

Seminar on African Electrical Interconnection

Module 2- Market Analysis

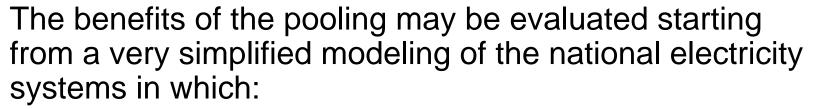
Module 2- Market Analysis

Contents

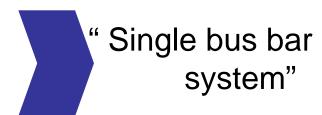
- Chapter I Economic Appraisal of the Interconnection Project: the Case of Pooling Generation Resources
- 2. Chapter II Demand analysis: the Case of Access to New Markets.

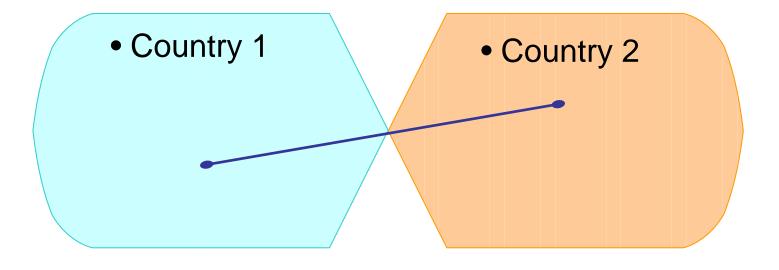
Contents

- 1. The rationale
- 2. The economic appraisal
- 3. Evaluating full operational costs
- 4. Other rationales
- 5. Complete cost/benefit analysis


The rationale

A first level of coordination and integration of electricity systems is reached through the pooling of generation resources


Benefits


- More efficient management of electricity systems
- Positive economic impact on the region

The economic appraisal

- each system is made of a single production/consumptions point
- there is no network grid

The economic appraisal

Successful pooling of resources results in a saving of system management costs due to:

More advanced technologies allowed by the integrated system

More efficient generation management (complementary load profiles)

Greater system reliability

The economic appraisal

9

(single bus bar system)

Savings in operational costs

Sum of operational costs of the two systems

Operational costs of integrated system

Operational costs

Generation costs

+ Transmission costs

+ Failure costs

Fuel costs

Parameter related to the dimension of the system

Unserved load

One shot system: no investments

The economic appraisal

Other benefits

- Reduced need for new capacity
- Reduced need for reserve capacity
- Higher system reliability -> positive impact on the economy
- Cooperation benefits

Evaluating full operational costs

Simplified single bar system

Electricity network

Full electricity system

It is essential to evaluate the investments needed to match the two grid systems

Other rationales

better efficiency and co-ordination of
economic initiatives
better economic system management
exploitation of common primary resources
transfer of electricity from one country to
another

other political objectives (strengthening political stability through regional cooperation and integration)

Complete cost/benefit analysis

The whole impact of the project need to be evaluated:

technical operational costs (incl. investments) impact on demand structure (sectorial/regional) potential for "suppressed demand" demand function (ability to pay) impact on socio-economic parameters potential externalities (environment, future generation etc..)

The estimation may be quite complicate

Module 2- Market Analysis

Contents

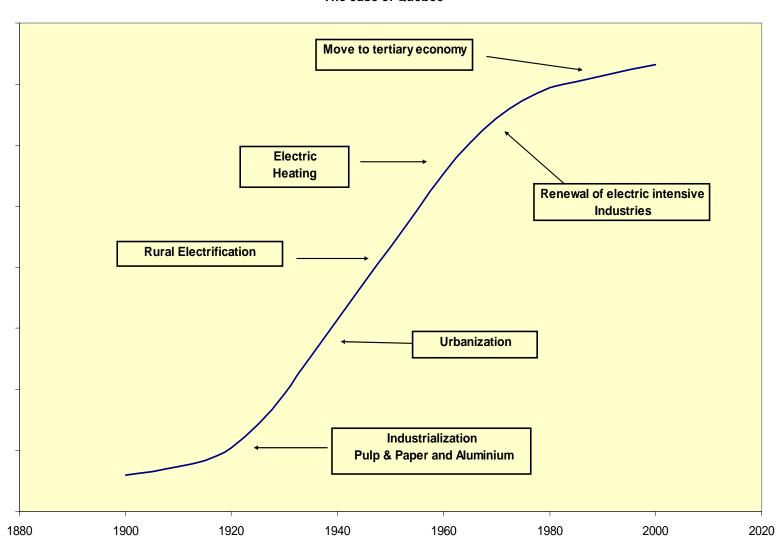
- Chapter I Economic Appraisal of the Interconnection Project: the Case of Pooling Generation Resources
- 2. Chapter II Demand analysis: the Case of Access to New Markets.

Module 2- Market Analysis

Chapter II Demand Analysis: the Case of Access to New Markets

Contents

- Energy Demand Modelling
- Energy Demand Forecast
- Ability to Pay and Tariff Setting



Historical trend: The case of Quebec

14

Electricity demand - Driving forces
The case of Quebec

Chapter 2 Demand Analysis

Energy Demand Modelling

Models identify the link between socio-economic variables and electricity demand

- reflects the analyst perception of this link
- ➤ the more specific (targeted to homogeneous areas) the more trustable the model
- results depend on the underlying hypothesis great care to be paid in transferring the model in different areas or time period
- ➤ no way to predict break-even points or structural changes

Chapter 2 Demand Analysis

Energy Demand Modelling

Econometric Models

- Socioeconomic explicative vbls
- Mathematical functional relationship

Technico-economic Models

- Demand for durables is the explicative vbl
- Relevance of technology

General equilibrium Models

Combine macroeconomic and technical approach

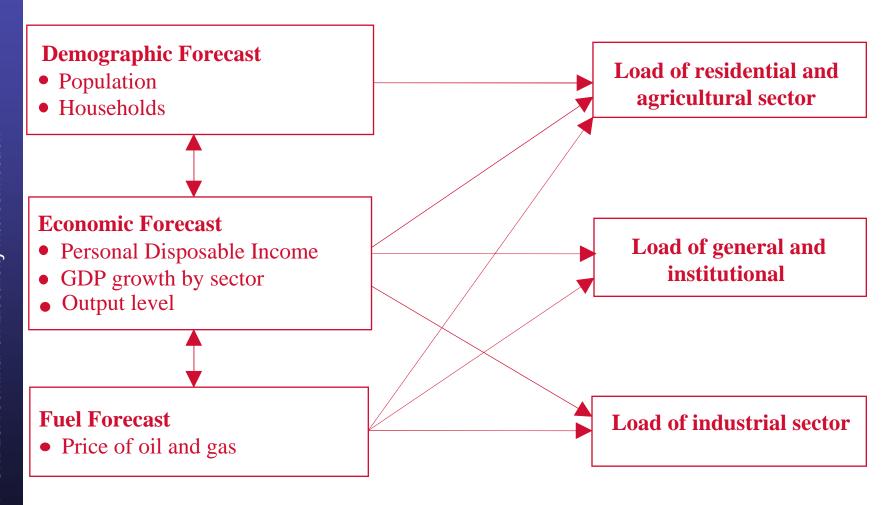
Econometric Method

relates energy sales to socio-economic explanatory variables

Sales GWh (t)= a + b1(demographic indicator,t) + b2(economic indicators,t)

- one assumes the existence of stable relationships between energy demand and explanatory variables (GDP, population,households...)
- one needs long historical series

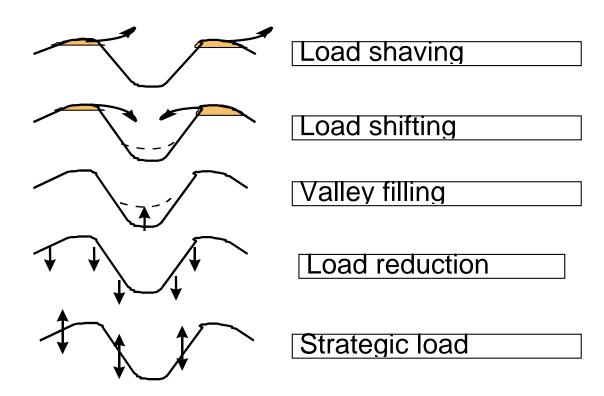
Technico-economic model



- Demand for durables is the explicative variable
- Depends on the technology. Different technology will result in different energy and electricity intensity.

General Equilibrium Model

Important elements



		Residential	Commercial	Industrial
Structural long term	Economy			
	GDP tertiary		•	
	GDP industrial			•
	Disposable Personal Income	•	•	
	New Construction	•		
	Demography			
	Population	•	•	
	Number of households	•		
Risks mid term	Tariffs	•	•	•
	Competition	•	•	
	Industrial Projects			•
	DSM	•	•	•
	Electro-Technology			•

DSM measures

Chapter 2 Demand Analysis

Energy Demand Forecast

Demand model based on present vbls

Demand model in the future

Forecasting is a very delicate operation

Great care to be paid at:

Structural changes affecting the demand model

Reliability of available data

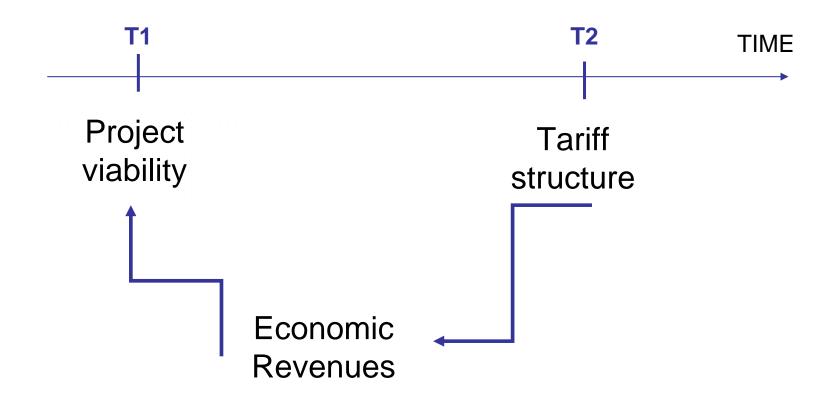
Potential for suppressed demand

Chapter 2 Demand Analysis

Energy Demand Forecast

The Scenario approach

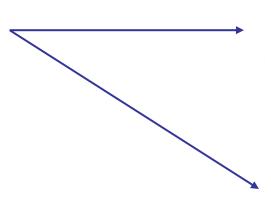
Demand model over present vbls


Future demand scenario "low"

Future demand scenario "medium"

Future demand scenario "high"

Chapter 2 Demand Analysis Ability to Pay and Tariff Setting



Need to evaluate the impact of different tariff structures

Chapter 2 Demand Analysis Ability to Pay and Tariff Setting

Different tariff structures

Different economic return

Different impact on other relevant objectives

- Socioeconomic objectives
- Ability/willingness to pay