
Chapter VI

MALTHUSIAN POPULATIONS WITH KNOWN AGE DISTRIBUTION OF DEATHS:
THE SUB-SETS G(r) AND PROCESSES OF DEMOGRAPHIC EVOLUTION WITH
CONSTANT AGE DISTRIBUTION OF DEATHS

(11.10)

In this chapter, we propose to study the sub-sets G(r)
described above. We assume that the age distribution
of deaths, do(a) is constant and given, while the mortality
function and the age distribution of the population are
constant but are not given. All Malthusian populations
corresponding to these conditions constitute the sub-sets
Go(r) linked to the age distribution of deaths do(a).
By varying do(a) we obtain the series of sub-sets G(r).

The basic relations used for studying the sub-sets
G(r) are the same as those used for the study of the
preceding sub-sets H(r) and F(r). We shall present them
once again below, in connexion with the determination
in a given set Go(r) of a population satisfying a given
condition.

A. Population of a sub-set Go(r) satisfying certain
conditions

FIRST EXAMPLE: THE RATE OF NATURAL VARIATION r IS
GIVEN

The survivorship function is written:

I:d(a)erada
pea) = 1 - -/11--­

f 0 d(a)erada

(This is formula II.IO in chapter II.)
For any given value of r the quantity:

f:d(a)erada

f:d(a)erada

increases from 0 to I when a increases from 0 to w.
Consequently, formula (11.10) is valid for all values

of r.
Table VI.I gives details of the calculation for applying

this formula in the following case: the function d(a) is
the age distribution of deaths calculated in chapter II
(table 11.3). It corresponds to a Malthusian population
with a rate of natural variation of r = 0.03, whose
mortality is that of the intermediate model life table
with an expectation of life at birth for both sexes of
fifty years. Here we disregard the way in which this age
distribution of deaths was calculated, taking it as an
established fact, and we proceed to consider the sub­
set Go(r) linked to this age distribution.

We propose to determine the population of this set
Go(r), which has a rate of natural increase of r = 0.03.

By applying formula. (II.lO), we should again find the
function pea) which was used in the calculation of d(a),
and this is in fact what table VI.1 shows.

Once we know the survivorship function pea), it is
easy to calculate all the other characteristics of the
population.

The fact that formula 11.10 is written in continuous
notation and that we have the age distribution of deaths
only in discontinuous terms causes no difficulty here,
as it did in the case of the study of the sub-sets F(r).
It was simply assumed, for the purpose of calculating
the integrals of formula II-lO, that for the 20-24 age
group, for example, we had:
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f d(a)erada # e22.5rd20_24
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Tables VI.2 and V1.3 give computations similar to
those in table VI.1 for the other two values of the rate of
natural increase: r = 0.015 and r = O.

Table VI. 5 givesthe age distributions of the populations.
We shall see in a moment how these computations can

be used for the three different rates of variation.

SECOND EXAMPLE: THE CRUDE BIRTH RATE bo IS GIVEN

As was seen above, for each value of r there is a
survivorship function pea) and, consequently, a crude
birth rate:

1
bo=-----

f:e-rap(a)da

We can therefore regard the crude birth rate b as a
function of r. The three computations in tables VI.I,
VI.2 and V1.3 give the values of this function for r = 0.03,
r = 0,015 and r = O. If we prepare a graph with r on the
horizontal axis and b on the vertical axis, we have three
points on the curve representing b(r). Graph VI.1 was
drawn in this way. We see that, when r varies from - 00

to +00, b passes through a minimum bm.

If bo > bm, the straight line of the ordinate bo inter­
sects the curve G(r) at two points M1 and M2, having as
their abscissae r1 and r2. There are therefore two
Malthusian populations corresponding to the rates of
natural variation r1 and rs. Thus, for the purpose of
calculating the characteristics of these populations, we
are brought back to the first example, since we know r1
and r2.

If bo < bm, there is no solution to the problem, and
if bo equals bm there is one double solution.
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TABLE VII. CoMPUTATION OF TIlE FEMALI! SURVIVORSIDP FUNCrION WHICH, WHEN ASSOCIATED WITII A RATE OF NATURAL VARIATION OF
0.03, LEADS TO A FEMALI! MALTIlUSIAN POPULATION HAVING A DISTRIBUTION OF DEATIIS BY AGE GROUPS IDENTICAL WITII TIlE
DISTRIBUTION da SHOWN IN TIlE TIIIRD COLUMN OF TIlE TABLE

Cumulative Distribution
Distribution Quotient 0/ totals 0/ by Survivors
ofdeaths the two age groups age groups at the

Age group by e- r G preceding
jGd(a)erada

of the beginning Survivors Initial
Median age (years) age groups for columns cumulative ofeach In each survivorship

a a da r = 0.03 erGda 0 totals age group age group function

0.5 • Under 1 366651 0.98511 372 193 372193 12372 100000 90721 100000
3.0. 1-4) 150864 0.91393 165072 537265 17859 87628 339008 87625
7.5. 5-9 38967 0.79852 48799 586064 19481 82150 406 672 82136

12.5. 10.14 24421 0.68729 35532 621596 20663 80519 399640 80515
17.5. 15-19 30560 0.59156 51660 673256 22380 79331 392392 79333
22.5. 20.24 34964 0.50916 68670 741926 24663 77620 382392 77615
27.5. 25-29 31494 0.43824 71865 813791 27051 75337 370715 75332
32.5 . 30.34 27691 0.37719 73414 887205 29492 7294!J 358642 72940
37.5 . 35-39 24621 0.32465 75839 963044 32013 70508 346237 70500
42.5. 40-44 22820 0.27943 81666 1044710 34727 67987 333150 67981
47.5. 45-49 23153 0.24051 96266 1140 976 37927 65273 318365 65266
52.5. 50.54 24755 0.20701 119584 1260 560 41903 62073 300425 62064
57.5 . 55-59 26890 0.17817 150923 1411 483 46919 58097 277 942 58093
62.5. 60-64 30760 0.15336 200574 1612057 53587 53080 248732 53076
67.5 . 65-69 34430 0.13199 260853 1872 910 62258 46413 210387 46413
72.5. 70.74 36231 0.11361 318907 2191817 72 859 37742 162207 37747
77.5. 75-79 32495 0.9778 332328 2524145 83906 27141 108087 27141
82.5 . 80.84 22685 0.8416 269546 2793691 72 866 16094 58070 16086
87.5. 85 + 15547 0.7244 214619 3008310 100000 7134 27480 7123

TABLE VI.2. CoMPUTATION OF TIlE FEMALI! MORTALITY FUNCrIONS WHICH, WHEN ASSOCIATED WITH A RATE OF NATURAL VARIATION OF 0.015,
LEADS TO A FEMALI! MALTIlUSIAN POPULATION HAVING A DISTRIBUTION OF DEATIIS BY AGE GROUPS IDENTICAL WITII TIlE DISTRIBUTION
d« SHOWN IN TIlE THIRD COLUMN OF TIlE TABLE

Quotient Distribution
Distribution of by Survivors
ofdeaths the two age groups at the Deaths Survivors

Median Age group by e-""da preceding Cumulative of the beginning from one in each Death rate
age (years) age groups for columns totals of cumulative ofeach age to age group (per 1 000)

a a da r - 0.015 e-rada age groups totals age group the next La ma

0.5 Under 1
366651 1.00750 369401 369401 23769 100000 23769 82713 287.37

3.0 1-4 150864 1.04600 157804 527205 33922 76231 10 153 283603 35.80
7.5 5-9 38967 1.11917 43611 570816 36728 66078 2806 323375 8.68

12.5 10.14 24421 1.20623 29457 600273 38624 63272 1896 311 620 6.08
17.5 15-19 30560 1.30128 39767 640040 41182 61376 2558 300485 8.51
22.5 20.24 34964 1.40144 49000 689040 44 335 58818 3153 286208 11.02
27.5 25-29 31494 1.51059 47575 736615 47396 55665 3153 270673 11.31
32.5 30-34 27691 1.62829 45089 781704 50298 52604 2902 255765 11.35
37.5 35-39 24621 1.75515 43214 824918 53078 49702 2780 241560 11.51
42.5 40-44 22820 1.89174 43170 868088 55856 46922 2778 227665 12.20
47.5 45-49 23153 2.03918 47213 915301 58894 44144 3038 213125 14.25
52.5 50.54 24755 2.19899 54436 969737 62396 41106 3502 196775 17.80
57.5 55-59 26890 2.36918 63707 1033444 66495 37604 4099 177773 23.06
62.5 60-64 30760 2.55369 78552 1111996 71 550 33505 5055 154888 32.64
67.5 65-69 34450 2.75257 94771 1206767 77648 28450 6098 127005 48.01
72.5 70.74 36231 2.96685 107492 1314259 84564 22352 6916 94470 73.21
77.5 75-79 32495 3.19792 103916 1418175 91250 15436 6686 60465 110.58
82.5 80.84 22686 3.44709 78201 1496376 96282 8750 5032 31170 161.44
87.5 85 + 15547 3.71655 57781 1554157 100000 3718 3718 13274 280.10
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TABLE VI.l COMPUTATION OF FIlMALIl MORTAUTY FUNcrIONS SUCH THAT IN TUB COIlRl!SPONDING
STATIONARY POPULATION DISTRIBUTION OF DEATHS BY AGE GROUPS IS IDENTICAL wrm THE DISTRIBUTION
d,. SHOWN IN THE TIDRD COLUMN OP-m'E TAJiLE

Distribution Survivors Deaths
ofdeaths at the from Survivors

Age group by beginning one age in each Death rate
Median age (years) age groups Cumulative ofeach to the age group per 1 OOQ

a a d,. totals age group next L,. m,.

0,5 . Under 1 366651 366 651 100000 36665 72501 505.71
3.0 . 14 150864 517515 63335 IS 337 221 658 69.19
7.5 . 5-9 38967 556482 48248 3896 231500 16.83

12.5 . 10-14 24421 580903 44352 2442 215655 11.32
17.5 . 15-19 30560 611463 41910 3056 201910 15.14
22.5 . 20-24 34964 646427 38854 3497 185528 18.85
27.5 . 25-29 31494 677921 35357 3149 168913 18.64
32.5 . 30-34 27691 705612 32208 2769 154118 17.97
37.5 . 35-39 24621 730233 29439 2462 141040 17.56
42.5 . 4Q-44 22820 753053 26977 2282 129180 17.66
47.5 . 4549 23153 776206 24695 2316 117685 19.68
52.5 . 50-54 24755 800961 22379 2475 105708 23.41
57.5 . _55-59 26890 827851 19904 2689 92798 28.98
62.5 . 60-64 30760 858611 17 215 3076 78385 39.24
67.5 . 65-69 34430 893041 14139 3443 62088 55.45
72.5 . 70-74 36231 929 272 10696 3623 44423 81.56
77.5 . 75-79 32495 961767 7073 3250 27240 119.31
82.5 . 80-84 22686 984453 3823 2268 13445 168.69
87.5 . 85 + 15547 1000000 1555 1555 4963 313.32

THIRD EXAMPLE: THE CRUDE DEATH RATE do IS GIVEN

The crude death rate is equal to the difference between
the crude birth rate and the rate of natural increase.
Thus, it is a function of r, On graph VI.I the curve
d(r) = b(r) - r is easily traced.

The straight line of the ordinate do cuts this curve at
a point Mowhoseabscissa is the rate of natural increasero
of the population. There is one population, andpnly
one which answers the question.

TABLE VIA. FEMALE SURVlVORSffiP FUNcrION OF MALTHUSIAN
POPULATIONS OF THE SUB-SET Go(r) UNKED TO THE AGE DISTRIBU­
TION OF FEMALE DEATHS GIVEN IN TABLES VI.1, VI.2 AND VI.3,
FOR THE THREE RATES OF VARIATION: r = 0.000 (STATIONARY
POPULATION), r = 0.015 AND r = 0.030

FOURllI ~LE:THE AGE DISTRIBUTION OF THE
POPULATION AT A GIVEN AGE Co(o) IS KNOWN

The method in this case is exactly the same. For a
given age, Co(ao) is a function of r. Table VI.5 enables
these functions to. be plotted for various age groups.
It may be seen in graph VJ.2 that above the 25-29 age
group the curve passes through a minimum, while below
that age group it passes through a maximum. The
abscissae of the points of intersection of the straight

TABLE VI.5. DISTRIBUTION BY AGB GROUPS OF WOMEN IN
MALTHUSIAN POPULATIONS OF THE SUB-SET Go(r), UNKED TO THE
AGE DISTRIBUTION OF FBMALE DEATHS GIVEN IN TABLES VI.1,
VI.2 and VI.3, FOR THE THREE RATES OF VARIATION: r = 0.000
(STATIONARY POPULATION), r = 0.015 and r = 0.030.
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Graph VI.I. Variations, as a function of r, in the crude birth rate
and crude death rate of Malthusian populations of the set G(r),
linked to the age distribution of deaths d.. in tables VI.I, VI.2
and VI.3 (the distribution is the same in all three tables)

line of the ordinate Co(ao) with the corresponding curve
are the rates of natural increase of the populations sought.
As in the first example, there is not always a solution,
and when there is one solution there is generally a
second one also.!

FIFTH EXAMPLE: THE FERTILITY FUNCTION (a) IS GIVEN

In the populations sought we have the relation:

(e-rap/(a)tp,,(a)da = 1

Let us consider the integral

I(r) = (e-rap,,(a)tp,,(a)da

This can be calculated very easily with the aid of
tables VI.l, VI.2 and VI.3 for the values of r assumed
to be r = 0, r = 0.015 and r = 0.03.

Table VI.6 gives the computation for a fertility function
corresponding to a gross reproduction rate of 2.9
according to the intermediate model fertility distribution.
On graph VI.3 we have traced the curve representing I(r)
as a function of r. In the graph the straight line of the
ordinate 1 cuts the curve at two points Ml and M2
whose abscissae r1 and r2 define two populations satisfying
the given condition, i.e., having the specific fertility
defined above.

As has been seen, there is not always a solution to the
problem posed. Depending on the values of 9'(a), it may
be that the curve of graph VI.3 is entirely above the

1 There is only one solution if the straight line of the ordinate
Co(ao) is tangent to the curve corresponding to age aD.

straight line of the ordinate 1. We have also seen that,
when there is one solution, there is generally a second
one also.

This fifth example is similar to the second example of
the sub-sets H(r), which was defined by knowledge of the
survivorship function p(a) and the additional knowledge
of the fertility function 9'(a). This was shown to be a
particular Malthusian population to which Lotka gave
the name of a stable Malthusian population or, more
simply, a stable population.

Here, in a sub-set G(r) defined by a constant age
distribution of deaths, the additional knowledge of the
fertility function defines, if certain conditions are satisfied,
two particular Malthusian populations.

We shall confine ourselves to these few examples,
although others could easily be imagined. We shall now
proceed to a study of processes of demographic evolution
where there is a constant age distribution of deaths.

B. Processes of demographic evolution where there is
constant age distribution of deaths

As in the case of the sub-sets H(r) and F(r) , we can
try to establish a correspondence between the sub­
sets G(r) and processes of demographic evolution
starting from a given initial state and assuming a constant
age distribution of deaths associated with another condi­
tion implied in the series of examples considered above.

It is easy to see in a particular case that such processes
of population evolution are not defined by these two
conditions. Let us imagine, for example, that we assume
the following two conditions:

(i) Constant age distribution of deaths do(a) ; and
(ii) Constant crude death rate do.

Age group
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Graph VI.2. Graphic illustration of variations, as a function of r,
in the age distribution of women of Malthusian populations of the
sub-set Go(r), linked to the age distribution of female deaths da
in tables VI.I, VI.2 and VI.3 (the distribution is the same in all
three tables)
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"TABLE VI.6. COMPUTATION OF THE INTEGRAL: I(r) = Ie-""p/(a)w(a)da IN THREE MALTIlUSIAN FEMALE POPULATIONS OF THE SUB-SET Go(r),
u

LINKED TO AGE DISTRIBUTION OF FEMALE DEATIIS IN TABLES VI.1, VI.2 AND VI.3, CORRESPONDING TO THREE RATES OF NATURAL
VARIATION: e = 0,030, r = O.ot5 AND r = 0.000

The gross reproduction rate is 2.9 and the distribution of the female fertility rates is that of the intermediate model

r = 0.000 r = 0.015 r = 0.030

Age Product of Product of
distribution Product of preceding preceding

Age group offemale the two column column
Median age (years) fertility e-raL.. preceding

I
e-f'aL.. and third e-raL.. and third

a a rates (8) columns (1)) column (e) column

17.5 15-19 0.100 201910 20191 230920 23092 232110 23211
22.5 20-24 0.273 185528 50650 204270 55770 194686 53150
27.5 25-29 0.263 168913 44440 179200 47130 162447 42730
32.5 30-34 0.188 154118 28980 157080 29520 135260 25430
37.5 35-39 0.121 141040 17060 137620 16650 112394 13600
42.5 40-44 0.055 129080 7105 120350 6620 93083 5120

15-44 years 1.000 168426 178782 163241

I(r) (d) 0.977 1.037 0.9469
I

(0) Figures from the seventh column of table IV.3.
(b) Figures from the penultimate column of table IV.2, multiplied

by e-ra
te) Figures from the fifth column of table II.3.

These two conditions correspond to the third example
given above.

Starting from a given initial state at time t, the two
conditions enable us to determine at each age the survivors

Integral I (r)

1.10

0.90

Rate of natural variation r (%)

Graph VI.3. Graphic presentation of the integral

Iv !PI
ue-r"p/(a)q>/(a)dal

of Malthusian female populations of the sub-set Go(r), linked to
the age distribution of female deaths in tables VI.I, VI.2 and VI.3
(the distribution is the same in all three tables), the gross reproduc­
tion rate being 2.9 and the age distribution of the female fertility
rates being the intermediate model fertility distribution

(d) Figures from the preceding line,multiplied by (2.9/5.0)(1/100 000).
The division by 100 000 is necessary because the life tables are
expressed on the basis of an initial number at birth equal to
100 000.

at time t + dt of the persons living at time t. They do
not, however, enable us to determine the survivors at
time t + dt of persons born between times t and t + dt.
In order to calculate these survivors we need a third
condition, such as the fertility function. Let us then
add this third condition. We can then compute a popula­
tion projection, starting from the initial time. Let us
consider what would happen to the population if we
continued the computation of the projection indefinitely.

It is easy to see that, generally, the characteristics of
the population computed in this way will not approach
any limit, but will continue to fluctuate indefinitely
without any diminution of the fluctuations with the
passage of time.

In fact, if a limit existed-if, for example, the age
distribution of the population tended to become
invariable-this would mean that at the limit we should
find a Malthusian population of the sub-set Go(r) linked
to the age distribution of deaths do(a). In such a sub-set,
knowledge of the crude death rate defines a particular
Malthusian population whose rate of natural increase
is r. computed as described in the third example above.
This rate ro would be that of the limit population.

In the sub-set Go(r), however, knowledge of the fertility
function <pea) determines, subject to certain conditions,
two particular Malthusian populations whose rate of
increase r1 and r2 are computed as described in the fifth
example above, and the rate of natural increase of the
imagined limit population must be one of these two values
r1 and r2.

Generally, ro will be different from r1 and r2, and
therefore the limit population envisaged cannot exist.
It is only when the fertility function <pea) is precisely so
selected that one of these values r1 or '2 is equal to '0
that a limit population can exist. It would still remain to
be seen, however, whether the limit population really
existed, since the fact that it can exist does not necessarily
mean that it does exist.
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To sum up, processes of demographic evolution where
the age distribution of deaths is constantdo riot generally
lead to stable situations, as was the case with processes
of demographic evolution where the survivorship function
was constant.

76

We shall confine ourselves to these remarks and shall
now proceed, in the next two chapters, to a study of
quasi-stable populations, which, it may be recalled,
represent an approximation to stable populations.




