Socioeconomic surveys in forestry

Illias Animon
Forestry Officer, FAO

15 November 2018, Rome

Source: FAO et al. (2016)
‘Data data everywhere’; scarce to super-abundant
(The Economist, 2010)

If we cannot measure,.....

Source: FAO et al. (2016)
Structure

- **What** (some surveys/data)

- **Why** (national socioeconomic surveys in forestry)

- **Which** (aspects the modules for national socioeconomic surveys in forestry cover)

- **Where** (surveys done)

Source: FAO et al. (2016)
What

Some relevant surveys

The Living Standards Measurement Study (LSMS)

• Data on household living standards in developing countries
• Enable integrated analysis of household livelihood strategies
• Representative of the national population
• Forestry data limited

Some relevant surveys

LSMS Integrated Surveys on Agriculture

• For strengthening the agricultural data

• 12 general forestry variables (Russo, 2014)

Photo: http://siteresources.worldbank.org/INTLSMS/Resources/DECNew
Some relevant surveys

World Programme for the Census of Agriculture

• Internationally comparable data on agriculture
• At least once every 10 years
• Covers some forestry-relevant aspects

Photo: http://www.fao.org/3/a-i4913e.pdf/
Some relevant surveys

Land use monitoring supported by FAO that had socioeconomic aspects

• The Integrated Land Use Assessment in Zambia
• National Forest Monitoring and Assessment programme in Gambia
• Socioeconomic monitoring in Ecuador, Peru, United Republic of Tanzania, Vietnam and Zambia (FAO-Finland Programme)
• National Forest and Tree Resources assessment (2005-2007) in Bangladesh; ongoing BFI

Some relevant surveys

The Poverty-Forests Linkages Toolkit (PROFOR, 2010)

• Focus on forest and natural resource issues
• IUCN used it in 23 countries

Photo: https://www.profor.info/content/poverty-forests-linkages-toolkit-0
Some relevant surveys

Poverty Environment Network (Centre for International Forestry Research)

- A consistent methodology; measure the multiple contributions of forests and non-agricultural lands in household income
- 58 sites in 24 developing countries (Wunder et al., 2014; FAO et al., 2016)
- Results are not representative of the population in the country

Photo: https://www.cifor.org/pen/
Some relevant surveys

International Forestry Resources and Institutions (IFRI) research:

• Collect socioeconomic and institutional data

• Examine the relationships among forest use, management and institutional structure, and socioeconomic aspects in forest-dependent communities (Wertime et al., 2008)

Photo: http://www.ifriresearch.net/
Challenges?

- Aggregation, disaggregation and comparison of data generated from different surveys difficult

- Some not representative of national population and coverage of forestry aspects limited
Why

Source: FAO et al. (2016)
Collective responsibility; leave no one behind

- The Global Forest Goal 2
- Sustainable Development Goals
- Many Criteria and Indicator processes
- National and sub-national targets
- Social safeguards (e.g. REDD+, ESM guidelines)
- Several initiatives (e.g. UN Decade of Family Farming)

Data gaps

- Forest and environmental income: 28% of total household income; roughly the same as from crops (Angelsen *et al.*, 2014)

- Forest products: shelter for 1.3 billion people, 2.4 billion people cook with woodfuel (FAO, 2014)

- Lack of reliable socioeconomic data (FAO, 2014), especially at national level

- Consequences for policies and investment measures; visibility amidst integration

- Address data gaps and broaden evidence base

Source: FAO *et al.* (2016)
Modules for National socioeconomic surveys in forestry

http://www.fao.org/3/a-i6206e.pdf
Modules for National socioeconomic surveys in forestry

- Assess the contributions of forests and trees in household welfare and livelihoods

- Modules field-tested in Nepal, Tanzania and Indonesia

- English and Spanish versions released; French version soon

Source: FAO et al. (2016); photo source: FAO (2014)
A villager drying Puri (Kratom Borneo, Mitragyna speciosa) leaves. Villagers in Indonesia collect the leaves from the trees that grow in the swampy forests, dry them under the sun, and sell them for cash income. Puri is used for medicinal purposes to reduce pain and uplift mood and for recreational purposes.

Source: FAO et al. (2016)
Modules for National socioeconomic surveys in forestry

Standard community questionnaire

Module A: Seasonal calendar

Module B: Most important forest and wild products

Module C: Units and pricing

Module D: Community benefits
 D1. Practices
 D2. Support

Source: FAO et al. (2016)
Modules for National socioeconomic surveys in forestry

Extended community questionnaire

Module E: Governance
 E1. Forest institutions
 E2. Enforcement and penalties

Module F: Community environmental services
 F1. Perceptions of climate change

Source: FAO et al. (2016)
Modules for National socioeconomic surveys in forestry

Standard household questionnaire

Module A: Income
 A1. Income from forest and wild products
 A2. Other forest-related income sources, including payment for environmental services (PES) programmes

Module B: Forest resources – energy, health and construction
 B1. Forest resource base
 B2. Forests and energy – fuelwood and charcoal
 B3. Forests and health
 B4. Forests and construction

Module C: Food shortage and crises
 C1. Food shortage
 C2. Shocks and crises

Source: FAO et al. (2016)
Modules for National socioeconomic surveys in forestry

Extended household questionnaire

Module D: Forest changes and clearance
 D1. Forest changes
 D2. Forest clearance

Source: FAO et al. (2016)
Where

A villager drying Puri (Kratom Borneo, Mitragyna speciosa) leaves. Villagers in Indonesia collect the leaves from the trees that grow in the swampy forests, dry them under the sun, and sell them for cash income. Puri is used for medicinal purposes to reduce pain and uplift mood and for recreational purposes.

Source: FAO et al. (2016)
Modules implemented in different contexts: examples

- Adapted modules; Turkey
- Adapted modules; the national Forest Inventory in Bangladesh
- Selected modules in Trinidad and Tobago (project level)
- Likely in Tunisia (Forest Inventory/ agricultural census?)

Source: UDA Consulting (2016)
Socioeconomic surveys in Turkey

- 2,037 households across 203 villages (World Bank, 2017)

- Over 60 percent of surveyed households reported income derived from the sale or use of forest products; forest income: the largest income share of poor households

- Evidence-based policy recommendations

- Feeding to policy-relevant documents (e.g. Forest Policy Note, Turkey’s Forest Strategic Plan).
Socioeconomic surveys in Forest Inventories

- Forest inventory: supply side → Sustainability
- Socioeconomic data: demand side

Integration:
bio-physical + socioeconomic aspects
Socioeconomic surveys in the National Forest Inventory, Bangladesh

- Surveys in five zones
- 100 community-level surveys
- 6,400 households (Islam et al., 2018)
- Opportunities for post-stratification

Source: FAO et al. (2016)
Socioeconomic surveys in NFIs

- Complexities (e.g. diversity of products, lack of definitional clarity, informal transactions, seasonality & recall period)

- Information needs and analytical framework

- Partnerships going beyond project cycle (NSO, NFD, NAD etc.)

Source: FAO et al. (2016)
Socioeconomic surveys in FIs

- Avoid “reinventing”: adapt the forestry modules, building on the existing data sources, expertise and lessons learnt

- Being realistic
 - Flexibility
 - Specialized surveys
 - Different components informing each other

Source: FAO et al. (2016)
Enhancing uptake

- Mapping out existing data and finding data gaps; making best use of data
- Integrating forestry modules in upcoming surveys
- Sharing lessons learnt and building capacities (e.g. through e-learning courses)
- Knowledge platform and expert network
Implementing the forestry modules in different contexts: relevant in better understanding the socioeconomic contributions of forests and their role in achieving our goals.

Let us generate & use more forestry-relevant socioeconomic data

Source: FAO et al. (2016)