UN Briefing Session New York, 2 Nov 2009

Copenhagen 2009: The Fierce Urgency of Now

Professor H. J. Schellnhuber CBE Potsdam Institute for Climate Impact Research

FEATURE

A safe operating space for humanity

Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue **Johan Rockström** and colleagues.

Authors

Johan Rockström, Will Steffen, Kevin Noone, Åsa Persson, F. Stuart Chapin, III, Eric F. Lambin, Timothy M. Lenton, Marten Scheffer, Carl Folke, Hans Joachim Schellnhuber, Björn Nykvist, Cynthia A. de Wit, Terry Hughes, Sander van der Leeuw, Henning Rodhe, Sverker Sörlin, Peter K. Snyder, Robert Costanza, Uno Svedin, Malin Falkenmark, Louise Karlberg, Robert W. Corell, Victoria J. Fabry, James Hansen, Brian Walker, Diana Liverman, Katherine Richardson, Paul Crutzen, Jonathan A. Foley

Earth-system process	Parameters	Proposed boundary	Current status	Pre-industrial value
Climate change	(i) Atmospheric carbon dioxide concentration (parts per million by volume)	350	387	280
	(ii) Change in radiative forcing (watts per metre squared)	1	1.5	0
Rate of biodiversity loss	Extinction rate (number of species per million species per year)	10	>100	0.1-1
Nitrogen cycle (part of a boundary with the phosphorus cycle)	Amount of N ₂ removed from the atmosphere for human use (millions of tonnes per year)	35	121	0
Phosphorus cycle (part of a boundary with the nitrogen cycle)	Quantity of P flowing into the oceans (millions of tonnes per year)	11	8.5-9.5	~1
Stratospheric ozone depletion	Concentration of ozone (Dobson unit)	276	283	290
Ocean acidification	Global mean saturation state of aragonite in surface sea water	2.75	2.90	3.44
Global freshwater use	Consumption of freshwater by humans (km ³ per year)	4,000	2,600	415
Change in land use	Percentage of global land cover converted to cropland	15	11.7	Low
Atmospheric aerosol loading	Overall particulate concentration in the atmosphere, on a regional basis		To be determi	ned
Chemical pollution	For example, amount emitted to, or concentration of persistent organic pollutants, plastics, endocrine disrupters, heavy metals and nuclear waste in, the global environment, or the effects on ecosystem and functioning of Earth system thereof		To be determi	ned

Boundaries for processes in red have been crossed. Data sources: ref. 10 and supplementary information

1995: The WBGU Tolerable Windows Approach

First justification / operationalization of the 2° C guardrail

Will Sterren ns Joachim Schellnhuber Joseph Alcamo Terry Barker Daniel M. Kammen Rik Leemans Diana Liverman Mohan Munasinghe Balgis Osman-Elasha Nicholas Stern Ole Wæver

INTERNATIONAL ALLIANCE OF

Australian National University, ETH Zürich, National University of Singapore, Peking University, University of California - Berkeley, University of Cambridge, University of Copenhager, University of Oxford, The University of Tokyo, Yale University

Key Message 2 - Social and Environmental Disruption

"Temperature rises above 2°C […] are likely to cause major societal and environmental disruptions through the rest of the century and beyond."

Global mean annual temperature change relative to 1980-1999 (°C)

Table TS.3. Examples of global impacts projected for changes in climate (and sea level and atmospheric CO_2 where relevant) associated with different amounts of increase in global average surface temperature in the 21st century [T20.8]. This is a selection of some estimates currently available. All entries are from published studies in the chapters of the Assessment. (Continues below Table TS.4.)

Updated Reasons for Concern

TAR (2001) Reasons For Concern

Updated Reasons For Concern

Source: Synthesis Report (Smith et al. 2009 PNAS)

Tipping elements in the Earth's climate system

Timothy M. Lenton*[†], Hermann Held[‡], Elmar Kriegler^{±§}, Jim W. Hall¹, Wolfgang Lucht[‡], Stefan Rahmstorf[‡], and Hans Joachim Schellnhuber^{±#}

*School of Environmental Sciences, University of East Anglia, and Tyndall Centre for Climate Change Research, Norwich NR4 7TJ, United Kingdom; [‡]Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany; [§]Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213-3890; [¶]School of Civil Engineering and Geosciences, Newcastle University, and Tyndall Centre for Climate Change Research, Newcastle NE1 7RU, United Kingdom; and [¶]Environmental Change Institute, Oxford University, and Tyndall Centre for Climate Change Research, Oxford OX1 3QY, United Kingdom

**This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on May 3, 2005.

Edited by William C. Clark, Harvard University, Cambridge, MA, and approved November 21, 2007 (received for review June 8, 2007)

Dangerous Warming Commitment

(Ramanathan & Feng 2008 PNAS)

"Mass loss on Himalayan glacier endangers water resources" (Kehrwald et al. 2008 Geophys Res Lett)

Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets

Hamish D. Pritchard¹, Robert J. Arthern¹, David G. Vaughan¹ & Laura A. Edwards²

and 746 d for Greenland). East Antarctic data cropped to 2,500-m altitude. White dashed line (at 81.5° S) shows southern limit of radar altimetry measurements. Labels are for sites and drainage sectors (see text).

Ocean Acidification Triggers Marine Oxygen Holes

Key Message 2 Synthesis Report (Hofmann&Schellnhuber 2009 PNAS)

PNAS Special Feature on Tipping Elements, December 2009

Editor Hans Joachim Schellnhuber

- 1. Washington R et al. Dust as a tipping element: The Bodélé Depression
- 2. Malhi Y et al. Exploring the likelihood and mechanism of a climate-change induced dieback of the Amazon rainforest
- 3. Levermann A et al. Basic mechanism for abrupt monsoon transitions
- 4. Latif M et al. El Niño/Southern Oscillation response to global warming
- 5. Notz D The big melt: Is the loss of ice sheets and Arctic sea ice unstoppable?
- 6. Riebesell U et al. Sensitivity of marine carbon fluxes to ocean change
- 7. Archer D et al. Ocean methane hydrates as a slow tipping point in the global carbon cycle
- 8. Hofmann M et al. On the stability of the Atlantic Meridional Overturning Circulation
- 9. Molina M et al. Reducing abrupt climate change risk using Montreal Protocal and other regulatory actions to complement cuts in CO2 emissions

G8 and Emerging Economies Agree on 2° C Long-term Target

DECLARATION OF THE LEADERS THE MAJOR ECONOMIES FORUM ON ENERGY AND CLIMATE

We, the leaders of Australia, Brazil, Canada, China, the European Union, France, Germany, India, Indonesia, Italy, Japan, the Republic of Korea, Mescio, Russia, South Africa, the United Kingdom, and the United States met as the Major Economies Forum on Energy and Climate in L'Aquila, Italy, on Iuly 9, 2009, and declare as follows:

1. Consistent with the Convention's objective and science:

Our countries will undertake transparent nationally appropriate ting, and mitigation actions, subject to applicable measurement, report verification, and prepare low-carbon growth plans. Developed countries among us will take the lead by promptly undertaking robust aggregate and individual reductions in the midterm consistent with our respective ambitious long-term objectives and will work together before Copenhagen to achieve a strong result in this regard. Developing countries among us will promptly undertake actions whose projected effects on emissions represent a meaningful deviation from business as usual in the midterm, in the context of sustainable development, supported by financing, technology, and capacity-building. The peaking of global and national emissions should take place as soon as possible, recognizing that the timeframe for peaking will be longer in developing countries, bearing in mind that social and economic development and poverty eradication are the first and overriding priorities in developing countries and that low-carbon development is indispensible to sustainable development. We recognize the scientific view that the increase in global average temperature above pre-industrial levels ought not to exceed 2 degrees C. In this regard and in the context of the ultimate objective of the Convention and the Bali Action Plan, we will work between now and Copenhagen, with each other and under the Convention, to identify a global goal for substantially reducing global emissions by 2050. Progress toward the global goal would be regularly reviewed, noting the importance of frequent, comprehensive, and

We will take steps nationally and internationally, including under the Convention, to reduce entrisions from deforestation and forest degradation and to enhance removals of greenhouse gas emissions by forests, including providing enhanced support to developing countries for such purposes.

Adaptation to the adverse effects of climate change is essential. Such effects are already taking place. Further, while increased mitigation efforts will reduce climate impacts, even the most aggressive nultigation

constitutes the most comprehensive assessment of the science. We recognise the [broad] scientific view that the increase in global average temperature above preindustrial levels ought not to exceed 2°C. Because this global challenge can only be

Meinshausen et al. 2009a Allen et al. 2009

Exemplary emission pathways in order to remain within a budget of 750 Gt between 2010 and 2050. At this level, there is a 67% probability of staying below a warming of 2 $^{\circ}$ C.

"World Formula" for Climate Policy

Scenario 2: Future responsibility approach

 $T_1 = 2010, T_2 = 2050, T_M = 2010, p = 2/3$

CO₂ emissions in 2008 (light green) and permissible average annual budgets (dark green) according to the WBGU approach for selected countries.

Examples of theoretical emission trajectories

Examples of equal per-capita emissions of selected countries for 2010 - 2050, **without emissions trading**. Trajectories start from current emission levels.

CO₂ emissions by country

Per-capita CO₂ emissions in 2005, differentiated by emission levels and country.

Examples of Per-Capita Emissions Paths of CO₂ for Three Groups of Committee synthic Emissions Fracticity

Source: WBGU Special Report 2009

Pattern of warming by 2090s, A1FI Mean of "highend" MOHC simulations (14 simulations, mean global warming 5.4°C)

Temperature change (°C) relative to 1961-1990

Source: Met Office Hadley Centre Precipitation changes by 2090s, A1FI Mean of "high-end" MOHC simulations (14 simulations, mean global warming 5.4°C)

Source: Met Office Hadley Centre

Carbon Stored in Permafrost Soils Estimates Corrected Upwards

The new estimate of frozen carbon stored in permafrost soils of the circumpolar region is over 1.5 trillion tons, about twice as much carbon as contained in the atmosphere.

(Tarnocai et al. 2009 Global Biogeochemical Cycles)

Interdependency Between Tipping Points

(Kriegler et al. 2009 PNAS)

"Runaway Greenhouse Effect" Conceptual approach

Energy gain per additional degree of warming [W/m²/K] vs. Energy export through thermal radiation

(Levermann & Schneider v. Deimling, pers. comm., 2009)

"Runaway Greenhouse Effect"

Where do we stand at present ?

Potsdam Symposium Series

"Global Sustainability – A Nobel Cause"

ST. JAMES'S PALACE NOBEL LAUREATE SYMPSSIUM

The St James Palace Memorandum "Action for a Low Carbon and Equitable Future" London, UK, 26 – 28 May 2009

MILESTONES of the Great Transformation

An effective and just global agreement on climate change

A low carbon infrastructure

Forest protection, conservation and restoration

"[...] we should confine the temperature rise to 2°C to avoid unmanageable climate risks. This can only be achieved

- with a peak of global emissions of all greenhouse gases by 2015
- at least a 50% emission reduction by 2050 on a 1990 baseline. [...] developed countries have to aim for a 25-40% reduction by 2020.

[...] a **total carbon budget** [...] should be accepted as the base for measuring the effectiveness of short-term (2020) and long-term (2050) targets"

ST. JAMES'S PALACE NOBEL LAUREATE SYMP@SIUM

Memorandum Signatories

#	Name	Prize	Country	
1	Professor Peter Agre	Chemistry 2003	United States	
2	Professor Kenneth Arrow	Economics 1972	United States	
3	Professor Françoise Barré-Sinoussi	Medicine 2008	France	
4	Dr Paul Berg	Chemistry 1980	United States	
5	Dr Mario Capecchi	Medicine 2007	United States	
6	Professor John Coetzee	Literature 2003	South Africa	
7	Professor Paul Crutzen	Chemistry 1995	Germany	
8	Professor Johann Deisenhofer	Chemistry 1988	Germany	
9	Dr Mohamed ElBaradei	Peace 2005	Austria	
10	Professor Claude Cohen-Tannoudji	Physics 1997	France	
11	Professor Peter Doherty	Medicine 1996	Australia	
12	Professor Richard Ernst	Chemistry 1991	Switzerland	
13	Professor Dr Gerhard Ertl	Chemistry 2007	Germany	
14	Mr Mikhail Gorbachev	Peace 1990	Russia (Former USSR)	
15	Ms Nadine Gordimer	Literature 1991	South Africa	
16	Dr Paul Greengard	Medicine 2000	United States	
17	Professor David Gross	Physics 2004	United States	
18	Professor Robert Grubbs	Chemistry 2005	United States	
19	Dr Roger Guillemin	Medicine 1977	United States	
20	Dr Lee Hartwell	Medicine 2001	United States	
21	Professor Alan Heeger	Chemistry 2000	United States	
22	Professor Dudley Herschbach	Chemistry 1986	United States	
23	Professor Antony Hewish	Physics 1974	United Kingdom	
24	Professor Roald Hoffmann	Chemistry 1981	United States	
25	Professor Gerardus 't Hooft	Physics 1999	Netherlands	
26	Professor Aaron Klug	Chemistry 1982	United Kingdom	
27	Professor Walter Kohn	Chemistry 1998	United States	
28	Professor Masatashi Koshiba	Physics 2002	Japan	
29	Professor Sir Harold Kroto	Chemistry 1996	United Kingdom	
30	His Holiness the Dalai Lama	Peace 1989	Tibet	
31	Professor Yuan Tseh Lee	Chemistry 1986	United States	
32	Ms Doris Lessing	Literature 2007	United Kingdom	
33	Professor Wangari Maathai	Peace 2004	Kenya	
34	Dr Toshihide Maskawa	Physics 2008	Japan	
35	Professor Eric Maskin	Economic Sciences 2007	United States	
36	Professor Dr Hartmut Michel	Chemistry 1988	Germany	
37	Professor James Mirrlees	Economic Sciences 1996	United Kingdom	
38	Professor Mario Molina	Chemistry 1995	United States	
39	Professor Roger Myerson	Economics 2007	United States	
40	Professor Doctor Erwin Neher	Medicine 1991	Germany	
41	Dr Ryoji Noyon	Chemistry 2001	Japan	
42	Sir Paul Nurse	Medicine 2001	United Kingdom	
43	Protessor Douglas Osheroff	Physics 1996	United States	
44	Dr. Rajendra Pachaun on behalf of IPCC	Peace 2007	India	
45	Professor Edmund Phelps	Economic Sciences 1996	United States	
46	Professor John Polanyi	Chemistry 1986	Canada	
47	Professor David Politzer	Physics 2004	United States	
48	Professor Burton Richter	Chemistry 1976	United States	
49	Professor F. Sherwood Rowland	Chemistry 1995	United States	
50	Professor Carlo Rubbia	Chamista 2007	Italy	
51	Dr Hideki Shirakawa	Chemistry 2007	Dependent	
52	Dr Jens Christian Skou	Chemistry 1997	Denmark	
53	Protessor Wole Soyinka	Literature 1986	Nigeria	
54	Protessor Jack Steinberger	Physics 1988	United States	
55	Sir John Sulston	Medicine 2002	United Kingdom	
56	Protessor Susumu Tonegawa	Devoice 1987	Japan	
5/	Protessor Kiaus von Klitzing	Physics 1985	Germany	
58	Professor Sir John Walker	Chemistry 1997	United Kingdom	
29	Di foisten Wiesel	Intedicine 1981	onited States	

Cambridge Programme for Sustainability Leadership 1 Trumpington St. Cambridge CB2 10A. United Kingdom +44 (0) 1223 769850 F: +44 (0) 1223 301122 www.cpsl.cam.ac.t Patron HIM The Prince of Wales

