	
127	
74	
1319	

		Estimated Tributary Flow	Estimated Total Flow
Point and Tributaries		MCM per Year	MCM per Year
Flood flows, and flows fro	om interme-		
diate area not accounted	for (to bal-		8
ance)	`	163	
		1482	
Less present use (assume	d all peren-		
nial flows)	-	-232	
	Total		1250¹
At Entrance to Dead Sea			
Flow from above		1250	
Perennial Flows			
East			
Wadi Kefrein	12		
Wadi Rama	6		
		18	
West			
Wadi Qilt	3		
Jericho Springs	15		
		18	
		1286	
Less present use (assume	d perennial	1200	
flow)	a pereimai	-36	
,		. —	
			1250 ²

¹Adjusted average of record 1938-1943 inclusive.

River Flows

The greatest potential source of water for irrigation in the Jordan Valley region is from the flows of the Jordan and Yarmuk Rivers. The long records of flow measurement of both

streams just below Lake Tiberias give reliable data on the magnitude and the dependability of the flows available at this point. The shorter period records of the stream in the upper valley,

²Does not include intermediate flood flows below Allenby Bridge.

IRRIGATION FROM WADIS - LOWER VALLEY

	Duty	Peren	nial Flow	Floo	d Flow
Location	Cubic Meters per Dunam per Year	Area Irrigated Dunams	Water Required MCM per Year	Area Irrigated Dunams	Water Required MCM per Yea
Eastern Ghor					
North	1330	34,000	45	15,000	20
Central	1440	35,000	50	12,000	18
South	1860	15,000	28	4,000	7
		84,000	123	31,000	45
Western Ghor					
North	1330	50,000	67	14,000	18
Central	1440	31,000	45	5,000	7
South	1860	18,000	33	2,000	4
		99,000	145	21,000	29

Irrigation from Wells: The estimated supply from wells, 20 MCM per year, is the net usable

amount and will be used for irrigation as follows:

IRRIGATION FROM WELLS—LOWER VALLEY

Location	Duty Cubic Meters per Dunam per Year	Area Irrigated Dunams	Water Required MCM per Year
Eastern Ghor			
North	1330	3000	4
Central	1440	2000	3
South	1860	2000	3
		7000	10
Western Ghor			
North	1330	3000	4
Central	1440	2000	3
South	1860	2000	3
		7000	10

TABLE 9-1

AT VARIOUS HEIGHTS AS STUDIED AS A PART OF THE BROAD PLAN (e) ESTIMATED COSTS AND BENEFITS OF MAQARIN DAM

(1)	(2)	(3)	.	(5) (5) (Estimated Costs	(6) Sosts	5	9	3	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Allocation of Construction	n of tion	Unit Costs	Costs
Reser-									Agui- tional	Costs			Cost per
voir Water Surface Eleva- tion (d)	Structural Height of Dam	rural ght)am	Dam	Power Facili- ties	Total	Installed Capacity	Energy Avail- able per Year	Stor- age Gapac- ity	Yield for Irri- gation	Power	Irriga- tion	Per Kilo- watt Hour	MCM Yield Per Year
Meters	Meters	Feet		Million Dolls	ilars	Kilowatts	Kilowatt- Hours	MCM	MCM per Year	Million Dollars	ollars	Cents	Dollars
	6	8	7	7.0	× ×	15.200	97,200,000	24	6	8.5(a)	0	0.57	0
10	87	3	: ·	? ?		73,000	134 500 000	73	24	16.0(a)	3.0	0.77	125,000
81	28	192	9.0	10.0	19.0	23,000	171,700,000		7	21 O(h)	08	0.78	196,000
101	78	255	16.0	13.0	29.0	30,700	173, /00,000	122	41	(7)0:17	·) [, , ,
10	9	310	23.0	16.3	39.3	38,000	183,600,000	195	26	27.8(b')	11.5	0.97	202,000
1 0) ;	275	34.0	163	50.3	38.000	183,600,000	280	73	27.8(c)	22.5	0.97	308,000
15/	114	(1)	21.0	16.3	67.3	38,000	183,600,000	405	76	27.8(c)	39.5	0.97	410,000
175	152	500	66.0	16.3	82.3	38,000	183,600,000	200	114	27.8(c)	54.5	0.97	478,000

Notes: (a) Major construction cost charged to power.

(b) and (b') One-half dam costs allocated to irrigation.

(c) Allocation to power same as in (b') since no additional power benefits are received; balance of costs allocated to irrigation.

(d) The natural water surface of the river at the dam site has been assumed as elevation 46 meters above sea level.

(e) SEE TEXT FOR EXPLANATION OF THE COLUMN HEADINGS USED IN THIS TABLE.

Page 76

ESTIMATED MAGNITUDE OF COSTS

Based on Work in the United States — 1953

	_	*
1.	Hasbani River Storage Dam	\$ 12,600,000
2.	Banyas River Diversion Dam	1,400,000
3.	Dan River Headworks	200,000
4.	Canal from Banyas River to Galilee Hills	
	First Section	16,800,000
	Second Section	3,500,000
5.	Yarmuk Diversion Dam	4,000,000
6.	Yarmuk Diversion Canal	2,300,000
7.	Eastern Ghor Canal	
	First Section	5,700,000
	Second Section	5,000,000
8.	Eastern Ghor Headworks	200,000
9.	Eastern Ghor Feeder Canal	1,400,000
10.	Western Ghor Headworks	200,000
11.	Western Ghor Canal	
	First Section	5,700,000
	Second Section	5,300,000
12.	Lake Huleh Drainage Works	3,500,000
13.	Raise Lake Tiberias Dam	700,000
14.	Control Works and Canals for Perennial Wadi Flows	1,000,000
15.	Works for Conserving Flood Flows of Wadis	14,000,000
	Works for Developing Supply from Wells	1,000,000
17.		200,000
18.		300,000
	Tel Hai Power Development	11,000,000
	Magarin Dam and Complete Adasiya Power Development	
_3.	in Initial Stage	25,000,000
	Total Unified Development	\$121,000,000

The estimated magnitude of cost of raising Maqarin Dam, if found to be justified, is \$14,000,000.

The estimated magnitude of cost of con-

structing the Dead Sea power development is \$76,000,000.

The estimated magnitude of costs by stages of construction have been obtained directly from the above tabulation and are as follows:

ESTIMATED MAGNITUDE OF COSTS — BY STAGES

Based on Work in the United States — 1953

•	Irrigation	Power	Total
Stage 1			
Banyas Diversion Dam and Headworks	\$ 1,400,000		\$ 1,400,000
Dan River Headworks	200,000		200,000
Canal from Banyas River to Galilee Hills			
(First Section)	16,800,000		16,800,00
Yarmuk Diversion Dam	4,000,000		4,000,00
Eastern Ghor Canal (First Section)	5,700,000		5,700,00
Western Ghor Canal Headworks	200,000		200,00
Western Ghor Canal (First Section)*	5,700,000		5,700,00
Lake Huleh Drainage Works	3,500,000		3,500,00
Yarmuk Plateau System	200,000		200,00
Yavneel Valley System	300,900		300,00
	\$38,000,000	0	\$ 38,000,00
Stage 2			
Eastern Ghor Canal Headworks	200,000		200,00
Feeder Canal (to Eastern Ghor Canal)	1,400,000		1,400,00
Yarmuk Diversion Canal (to Lake Tiberias)	2,300,000		2,300,00
Hasbani Storage Dam	12,600,000	0	12,600,00
Tel Hai Power Project	0	11,000,000	11,000,00
	\$16,500,000	\$11,000,000	\$ 27,500,00
Stage 3			
Raise Lake Tiberias Dam	700,000		700,00
Canal to Galilee Hills (Final Section)	3,500,000		3,500,00
Eastern Ghor Canal (Final Section)	5,000,000		5,000,00
Western Ghor Canal (Final Section)	5,300,000		5,300,00
Development of Wells in Ghor	1,000,000		1,000,00
Redevelopment of Perennial Flows in Wadis	1,000,000		1,000,00
	\$ 16,500,000	0	\$ 16,500,00

	Irrigation	Power	Total
Stage 4			
Development of Flood Flows of Wadis	\$14,000,000	0	\$ 14,000,000
Maqarin Dam (Initial Height)	3,000,000	6,000,000	9,000,000
Adasiya Power Project (Complete)	0	16,000,000	16,000,000
	17,000,000	22,000,000	39,000,000
Total for Broad Plan	\$88,000,000	\$33,000,000	\$121,000,000
Stage 5			
Raise Maqarin Dam (if found to be justified)	\$ 7,000,000	\$ 7,000,000	\$ 14,000,000

^{*} If rugged terrain makes this portion of the work infeasible, water from Lake Tiberias may be brought to the lower western Ghor by a syphon from the eastern Ghor canal in the vicinity of Wadi Kafrinje.

Calculations based on the foregoing costs and on areas of land to be irrigated in the different parts of the region, show that the capital cost of the principal irrigation works per dunam will be approximately as follows:

Location	Area Irrigated Dunams	Capital Cost Dollars	Capital Cost Dollars per Dunam
Galilee Hills and Huleh Area	327,000	\$38,500,000	\$119
Lower Jordan Valley — East and West Ghor	579,000	\$49,500,000	\$86

The above figures are necessarily approximate since the cost of several features cannot readily be allocated accurately to the various areas; they

do however give an indication of the comparative costs.