United Nations Forum on Climate Change Mitigation, Fuel Efficiency and Sustainable Urban Transport

Korea Press Center, Seoul, Republic of Korea 16-17 March 2010

Reducing the climate impacts of mobile air conditioning

Comparison of global warming effects among HFC-134a, R-744(CO₂), and HFO-1234yf by TWPG, CWP, and CEWN analyses

Akira Sekiya

National Institute of Advanced Industrial Science and Technology (AIST)

Background and targets

Climate Change Mitigation is the most important issue for environment.

Target (UNFCCC): "stabilization of greenhouse gas concentrations in the atmosphere "

Fuel Efficiency and Sustainable Urban Transport

Wide range of technologies are necessary. Power source, Urban system, # # #

Need to be analyzed by adequate methods.

Mobile Air Conditioning (MAC)

High GWP refrigerants have been used, however they have good properties in terms of energy saving.

History of refrigerants for MAC system

	CFC-11	→	HFC-134a	→	HFO-1234yf	HFC-152a	R-744(CO ₂)
(GWP)	4,750	→	1,430	→	4	124	1
(energy	use)		small		higher tha	ın 134a	large
(estatue)	phased out due to ODS		in current use		under R&D	_	under R&D

Comparison of environmental acceptability as refrigerant system is necessary.

GWP

energy use

This report

Mobil Air Conditioning refrigerants are evaluated in terms of global warming.

Warming Effects

Indirect (Fuel Efficiency) Direct (Refrigerant)

CO₂ >> HFO-1234yf > HFC-134a HFC-134a >> HFO-1234yf > CO₂

- 1) Use JAMA's LCCP data for MAC (Mobile Air Conditioning) system.
- 2) Not only GWP, but also new indicators, TWPG, TTPG, CWP, and CEWN are used for the evaluation of global warming.
- 3) The most important technology is discussed by comparing these results.

LCCP: Life Cycle Climate Performance GWP: Global Warming Potential

TWPG : <u>Total Warming Prediction Graph</u>
TTPG : <u>Total Temperature Change Prediction Graph</u>
CWP : <u>Composite Warming Potential</u>
CEWN : <u>Carbon Dioxide Equivalent Warming Number</u>

MAC System*

Model framework and input assumptions for the evaluation

Car service life: 10 years

Car engine type: 1.5L Gasoline

4.3L Gasoline

Refrigerant

ŔHFC-134a, CO₂, HFO-1234yf

ÁHFC-152a (simulated as secondary loop)

ŘDP-1 (NA : chemical structure unknown)

Data points : Phoenix, Tokyo, Frankfurt

Data: Energy consumption, leakage rate, etc.

Direct emission (refrigerant leaks)

ÉLeakage from refrigerant production and transportation

ŔRegular emissions

Élrregular emissions

KService emissions

ŔEnd-of-life emissions

← recovery rate of the refrigerant after 10-year-usage

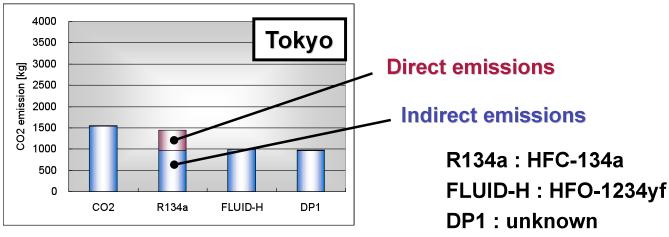
Indirect emission (Energy consumption)

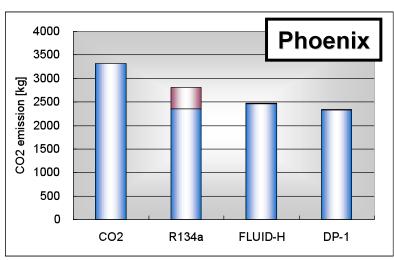
ÉAC system and engine cooling fan operation

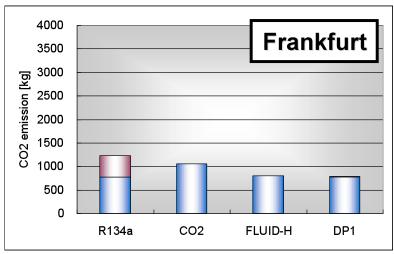
ŔA/C system manufacturing

ŔRefrigerant manufacturing

ÉTransportation of each component

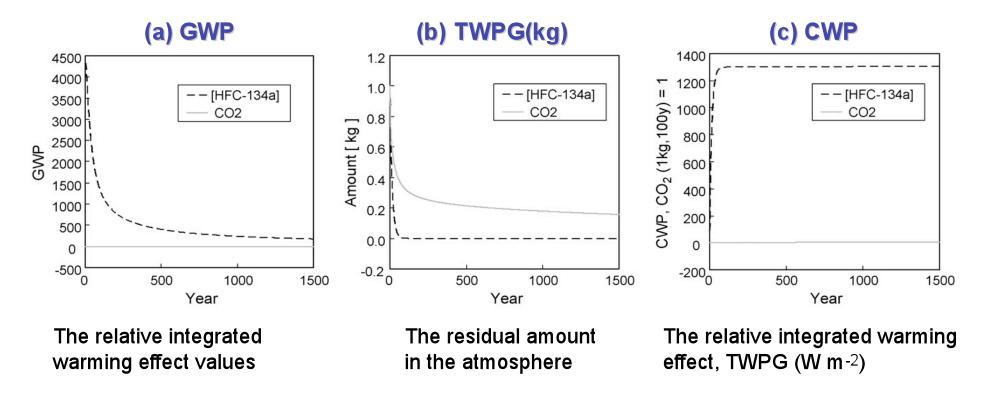

Ŕ End-of-life recycling and recovery


*) JAMA, SAE 8th Alternate Refrigerant Systems Symposium, 17-19 July 2007


GWP due to the use of car air-conditioning

LCCP Calculation by JAMA*

Compact Car (1.5L Gasoline Engine)

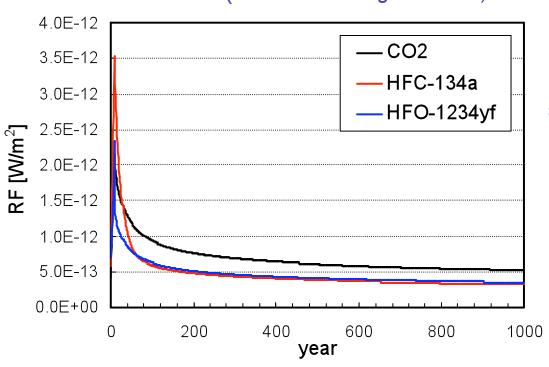


*) SAE 8th Alternate Refrigerant Systems Symposium, 17-19 July 2007

GWP and new indicators, TWPG and CWP

GWP, TWPG (kg) and CWP evaluation for 1 kg release of HFC -134a and CO₂.

A. Sekiya, J. Fluorine Chem., <u>128</u>, pp.1137-1142, 2007


TWPG due to the use of car air-conditioning

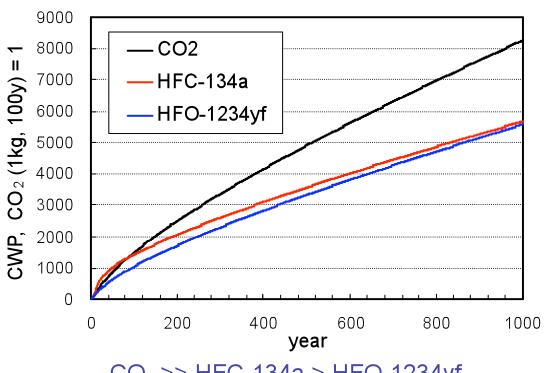
Tokyo, Compact Car (1.5L Gasoline Engine)

direct emissions + indirect emissions

1 car is produced at the beginning

duration of use: 10 years recovery rate of refrigerant after the use \$ 90%

direct emissions: leakage of refrigerant through the life of the car


indirect emissions: energy consumption due to A/C operation, manufacturing, recyc ling, etc.

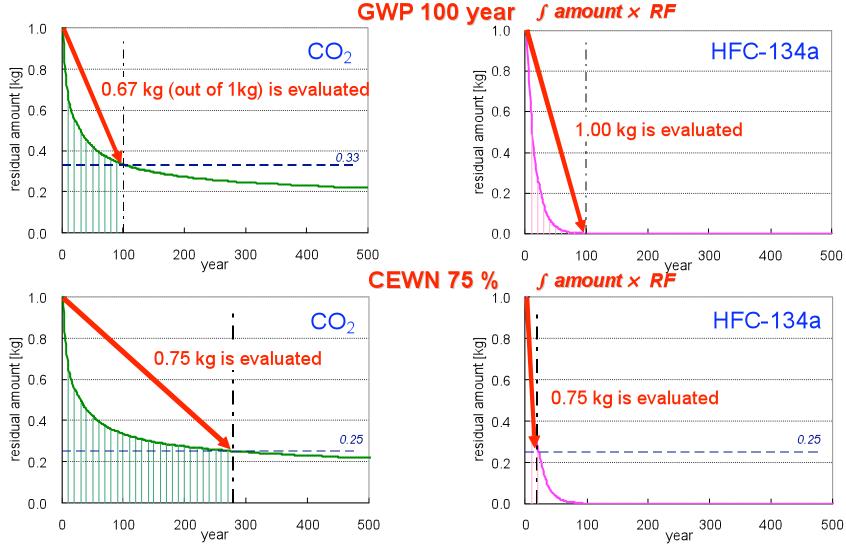
CWP due to the use of car air-conditioning

Tokyo, Compact Car (1.5L Gasoline Engine)

direct emissions + indirect emissions

1 car is produced at the beginning

duration of use: 10 years recovery rate of refrigerant after the use \$90%


CO₂ >> HFC-134a > HFO-1234yf

direct emissions: leakage of refrigerant through the life of the car

indirect emissions: energy consumption due to A/C operation, manufacturing, recyc ling, etc.

Difference between GWP and CEWN*

Decay after the 1kg release of CO₂ and HFC-134a into the atmosphere

CEWN: Carbon Dioxide Equivalent Warming Number

*) A. Sekiya, et al., J. Fluorine Chem., 131, pp.364-368, 2010

A. Sekiya, United Nations Forum on Climate Change Mitigation, Seoul, March 16-17, 2010

Feature of CEWN

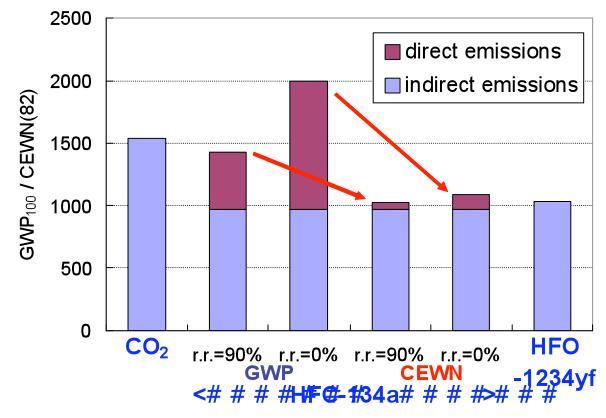
	GWP ₁₀₀	CEWN
concept	integrated warming values up to 100 years after the emission	integrated warming values up to equal removal rate from the atmosphere
evaluation period	100 years	lifetime-dependent
evaluation amount	long-lived gases : partial eval. short-lived gases : total eval.	equivalent quantity evaluation by unifying the removal rate
long-term evaluation	impossible due to uncertainty over long-term behavior of CO_2	longer evaluation is possible within the range where the behavior of CO ₂ is clear
point (years, rates) settings	"100 years" is arbitrary	Higher rates are desirable. Progress of CO ₂ research can be reflected.
relationship with climate impacts	weak	strong
characteristics of evaluation	one-sided evaluation	sustainability is evaluable

CEWN values

A. Sekiya, et al., J. Fluorine Chem., 131, pp.364-368, 2010

Common Name	Chemical Formula	Lifetime [years]	CEWN (75)	CEWN (80)	CEWN (82)	GWP ₁₀₀ *
Years until CO ₂ decreases	279	728	1445			
Years until gas X decreases	Years until gas X decreases by the given removal rate / Lifetimef gas X			1.61	1.71	
Carbon dioxide	CO ₂	-	1	1	1	1
Methane	CH₄	12	8.75	4.60	2.79	25
Nitrous oxide	N ₂ O	114	191	100	60.9	298
CFC-11	CCI ₃ F	45	1993	1048	636	4750
HCFC-22	CHCIF ₂	12	675	355	215	1810
HCFC-141b	CH ₃ CCl ₂ F	9.3	271	143	86.4	725
HFC-32	CH ₂ F ₂	4.9	252	133	80.4	675
HFC-125	CHF ₂ CF ₃	29	1352	711	431	3500
HFC-134a	CH ₂ FCF ₃	14	534	281	170	1430
HFC-152a	CH ₃ CHF ₂	1.4	46.4	24.4	14.8	124
HFO-1234yf	CF ₃ CF=CH ₂	0.03	1.41	0.74	0.45	3.8 **
Nitrogen trifluoride	NF ₃	740	53267	28017	16992	17200
PFC-14	CF ₄	50000	1382736	727285	441104	7390
PFC-218	C ₃ F ₈	2600	87502	46024	27914	8830

RF $_{\text{CO2}}$ used for the calculation is 1.805× 10-15 [W m-2 kg-1]


The coefficients for concentration response function of CO₂: the same as Shine, Climatic Change, <u>68</u>, pp.281-302, 2005.

^{*)} Quoted from IPCC Climate Change 2007. **) Calculated in the same way of IPCC 2007.

CEWN* and GWP due to the use of car air-conditioning

Tokyo, Compact Car (1.5L Gasoline Engine)
duration of use: 10 years
Recovery rate of refrigerant after the use
: 90% or 0%

	GWP ₁₀₀	CEWN(82)
CO ₂	1	1
HFC-134a	1,430	170
HFO-1234yf	4	0.45

*) A. Sekiya, et al., J. Fluorine Chem., <u>131</u>, pp.364-368, 2010

Summary

- * What is GWP, TWPG, CWP and CEWN?
- Evaluation results by TWPG, CWP and CEWN using JAMA's LCCP data

GWP

TWPG, CWP, CEWN

Evaluation results of Compact Car (1.5L Gasoline engine)

HFC-134a >>> CO₂ >> HFO-1234yf ←→ CO₂ >>> HFC-134a > HFO-1234yf

Evaluation of future warming

Not available

 \rightarrow

CO₂ >>> HFC-134a; HFO-1234yf

Effects of HFC-134a recovery on total warming

significant

very small

CEWN results agree with those of TWPG, TTPG and CWP.

Sustainable MAC refrigerant: HFC-134a HFO-1234yf

LCCP by GWP shows only one side of global warming.

We may lead to serious problems in our future environment if we examine this matter with limited indicators, like GWP only.

Let's study the global warming using adequate and diverse evaluation methods.