

The Regional Organization for the Protection of the Marine Environment (ROPME)

Role of real-time satellite data acquisition & online monitoring platforms in regular assessment of the state of the marine environment

Wahid Moufaddal (Ph.D) Remote Sensing Expert, ROPME wahid_moufaddal@yahoo.com

Segment-2: Multi-stakeholder Dialogue / Capacity-building Partnership Event of the Regular Process 24-25 Jan. 2019, UN Headquarters

Advantages & Special Characteristics of Remote Sensing

Current Ocean-Color Sensors

SENSOR / DATA LINK	AGENCY	SATELLITE	LAUNCH DATE	SWATH (KM)	SPATIAL RESOLUTION (M)	BANDS	SPECTRAL COVERAGE (NM)	SPECTRAL RESPONSE FUNCTION	EQUATORIAL CROSSING TIME
COCTS UI CZI	CNSA/NSOAS (China)	HY-1C	7 September 2018	3000 3000 950	1100 550 50	10 2 4	402 - 12,500 345 - 395 433 - 885		10:30
GOCI Geostationary	KARI/KIOST (South Korea)	COMS	26 June 2010	2500	500	8	400 - 865		8 times/day
MODIS-Aqua	NASA (USA)	Aqua (EOS-PM1)	4 May 2002	2330	250/500/1000	36	405-14,385	SRF-link	13:30
MODIS-Terra	NASA (USA)	Terra (EOS-AM1)	18 Dec 1999	2330	250/500/1000	36	405-14,385	SRF-link	10:30
OCM-2	ISRO (India)	Oceansat-2 (India)	23 Sept 2009	1420	360/4000	8	400 - 900		12:00
OLCI	ESA/ EUMETSAT	Sentinel 3A	16 Feb 2016	1270	300/1200	21	400 - 1020	SRF-link	10:00
OLCI	ESA/ EUMETSAT	Sentinel 3B	25 April 2018	1270	300/1200	21	400 - 1020		10:00
SGLI	JAXA (Japan)	GCOM-C	23 Dec 2017	1150 - 1400	250/1000	19	375 - 12,500		10:30
SGLI	JAXA (Japan)	GCOM-C	23 Dec 2017	1150 - 1400	250/1000	19	375 - 12,500		10:30
VIIRS	NOAA (USA)	Suomi NPP	28 Oct 2011	3000	375 / 750	22	402 - 11,800	SRF-link	13:30
VIIRS	NOAA/NASA (USA)	JPSS- 1/NOAA-20	18 Nov 2017	3000	370 / 740	22	402 - 11,800	SRF-link	13:30
Landsat-8 Sentinel-2	*	Source: In	ternational Oce	ean Color (Coordinating C	Group (IC	OCCG)		

Other Optical Sensors

What Can Be Measured From Space?

- Four types of primary ocean measurements can be made from remote sensing depending on the part of the electromagnetic spectrum being used. They are:
 - Ocean colour
 - Sea Surface Temperature (SST)
 - Sea Surface Roughness
 - Sea Surface Slope/Sea Surface Height
- Satellites can also detect water depth, what is beneath water and what covers sea bottom (mapping and study of sea bed and major benthic habitats like coral reefs, mangrove, seagrass, etc)

The power of receiving ocean satellite data in real-time mode

ROPME X-band Receiving Station

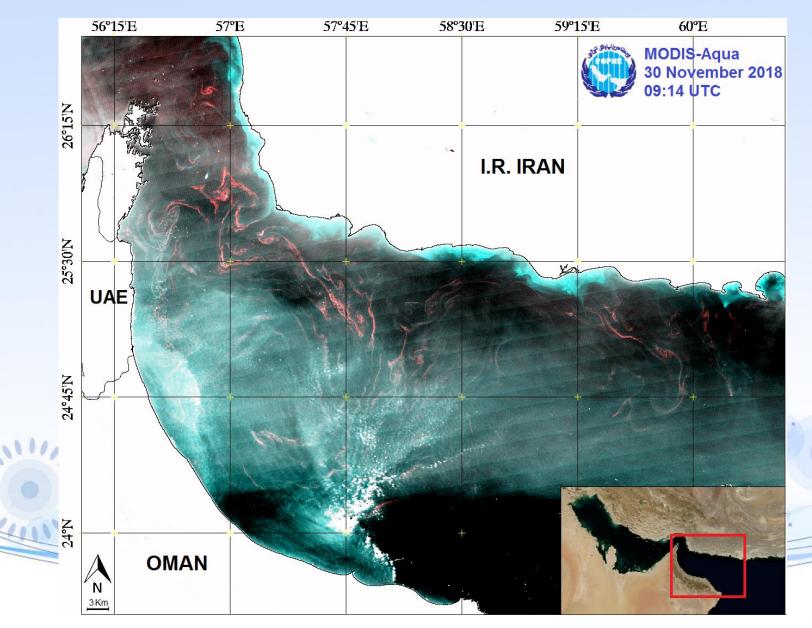
Satellite Coverage (Footprint) of MODIS and VIIRS Data Received by ROPME Station

MODIS onboard Terra & Aqua

Sind			As al	
	S	22	A CONTRACTOR	
	- Mi		-	
		IOML NEP		
the second				and the second s
-				

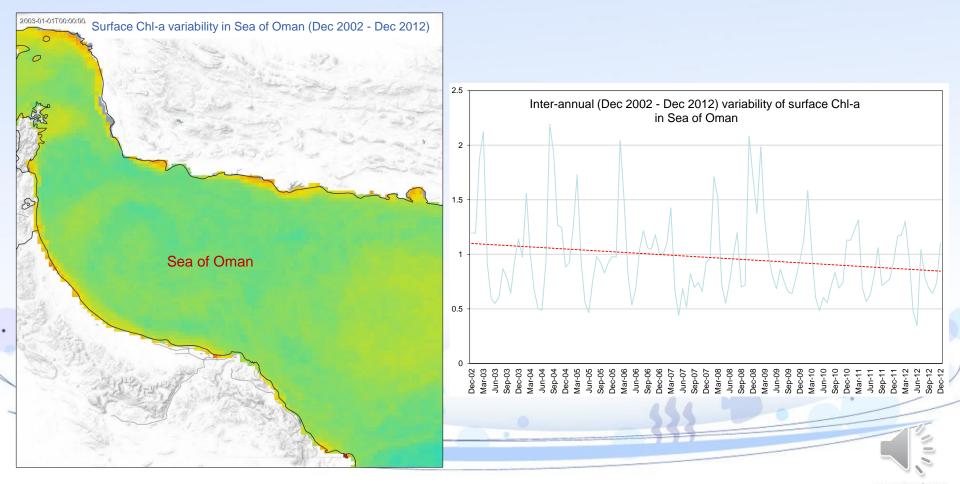
VIIRS onboard Suomi-NPP & NOAA-20

v	Visible Infrared Imaging Radiometer Suite (VIIRS) Specifications				
Launch Date:	Suomi NPP: 28 October 2011, and NOAA-20: 18 November 2017				
Orbit:	830km, 1:30 p.m. mean local solar time. sun-synchronous, polar				
Swath Dimensions: 3000km, nearly global coverage every day					
Repeat Cycle:	16 days				
and	22 bands: M1-M16: from 0.02 to 1.0 microns (DNB: 0.4 microns) I1-I5: from 0.08 to 1.9 microns				
Wavebands:	9 visible/NIR bands plus day/night pan band 8 mid-IR 4 LW IR				
Spatial Resolution:	375 m (bands I1-I5), 750 m (bands M1-M16 + band DNB)				
Quantization:	12 bits				
Data Rate:	5.9 Mbps				
Design Life:	7 years				


MODerate Resolution Imaging Spectrometer (MODIS) Specifications

	Launch Date:	Terra: 18 December 1999, and Aqua: 04 May 2002
	Orbit:	705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), sun-synchronous, near-polar, circular
	Swath Dimensions:	2330 km (cross track) by 10 km (along track at nadir)
	Repeat Cycle:	16 days
	Number of bands and bandwidth	36 bands: 1-19: from 620 to 965nm 20-36: from 3.66 to 14.28 microns
1	Wavebands:	10 visible bands 6 NIR bands 20 mid-IR and LW IR bands
	Spatial Resolution:	250 m (bands 1-2), 500 m (bands 3-7), 1000 m (bands 8-36)
	Quantization:	12 bits
	Data Rate:	10.6 Mbps (peak daytime); 6.1 Mbps (orbital average)
	Design Life:	6 years

Standard Products Available from ROPME's Satellite Receiving Station

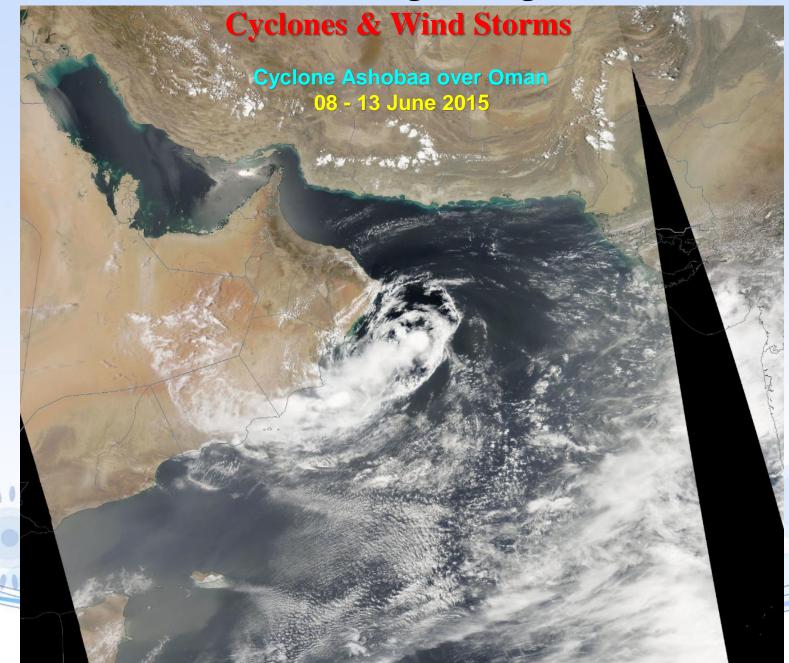

MODIS	Parameter		
chlor_a	chlorophyll a concentration	 Phytoplankton conc. 	
nflh	fluorescence line height		
cdom_index	colored dissolved organic matter	🗸 Ocean color	
Kd_490	attenuation coefficient at 490 nm	✓ Turbidities & Sedimentary	
pic	particulate inorganic carbon	Processes	
рос	particulate organic carbon		
par	photosynthetically available radiation (par)		
ipar	instantaneous par		
Rrs_412	remote sensing reflectances		
Rrs_443			
Rrs_469			
Rrs_488		 Aerosol optical depth 	
Rrs_531			
Rrs_547			
Rrs_555			
Rrs_645			
Rrs_667			
Rrs_678		200	
sst	sea surface temperature (daytime)	Physical forcing, eddies	
sst4	sea surface temperature (night time)	Upwelling & downwelling	

Satellite-based Monitoring of Short-term Threats: Massive Algal Blooms & HABs

Satellite-based Monitoring of Short-term Threats: Massive Algal Blooms & HABs

Time-series analysis of decadal and historical datasets of satellite-derived surface Chl-a measurements

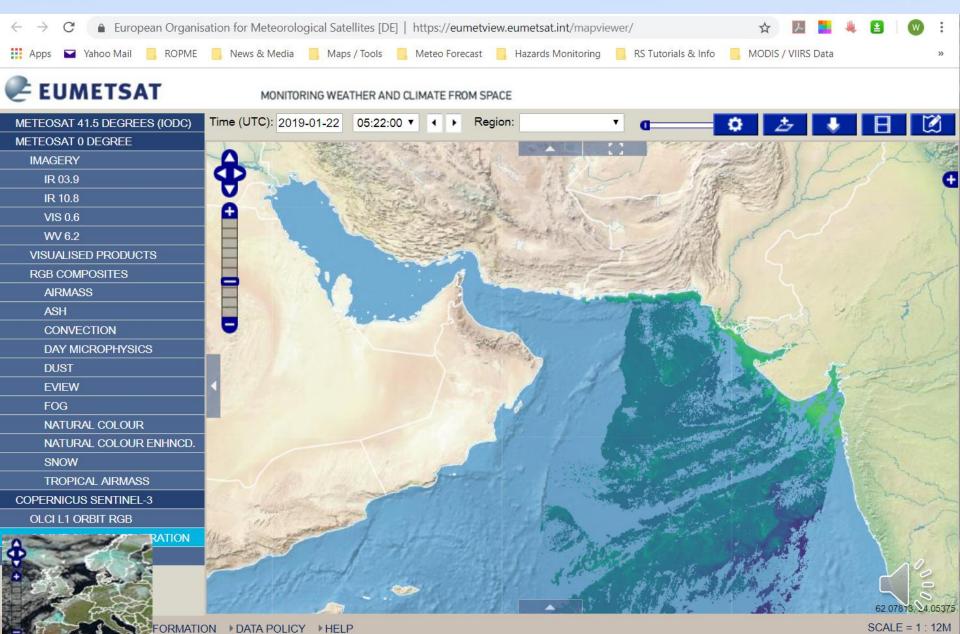
Satellite detection and monitoring of pollution source and socio-economic stressors



Satellite-based Monitoring of Long-term Threats? - GeoEye/EUSI Impacts of Coastal Development & Land Reclamation


www.satimagingcorp.com

Satellite-based Monitoring of Long-term Threats:


The power of online near-real-time distribution of ocean satellite data by space agencies and other providers

This app from NASA's <u>EOSDIS</u> provides the capability to interactively browse over 800 global, full-resolution satellite imagery layers and then download the underlying data. Many of the available imagery layers are updated within three hours of observation, essentially showing the entire Earth as it looks "right now".

EUMETView, a new way to visualise EUMETSAT satellite data

EUMETView is a visualisation service that allows users to view EUMETSAT imagery in a more interactive way through an online map viewer or <u>Web Map Service</u> (WMS). It is currently a pilot service.

Concluding Remarks:

- Remote sensing data and satellite imagery can provide a very detailed and accurate information about essential oceanic variables.
- Satellite data reconceived by direct broadcast stations can also provide a very important timely information about physical and chemical variables affecting coastal water quality and state of the marine environments.
- Remote sensing received by such stations can also track the extent & intensity of the sort-term and long-term threats affecting marine environment very efficiently in time and space.
- There are increasing number of data providers started distribution of satellite data on oceans and final image products to different stockholders online and users in near real-time thought friendly web interfaces and data portals. This is likely to cause a revolution in use an benefiting of such data and their final products.

For further information, please contact me at:

wahid_moufaddal@yahoo.com w.moufaddal@ropme.org

or visit: http://ropme.org/

Thank You

