Chapter VI

MALTHUSIAN POPULATIONS WITH KNOWN AGE DISTRIBUTION OF DEATHS :
THE SUB-SETS G(r) AND PROCESSES OF DEMOGRAPHIC EVOLUTION WITH
CONSTANT AGE DISTRIBUTION OF DEATHS

In this chapter, we propose to study the sub-sets G(r)
described above. We assume that the age distribution
of deaths, do(a) is constant and given, while the mortality
function and the age distribution of the population are
constant but are not given. All Malthusian populations
corresponding to these conditions constitute the sub-sets
Go(r) linked to the age distribution of deaths do(a).
By varying do(a) we obtain the series of sub-sets G(r).

The basic relations used for studying the sub-sets
G(r) are the same as those used for the study of the
preceding sub-sets H(r) and F(r). We shall present them
once again below, in connexion with the determination
in a given set Go(r) of a population satisfying a given
condition.

A. Population of a sub-set Go(r) satisfying certain
conditions

FIRST EXAMPLE: THE RATE OF NATURAL VARIATION r IS
GIVEN

The survivorship function is written:

fad(a)e'“da
play=1—22 (IL.10)

]
f o d(a)erda

(This is formula I1.10 in chapter II.)
For any given value of r the quantity:

| :d(a)emda
f:d(a)e'“da

increases from 0 to 1 when a increases from 0 to w.

Consequently, formula (IL.10) is valid for all values
of r.

Table V1.1 gives details of the calculation for applying
this formula in the following case: the function d(a) is
the age distribution of deaths calculated in chapter II
(table I1.3). It corresponds to a Malthusian population
with a rate of natural variation of r = 0.03, whose
mortality is that of the intermediate model life table
with an expectation of life at birth for both sexes of
fifty years. Here we disregard the way in which this age
distribution of deaths was calculated, taking it as an
established fact, and we proceed to consider the sub-
set Go(r) linked to this age distribution.

We propose to determine the population of this set
Go(r), which has a rate of natural increase of r = 0.03.
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By applying formula (I1.10), we should again find the
function p(@) which was used in the calculation of d(a),
and this is in fact what table VI.1 shows.

Once we know the survivorship function p(a), it is
easy to calculate all the other characteristics of the
population.

The fact that formula IL.10 is written in continuous
notation and that we have the age distribution of deaths
only in discontinuous terms causes no difficulty here,
as it did in the case of the study of the sub-sets F(r).
It was simply assumed, for the purpose of calculating
the integrals of formula II-10, that for the 20-24 age
group, for example, we had:

25
f d(a)emda # €22:57do0.04
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Tables VL2 and VL3 give computations similar to
those in table VI.1 for the other two values of the rate of
natural increase: r = 0.015 and r = 0.

Table VL5 gives the age distributions of the populations.

We shall see in a moment how these computations can
be used for the three different rates of variation.

SECOND EXAMPLE: THE CRUDE BIRTH RATE bo IS GIVEN

As was seen above, for each value of r there is a
survivorship function p(a) and, consequently, a crude
birth rate:

1

bo o
fo erep(a)da

We can therefore regard the crude birth rate b as a
function of r. The three computations in tables VL1,
V1.2 and V1.3 give the values of this function for r = 0.03,
r = 0.015 and r = 0. If we prepare a graph with » on the
horizontal axis and b on the vertical axis, we have three
points on the curve representing b(r). Graph VL1 was
drawn in this way. We see that, when r varies from — oo
to + oo, b passes through a minimum by,.

If bo > b, the straight line of the ordinate bo inter-
sects the curve G(r) at two points M; and M, having as
their abscissae ri and ra. There are therefore two
Malthusian populations corresponding to the rates of
natural variation r1 and rs. Thus, for the purpose of
calculating the characteristics of these populations, we
are brought back to the first example, since we know r1
and ro.

If by < by, there is no solution to the problem, and
if bg equals by, there is one double solution.



TaBLe VI.1. COMPUTATION OF THE FEMALE SURVIVORSHIP FUNCTION WHICH, WHEN ASSOCIATED WITH A RATE OF NATURAL VARIATION OF
0.03, LEADS TO A FEMALE MALTHUSIAN POPULATION HAVING A DISTRIBUTION OF DEATHS BY AGE GROUPS IDENTICAL WITH THE
DISTRIBUTION dz SHOWN IN THE THIRD COLUMN OF THE TABLE

Cumulative Distribution

Distribution Quotient of  totals of by Survivors
of deaths the two age groups  age groups at the
Age group by e-re preceding e of the beginning Survivors Initial
Median age (years) age groups for columns f d(@)e'®da  cumulative of each in each survivorship
a a da r =003 ersd, 0 totals age group age group Sfunction

05. ... Under 1 366 651 0.98511 372193 372193 12372 100 000 90 721 100 000

30. ... 1-4; 150 864 0.91393 165072 537 265 17 859 87 628 339 008 87 625

75. . .. 59 38 967 0.79852 48799 586 064 19 481 82150 406 672 82136
125 . . .. 10-14 24 421 0.68729 35532 621 596 20 663 80 519 399 640 80 515
17.5. . . . 15-19 30 560 0.59156 51 660 673 256 22380 79331 392392 79 333
225. ... 20-24 34964 0.50916 68 670 741 926 24 663 77 620 382392 77 615
275 . . . . 25-29 31494 0.43824 71 865 813 791 27051 75 337 370715 75 332
R25.... - 30-34 27 691 0.37719 73414 887 205 29 492 72 949 358 642 72 940
375. ... 35-39 24 621 0.32465 75 839 963 044 32013 70 508 346 237 70 500
425. ... 40-44 22 820 0.27943 81 666 1044710 34727 67 987 333150 67 981
475. . .. 45-49 23153 0.24051 96 266 1140976 37927 65 273 318 365 65 266
525. ... 50-54 24755 0.20701 119 584 1260 560 41 903 62 073 300 425 62 064
515. . .. 55-59 26 890 0.17817 150 923 1411483 46 919 58 097 277942 58093
625. ... 60-64 30760 0.15336 200 574 1612057 53587 53 080 248732 53076
615 . ... 65-69 34430 0.1319% 260 853 1872910 62 258 46 413 210 387 46 413
25. .. 70-74 36 231 0.11361 318 907 2191 817 72 859 37742 162 207 37747
775. . .. 75-79 32495 0.9778 332328 2524 145 83 906 27141 108 087 27 141
825. ... 80-84 22 685 0.8416 269 546 2793 691 72 866 16 094 58 070 16 086
875. ... 85 + 15 547 0.7244 214 619 3008 310 100 000 7134 27 480 7123

TasLE VL2, COMPUTATION OF THE FEMALE MORTALITY FUNCTIONS WHICH, WHEN ASSOCIATED WITH A RATE OF NATURAL VARIATION OF 0.015,
LEADS TO A FEMALE MALTHUSIAN POPULATION HAVING A DISTRIBUTION OF DEATHS BY AGE GROUPS IDENTICAL WITH THE DISTRIBUTION
ds SHOWN IN THE THIRD COLUMN OF THE TABLE

Quotient Distribution
Distribution of by Survivors
of deaths the two age groups at the Deaths Survivors
Median  Age group by e~rida preceding  Cumulative of the beginning  from one in each Death rate
age (years) age groups for columns totals of  cumulative of each age to age group  (per 1 000)
a a da r = 0,015 e~T8d, age groups totals age group the next La my

05 .. Under 1
366 651 1.00750 369 401 369 401 23769 100 000 23769 82713 287.37
30 .. 14 150 864 1.04600 157 804 527 205 33922 76 231 10 153 283 603 35.80
75 .. 5-9 38 967 1.11917 43611 570 816 36728 66 078 2 806 323375 8.68
125 .. 10-14 24 421 1.20623 29 457 600 273 38 624 63272 1896 311 620 6.08
175 . . 15-19 . 30560 1.30128 39767 640 040 41 182 61 376 2558 300485 8.51
225 .. 20-24 34964 1.40144 49 000 689 040 44 335 58 818 3153 286 208 11.02
275 .. 25-29 3149 1.51059 47 575 736 615 47 396 55 665 3153 270 673 1131
325 .. 30-34 27 691 1.62829 45 089 781 704 50298 52 604 2902 2551765 11.35
375 .. 35-39 24 621 1.75515 43214 824918 53078 49 702 2780 241 560 11.51
425 . . 40-44 22 820 1.89174 43 170 868 088 55 856 46 922 2778 227 665 12.20
475 . . 45-49 23153 2.03918 47 213 915 301 58 894 44 144 3038 213125 14.25
525 .. 50-54 24755 2.19899 54 436 969 737 62 396 41 106 3502 196 775 17.80
575 .. 55-59 26 890 2.36918 63 707 1033 444 66 495 37 604 4099 177773 23.06
625 . . 60-64 30 760 2.55369 78 552 1111996 71 550 33 505 5055 154 888 32.64
675 . . 65-69 34 450 2.75257 94 771 1 206 767 77 648 28 450 6098 127 005 48.01
725 .. 70-74 36 231 2.96685 107 492 1314259 84 564 22352 6916 94 470 73.21
715 . . 75-719 32495 3.19792 103 916 1418175 91 250 15436 6 686 60 465 110.58
825 . . 80-84 22 686 3.44709 78 201 1 496 376 96 282 8750 5032 31170 161.44
875 .. 85 + 15 547 3.71655 571781 1554157 100 000 3718 3718 13274 280.10
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TasLE VI3, COMPUTATION OF FEMALE MORTALITY FUNCTIONS SUCH THAT IN THE CORRESPONDING
STATIONARY POPULATION DISTRIBUTION OF DEATHS BY AGE GROUPS IS IDENTICAL WITH THE DISTRIBUTION

‘ds SHOWN IN THE THIRD COLUMN OF 'I'HE TABLB

Distribution Survivors Deaths
of deaths at the Jfrom Survivors
Age group by : beginning one age in each Death rate
Median age (years) age groups  Cumulative of each to the age group per 1000
a a a totals age group next a mg

0,5 . Under 1 366 651 366 651 100 000 36 665 72 501 505.71

30. 1-4 150 864 517 515 63 335 15337 221 658 69.19

75 . 5-9 38 967 556 482 48 248 3896 231 500 16.83
125 . 10-14 24421 580 903 44 352 2442 215 655 11.32
17.5 . 15-19 30 560 611 463 41910 3056 201 910 15.14
225 . 20-24 34964 646 427 38 854 3497 185 528 18.85
215 . 25-29 31494 677921 35357 3149 168 913 18.64
325 . 30-34 27 691 705 612 32208 2769 154118 17.97
375 . 35-39 24 621 730233 29 439 2462 141 040 17.56
42.5 40-44 22 820 753 053 26 977 2282 129 180 17.66
47.5 45-49 23153 776 206 24 695 2316 117 685 19.68
52.5 50-54 24755 800 961 22379 2475 105 708 2341
57.5 .55-59 26 890 827 851 19 904 2 689 92798 28.98
62.5 60-64 30760 858 611 17 215 3076 78 385 39.24
67.5 65-69 34430 893 041 14139 3443 62 088 55.45
72.5 70-74 36 231 929 272 10 696 3623 44 423 81.56
71.5 75-79 32495 961 767 7073 3250 27 240 119.31
82.5 80-84 22 686 984 453 3823 2 268 13 445 168.69
87.5 85 + 15 547 1 000 000 1555 1555 4963 313.32

THIRD EXAMPLE: THE CRUDE DEATH RATE dgy IS GIVEN

The crude death rate is equal to the difference between
the crude birth rate and the rate of natural increase.
Thus, it is a function of r. On graph VI.1 the curve
d(r) = b(r) — r is easily traced.

The straight line of the ordinate do cuts this curve at
a point Mo whose abscissa is the rate of natural increase ro
of the population. There is one population, and only
one which answers the question.

TABLE VI.4. FEMALE SURVIVORSHIP FUNCTION OF MALTHUSIAN
POPULATIONS OF THE SUB-SET Go(r) LINKED TO THE AGE DISTRIBU-
TION OF FEMALE DEATHS GIVEN IN TABLES VI.1, VI.2 anDp VI3,
FOR THE THREE RATES OF VARIATION: r == 0.000 (STATIONARY
POPULATION), r = 0,015 aAnD r = 0.030

FOURTH EXAMPLE: THE AGE DISTRIBUTION OF THE
POPULATION AT A GIVEN AGE Cgy(p) IS KXNOWN

The method in this case is exactly the same, For a
given age, Co(ag) is a function of r. Table V1.5 enables
these functions to be plotted for various age groups.
It may be seen in graph VI.2 that above the 25-29 age
group the curve passes through a minimum, while below
that age group it passes through a maximum. The
abscissae of the points of intersection of the straight

TABLE VLS5, DISTRIBUTION BY AGE GROUPS OF WOMEN IN
MALTHUSIAN POPULATIONS OF THE SUB-SET Go(r), LINKED TO THE
AGE DISTRIBUTION OF FEMALE DEATHS GIVEN IN TABLES VL1,
VI.2 and VL3, FOR THE THREE RATES OF VARIATION: r = 0.000
(STATIONARY POPULATION), r == 0,015 and r = 0.030.

Age r = 0,000 (2) r=0.015 (b) r=0.030 ()
0. .... 100 000 100 000 100 000
1..... 63 335 76 231 87 628
5..... 48 248 66 078 82141

10. . ... 44 352 63 272 80 519

5. . ... 41910 61 376 79 337

2..... 38 854 58 818 77 620

25. .. .. 35357 55665 75337

30..... 32208 52604 72949

5..... 29439 49 702 70 508

4. . ... 26977 46 922 67 987

45. . . .. 24 695 44144 65273

0. .... 22379 41 106 62073

5..... 19 904 37604 58 097

60..... 17 215 33505 53080

65 . 14139 28 450 46413

7..... 10 696 22352 37742

75. 7073 15436 27141

8. . ... 3823 8750 16 094

8. .. 1555 3718 7134

(s) Figure taken from the fifth column of table VL3.
(b) Figure taken from the eighth column of table VI.2.
() Figure taken from the eighth column of table VL1.
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r = 0,000 r = 0,015 r=0.030

Crude birth rate per

100 000 44.070 42.165 45.070
Age group - Age distribution

0 ......... 319 3462 4028
14 .. ... ... 91770 11438 13964
59 .. . 10 205 12 186 14 636
10-14 . . . . . ... 9 506 10 896 12 380
15-19 . 8 900 9744 10462
2024 . . .. ... 8178 8 615 8775
2529 . . ... .. 7 446 7 557 7322
30-34 6793 6621 6097
3539 . . .0 e 6215 5803 5066
40-44 . 5693 5075 4196
4549 . . . .. ... 5186 4485 3451
5054 . . ... ... 4 660 3773 2803
55-59 . . 4050 3163 2232
60-64 . . ... 3455 2558 1719
6569 . .. .. ... 2736 1945 1252
70-74 . .. ... .. 1950 1343 831
75719 . .. .. . 1209 798 476
80-84 . . . .. ... 0593 381 220
85andover . . . . . 0219 151 90
ALL AGES 100 000 - 100 000 100 000




Crude rate (per 1 030)

minimum b,,
40—~ NATALITY: b

MORTALITY: d

30—

20—

10 |
0 1 2 3

Rate of natural increase r (%)

Graph VI.1. Variations, as a function of r, in the crude birth rate
and crude death rate of Malthusian populations of the set G(r),
linked to the age distribution of deaths d, in tables VL1, V1.2
and VL3 (the distribution is the same in all three tables)

line of the ordinate Co(ao) with the corresponding curve
are the rates of natural increase of the populations sought.
As in the first example, there is not always a solution,
and when there is one solution there is generally a
second one also.!

FIFTH EXAMPLE: THE FERTILITY FUNCTION (a) IS GIVEN

In the populations sought we have the relation:

[ eeprayriara = 1

Let us consider the integral

() = [ erpapra)da

This can be calculated very easily with the aid of
tables V1.1, VI.2 and VI.3 for the values of r assumed
to be r=20, r =0.015 and r = 0.03.

Table VI.6 gives the computation for a fertility function
corresponding to a gross reproduction rate of 2.9
according to the intermediate model fertility distribution.
On graph VI.3 we have traced the curve representing I(r)
as a function of r. In the graph the straight line of the
ordinate 1 cuts the curve at two points M; and My
whose abscissae r; and rz define two populations satisfying
the given condition, i.e., having the specific fertility
defined above.

As has been seen, there is not always a solution to the
problem posed. Depending on the values of ¢(a), it may
be that the curve of graph VI.3 is entirely above the

! There is only one solution if the straight line of the ordinate
Co(ao) is tangent to the curve corresponding to age do.

straight line of the ordinate 1. We have also seen that,
when there is one solution, there is generally a second
one also.

This fifth example is similar to the second example of
the sub-sets H(r), which was defined by knowledge of the
survivorship function p(a) and the additional knowledge
of the fertility function @(a). This was shown to be a
particular Malthusian population to which Lotka gave
the name of a stable Malthusian population or, more
simply, a stable population.

Here, in a sub-set G(r) defined by a constant age
distribution of deaths, the additional knowledge of the
fertility function defines, if certain conditions are satisfied,
two particular Malthusian populations.

We shall confine ourselves to these few examples,
although others could easily be imagined. We shall now
proceed to a study of processes of demographic evolution
where there is a constant age distribution of deaths.

B. Processes of demographic evolution where there is
constant age distribution of deaths

As in the case of the sub-sets H(r) and F(r), we can
try to establish a correspondence between the sub-
sets G(r) and processes of demographic evolution
starting from a given initial state and assuming a constant
age distribution of deaths associated with another condi-
tion implied in the series of examples considered above.

It is easy to see in a particular case that such processes
of population evolution are not defined by these two
conditions. Let us imagine, for example, that we assume
the following two conditions:

(i) Constant age distribution of deaths do(a); and

(ii) Constant crude death rate do.
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Graph VI.2. Graphic illustration of variations, as a function of r,
in the age distribution of women of Malthusian populations of the
sub-set Go(r), linked to the age distribution of female deaths d.
in tables VL1, VL2 and VL3 (the distribution is the same in all
three tables)
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TABLE VI.6. COMPUTATION OF THE INTEGRAL: I(r) = fe-'“pf(a)zpf(a)da IN THREE MALTHUSIAN FEMALE POPULATIONS OF THE SUB-SET Go(r),

1

LINKED TO AGE DISTRIBUTION OF FEMALE DEATHS IN TABLES VI.1, VL2 AND VI.3, CORRESPONDING TO THREE RATES OF NATURAL

VARIATION: ¢ = 0,030, r = 0.015 AND r = 0.000

The gross reproduction rate is 2.9 and the distribution of the female fertility rates is that of the intermediate model

r = 0.000 r=0.015 r = 0.030
Age Product of Product of
distribution Product of preceding preceding
Age group of female the two column column
Median age (years) Sfertility e~TL, preceding e T, and third e~TeL, and third
a a rates ® columns column (©) column
175 . . .. 15-19 0.100 201 910 20191 230 920 23092 232110 23211
225 .. .. 20-24 0.273 185 528 50 650 204 270 55770 194 686 53150
275 . . .. 25-29 0.263 168 913 44 440 179 200 47130 162 447 42730
325 .. .. 30-34 0.188 154 118 28980 157 080 29 520 135 260 25430
375 .. .. 35-39 0.121 141 040 17 060 137 620 16 650 112 394 13 600
425 . ... 40-44 0.055 129 080 7105 120 350 6 620 93083 5120
15-44 years 1.000 168 426 178 782 163 241
I(r) (9) 0.977 1.037 0.9469

(2) Figures from the seventh column of table IV.3.
b (b) Figures from the penultimate column of table IV.2, multiplied
y e—ra

(¢) Figures from the fifth column of table II.3.

These two conditions correspond to the third example
given above.

Starting from a given initial state at time ¢, the two
conditions enable us to determine at each age the survivors

Integral ! (r)
4
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mz
1.00

090 —

I

[ 1 2 3

Rate of natural variation r (%)

Graph VL3. Graphic presentation of the integral

f :e"'“pf(a)tpf(a)dag

of Malthusian female populations of the sub-set Go(r), linked to
the age distribution of female deaths in tables VLI, VL2 and VL3
(the distribution is the same in all three tables), the gross reproduc-
tion rate being 2.9 and the age distribution of the female fertility
rates being the intermediate model fertility distribution

(d) Figures from the preceding line, multiplied by (2.9/5.0) (1/100 000).
The division by 100 000 is necessary because the life tables are
e)(;gre%sgd on the basis of an initial number at birth equal to
100 000.

at time ¢ + dr of the persons living at time ¢. They do
not, however, enable us to determine the survivors at
time ¢ + dt of persons born between times ¢ and ¢ 4 df.
In order to calculate these survivors we need a third
condition, such as the fertility function. Let us then
add this third condition. We can then compute a popula-
tion projection, starting from the initial time. Let us
consider what would happen to the population if we
continued the computation of the projection indefinitely.

It is easy to see that, generally, the characteristics of
the population computed in this way will not approach
any limit, but will continue to fluctuate indefinitely
without any diminution of the fluctuations with the
passage of time.

In fact, if a limit existed—if, for example, the age
distribution of the population tended to become
invariable—this would mean that at the limit we should
find a Malthusian population of the sub-set Go(r) linked
to the age distribution of deaths do(a). In such a sub-set,
knowledge of the crude death rate defines a particular
Malthusian population whose rate of natural increase
is r, computed as described in the third example above.
This rate ro would be that of the limit population.

In the sub-set Go(r), however, knowledge of the fertility
function ¢(a) determines, subject to certain conditions,
two particular Malthusian populations whose rate of
increase r; and ra are computed as described in the fifth
example above, and the rate of natural increase of the
imagined limit population must be one of these two values
r1 and rz.

Generally, ro will be different from r; and r2, and
therefore the limit population envisaged cannot exist.
It is only when the fertility function ¢(a) is precisely so
selected that one of these values r1 or re is equal to ro
that a limit population can exist. It would still remain to
be seen, however, whether the limit population really
existed, since the fact that it can exist does not necessarily
mean that it does exist.
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To sum up, processes of demographic evolution where We shall confine ourselves to these remarks and shall
the age distribution of deaths is constant do not generally now proceed, in the next two chapters, to a study of
lead to stable situations, as was the case with processes quasi-stable populations, which, it may be recalled,
of demographic evolution where the survivorship function represent an approximation to stable populations.
was constant. :
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