
Chapter IV

MALTHUSIAN POPULATIONS WITH KNOWN AGE DISTRIBUTION:
SUB-SETS F(r)

(4) The probabilities of death given in the various
model life tables calculated with the aid of formula II.3d
have an important property, since we have:

Each series of probabilities is obtained by subtracting r
from the series of probabilities Qo(a).

(5) The fertility function tp(a, t) satisfies the condition:

We propose to study in this chapter the sub-sets F(r)
which were defined in chapter I as a kind of counterpart
of the sub-sets H(r). Ifwe assume that the age distribution
Co(a) is constant and given, while the survivorship
function p(a) is constant but not known, then all the
Malthusian populations satisfying these conditions form
the sub-set Fo(r) corresponding to the age distribution
Co(a) , and by varying Co(a) we obtain the series of
sub-sets F(r).

A. The fundamental formulae

q(a) = Qo(a) - r

f:qJ(a, t)Co(a)da = bo = Co(O)

(11.4)

(11.15)

The basic formulae for the sub-sets F(r) are the same
as for the sub-sets H(r). We shall set them out once again,
using a particular sub-set Fo(r), in a form expressing the
unknown functions in terms of the age distribution Co(a).

(1) Let us note, first of all, that Co(O) = boo Conse­
quently, when we assume a given age distribution we
also assume a corresponding crude birth rate;

(2) The survivorship function is written:

p(a) = Co(a) era
Co(O)

(II.3d)!

It may be recalled that in a sub-set H(r) we could
arbitrarily assume the function tp(a, t). This value then
determined a particular Malthusian population which
we called a stable population. This no longer applies in
the case of a sub-set F(r), however. Here, we cannot
arbitrarily assume the fertility function which must
satisfy 11.15. '

B. Populations of a sub-set F(r) satisfying certain
conditions

(II.3d bis)

and thus we obtain all the survivorship functions of the
sub-set Fo(r) by successively giving r all its possible
values;

(3) The rate r must be such that the function p(a)
thus calculated is a decreasing function. We therefore
must have: .

dp(a) < 0
da

or, in other terms,

r < _ Co(a)
Co(a)

Let

_ C'(a) = Q(a)
C(a)

r must therefore satisfy the inequality:

r < Qo(a) (IV.1)

'p?r a given function Co(a), Qo(a) passes through a
mmlmum for a certain age am. This minimum thus
represents a maximum for r. Finally, we can arrive at
all the populations of the sub-set F(r) by varying r from
- 00 to Qo(am).2

1 This is formula II.3d in table 11.2.
I This is obviously only a theoretical possibility. We have already

pointed out that in actual populations other limits might apply.

In order to define a particular population of the
sub-set F(r), we must have an additional condition.
We shall now discuss some of these conditions, which
are of particular interest in practice. .

FIRST EXAMPLE: MALTHUSIAN POPULATION WITH AGE

DISTRIBUTION Co(a) AND GIVEN RATE OF VARIATION ro

The simplest .way ~o define a particular population of
the sub-set F(r) IS obViOusly to assume the rate ofvariation
ro as given. We then apply formula 1I.3d to calculate the
corresponding survivorship function.

po(a) = Co(a) erOa
Co(O)

The numerical calculations raise various practical
problems which we shall now examine.

Discontinuous dat~. The. age distribution Co(a) is
generally not known In contmuous form but is rather a
function which is known for various age gr~ups. We
shall therefor~ take the following conventional age
groups : 0 (I.e., less than 1 year of age),3 1-4, 5-9,
10-14, and so on by successive five-year age groups. The
last age group usually consists of several five-year groups
together. For clarity, we shall make this last age group
cover all persons aged 85 and over.

• We s~ c?nsider l!1ter the case where the 0 and 1-4 age groups
are combmed mto a single age greup 0-4.
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and

One of the first consequences of the fact that we know
the age distribution in discontinuous notation is the
following: in continuous notation, we had CoCO) = bo,
thus knowledge of the age distribution automatically
meant that we also knew the crude birth rate; in discon­
tinuous notation, however, with the age groups considered
here, this no longer applies and the crude birth rate is
unknown.

In order to apply formula I1.3d bis, we use approximate
relationships based on the following assumptions:

(a) For a five-year age group a, a + 5 we assume
that: 4

boLa = Caerla+2.6l

For the first two age groups, we assume that:

boLo = CoeO.6r

boLl-4 = Cl-4e3r

(3) It now remains for us to find the values of the
survivorship function under the age of S. For the 1-4 age
group, we write:

Ll-4 = 1.9p(1) + 2.1p(5)

As we already know bop(S), we can calculate bop(l) with
the aid of this formula.

The problem of the 0 age group. In the case of the 0 age
group the problem is more complicated; for, if A repre­
sents the proportion of deaths of children under 1 year
of age which occur in the calendar year of their birth,
we have the following approximate formula:

Lo = 1- A+ Ap(l)

which can be written:

boLo = Coeo. sr = boO - A) + boAp(l)

from which we have:

A = e + kE
e+E

where k is a coefficient which is the same for all populations.
A is then a function of e and E. On the basis of observed values
of e and E, we find A to be between 0.6 and 0.9.

6 It is convenient to draw a distinction between the two main
categories of infant deaths: endogenous deaths, which are due to
factors present when the infant is born (genetic factors arising at
conception, factors transmitted by the mother during pregnancy,
or factors arising at confinement), and exogenous deaths, which
are due to the environment-in the broad sense of the term-in
which the infant lives after birth. Endogenous deaths occur for the
most part soon after birth, and they can be considered in practice
to occur entirely within the calendar year of birth, but exogenous
deaths occur throughout the calendar year of birth and the following
year. Observation reveals that this distribution is remarkably stable
in time and space. If e is the endogenous infant mortality (per
1,000 births) and E is the exogenous infant mortality, distributed
between kE, the calendar year of birth, and (1 - k)E, the following
year, we can write:

We already know bop(l), but we do not know A to
complete the calculation. We again come up against the
fact mentioned above, namely, that knowledge of the
age distribution in discontinuous terms does not mean
that we know the crude birth rate.

The proportion A is not the same for all populations.
In practice 6 it varies from 0.6 to 0.9. By varying A
between these limits, we can therefore determine with the
use of formula IV.2 a whole series of crude birth rates.

As long as r remains small-as it always does in the
case of the human species-the results scarcely depend
on the value of r adopted for the computation. We can
therefore speak of crude birth rates compatible with
the age distribution, and it is useful to determine this
series of compatible crude birth rates. If bo is given as
well as the. age distribution, we can check that it is indeed
within the series; when it is not given, we merely have to
select of value of bo which is within the series in order to
complete the computation.

Use of the infant mortality. Determination of the
compatible crude birth rates is tantamount to choosing
the infant mortality measured for the probability of
death between the ages of 0 and 1. In fact, choosing bo
when bop(1) is known is tantamount to choosing the
infant probability of death qo.

Finally, for the last age group, we assume that:

boLss + = Css + eS7 •Sr

These formulae make it possible to calculate the series:

boLo, boLl-4, boLs-9, ... boLss+

(b) On the basis of this series, we can calculate the
series of values of bo po(a) by applying the following
formulae:

(1) For each five-year age group-e.g., LlO_14-we
assume that:

5
LlO-14 = 2 [p(lO) + pelS)]

We also have the approximate formula:

p(lO) + pelS) = 2p(12.S)
so that:

LlO-14 = Sp(l2.S)

Similarly, we can write:

LS-9 = Sp(7.5)

and finally:

LlO-14 + LS-9 = Sp(12.S) + Sp(7.S) = 10p(10)

We can thus very easily calculate the series:

bop(7.S), bop(lO), bop(l2.S), ... bop(82.S)

Finally, the formula:
S

LS-9 = 2[peS) + p(lO)]

enables bop(S) to be calculated.
(2) For the last age group, we apply the formula: 5

LS5 + = p(85) Log 100,000p(8S)

We determine bop(8S) by a process of trial and error.

• It may be recalled that:

f
a+5

La = a p(a)da

6 This formula is given in the manual on the computation of
population projections, Manual III. Methods for Population Projec­
tions by Sex and Age (United Nations publication, Sales No.:
56XIII.3). It is an experimental formula which is found to be
satisfied within the range of variations of mortality of the human
species.

CoeO·Sr - Abop(l)]
bo = A1-

(IV.2)
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Let us suppose that qo is given. We then have a relation­
ship between boand A, in which to each value for Acorre­
sponds one value for boo Experience shows that, if Avaries
from 0.6 to 0.9, the corresponding values for bo will
not be very different. If qo varies from 10 to 500 per
thousand and A from 0.6 to 0.9, we obtain a series of

7 The numerical values used in this computation are given in
table IV.2.

(C 5) = 29,271.6 + (29,271.6 - 27,015.7) = 31,527.5

bop(lO) = C(10)= C5-9 + CIo-14
10

146,358 + 123,799
10 = 27,015.7

bop(7.5) = C(7.5) = C~-9 = 146;58 = 29,271.6

As C(5) is symmetrical with C(lO) in relation to C(7.5),
we have:

rates 6
0

which vary within two 11lnits. these lImits define'
the range of variation of bo compatible with the age
distribution. The result is practically independent of the-'
value of r used in the calculations.

In the preceding case, where we knew the age distr.ibu.~
tion of the 0-1 and 1-4 age groups, we completed the'
calculation by assuming a value for th~ ihflint mortali!Y.
qo, and A:' waS' then cktermihed. this determination of A'·
amounted~ in fact, to the determination ofthe distributibli
of qo between endogenous and exogenous causes of
death.

In the present case, where we know only the age
distribution for the 0-4 age group, assumption of a value
for the infant mortality qo will only enable us to complete
the calculation with a certain margin of error which is
fortunately quite small, corresponding to the possibility
of variation of Abetween 0.6 and 0.9. In order to eliminate
this possible error, we must also assume a value for A,
Le., we must select a value for the distribution of the
infant mortality between endogenous and exogenous
causes of death.

In the first case knowledge of Awas enough to rule out
any question of a choice, but in the second case knowledge
of Adoes not eliminate the need to choose a value for qo
and only removes a secondary uncertainty. These explana­
tions will be made clearer and more specific if we give
some numerical applications.

A numerical application. In this first example, we shall
use the age distribution of the female Malthusian popula­
tion having a rate of natural variation r = 0.03 and a
mortality identical with that of the intermediate model
life table giving an expectation of life at birth for both
sexes of 50 years. This age distribution has been computed
in table 11.3 and is given again in table IV.2.

Leaving aside the way in which this age distribution
has been computed and taking it as a ~nown quantity,
we. shall conSIder the sub-set Fo(r) WhICh corresponds
to It.

We shall first of all determine the series of crude birth
rates compatible with this age distribution, by applying
formula IV.2. As already stated, the result does not in
practice depend on the value adopted for r. In order to
verify this fact, we made two calculations in which we
successively took the value of r as 0 and 0.015. Table IV.l
shows that we do indeed obtain two almost identical
series of compatible rates. In practice, of course, we
should only made a single calculation, and the simplest
procedure would be to assume that r = O.

Let us now exa.mine the computation for this case in
detail: 7

(IV.3)

1 _ coeO·sr

bop(1)

Whence we finally have:

boLQ-4 = boLo + boLl-4
= bo(l- A) + Abo(l- qo) + 1.9bo(l- qo) + 2.1bop(5)

We know that: boLQ-4 = C0-4e2.Sr

We therefore have the equation:

Co_4e2•5r = bo(1- A) + Abo(1 - qo)
+ 1.9bo(1 - qo) + 2.1bop(5) (IVA)

boLo-4, boLs-9, boLlO-14 etc.

by the formulae:
Co-4e2.5r, CS_ge7•Sr, ClO_14e12.sr etc

From this, we have no difficulty in progressing, as
described above, to the series: bop(5), bop(lO), bop(l5) etc.
and in order to complete the calculation we must, as
before, assume a value for bo, or for the infant morta­
lity qo. Can we also calculate for these two quantities
what we called above a "range compatible with the age
distribution"? We can write: bop(l) = bo(l - qo) and
in accordance with the foregoing formulae:

boLo = bo(l- ),,) + Abop(l)= bo(l -),,) + Abo(l - qo)

boLl-4 = 1.9bop(l) + 2.1bop(5)
= 1.9bo(l - qo) + 2.lbop(5)

qo = CoeO.5r
A--­

bop(1)

In this form, we can easily calculate the limits of
variation of qo by successively taking A= 0.6 and A= 0.9.

When the first age group is 0-4 years. It may happen
that the age distribution is not known separately for age
groups 0 and 1-4, but only for the combined 0-4 age
group. As in the previous case, we first of all determine
the series:

A= bop(l) - Coeo.S(1 - qo)l
qobop(l)

Once we have chosen qo, therefore, we can calculate A,
which must be between 0.6 and 0.9. If A is outside these
limits, the value originally chosen for qo must be rejected.
We can thus determine a range of variation for infant
mortality compatible with the age distribution, just as
we did for the crude birth rate. The range thus determined
is generally smaller than the range of 10 to 500 per
thousand which was quoted above as representing the
practical limits of infant mortality in the human species.
We can, in fact, write formula (IV.3) as follows:

As we are assuming>: t1lat' tne mortality is that of" the
human species, we know tiiat in practice this probability
can only vary between 10 and 500 per thousand and that
the value of qo selected must come within these ~imits.
By using the formulae given above, we can easily see
that we have:
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Let uS now proceed to the computation of boC(l).
We have:

Cl-4 = boL1- l = 1.9bop(1) + 2.1bop(5) = 139,640

whence we have:

bop (1) = 38,648.6

We can then apply formula IV.2 for various values of!.
The results llre given in the column headed r = 0 In
table IV.1. The same calculation for r = 0.Q15 gives the
series of crude birth rates appearing in the column
headed r = 0.015. As already stated, the two series are
almost identical.

TABLE IV.t. CRUDE BIRTH RATE PER 1,000 COMPATIBLE WITH THE
AGE DISTRlBUTION OF THE POPULATION IN TABLE IV.2 (COLUMN 3)

a r=O r =0.015

0.6 42.7 42.9
0.7 44.1 44.1
0.8 46.8 46.6
0.9 55.0 54.2

We now propose to find the population of sub-set
Fo{r) corresponding to r = 0.Q15. Table IV.2 gives the
details of the computation.

Column 1 of the table gives the median age a of the
age groups whose limits are iD;dicated in ~olu:mn 2. The
age distribution of the populatlOn, Ca, ~hlch IS the sa~e
as the age distribution of the populatIon com~uted In
table Il.3, is given in column 3. Column 4 gives the
sequence of the coefficients errr. for r = 0.015. These
are the data of the problem. The computations are shown
from column 5 onwards.

We begin by calculating the sequence of the quantities
boLa. These are given in column 5 and are obtained by
multiplying columns 3 and 4.

Column 6 gives the sequence of the quantities bo,
bop(1), bop(5), bop(10), bop(15), and so forth. These are
obtained in the following manner:

(a) The figures below the horizontal line are obtained
by successively adding together in pairs the figures in
column 5 and dividing the result by 10. Thus, the first
figure below the line comes to:

(163,799 + 149,330) = 31,312.9 = bop(10)
10

b) For bop(5), we have:

bop(5) = 32,759.3 + (32,759.3 - 31,312.9) = 34,206.8

(c) For bop(l), we have:

1.9bop(l) + 2.1bop(5) = 146,063

TABLE IV.2. CoMPUTATION OF THE SURVIVORSHIP FUNCTIONS CORRESPONDING IN A MALTHUSIAN POPULATION TO A GIVEN AGE DISTRIBUTION
C. AND AN INTRINSIC RATE OF NATURAL VARIATION OF 0.015

Survivors to
the initial

Product of Differences
age of the
age group;

the two between Death rate ma column (6)
preceding boLa + boLa+& successive (per thousand); divided by

Age e'" columns: figures in column (7) 45,074.6 and
Median age Age group distribution (a) for caera 10 the preceding divided by multiplied

a (years) Ca r = 0.015 = boLa = bop(a + 5) column column (5) by 100,000
(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.5. 0 40282 1.00750 40584 45074.6 6006.8 147.53 100000

3.0. 1-4 139640 1.04600 146063 39067.7 4860.9 33.53 86717
7.5. 5-9 146 358 1.11917 "i6n99 34206.8 2893.9 17.56 75851

12.5. 10-14 123799 1.20623 149330 31 312.9 2765.5 18.52 69469
17.5. 15-19 104623 1.30128 136144 28547.4 2634.8 19.36 63334

22.5. 20-24 87754 1.40144 122982 25912.6 2553.6 20.76 57488
27.5. 25-29 73222 1.51059 110608 23359.0 2370.8 21.43 51823
32.5. 30-34 60968 1.62829 99274 20988.2 2169.0 21.86 46563
37.5. 35-39 50661 1.75515 88918 18819.2 1990.2 22.39 41751
42.5. 40-44 41957 1.89174 79372 16829.0 1 854.8 23.37 37336

47.5. 45-49 34509 2.03918 70370 14974.2 1 773.7 25.19 33221
52.5. 50-54 28029 2.19899 61635 13 200.5 1 749.0 28.38 29286
57.5. 55-59 22320 2.36918 52880 11 451.5 1772.9 33.52 25406
62.5. 60-64 17193 2.55369 43906 9678.6 1 842.3 41.98 21472
67.5. 65-69 12518 2.75257 34457 7836.3 1926.0 55.90 17385

72.5. 70-74 8307 2.96685 24646 5910.3 1922.5 78.00 13112
77.5. 75-79 4763 3.19792 15232 3987.8 1705.9 111.97 8847
82.5. 80-84 2201 3.44709 7587 2281.9 1 287.1 169.68 5063
87.5. 85-89 896 3.71655 3330 994.8 994.8 298.97 2207

TOTAL. 1451088

(,,) Figures taken from table Il.3 (chap. Il).
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'tABtE tvA. CRonE llm:tH tA'l'SS CbldPAtrBU wrtH' 'I'M AOI!:
DISTRIBUTION IN TABLE IV.2, FOR VARIOUS LEVELS OF INFANI'
MORTAUTY, TWO VALUES OF A AND TWO RATES OF NATURAL
VARIATION (APPUCATION OF FORMULA IVA)

10 40.0 39.6 40:0' 39.6'
SO 41.4 41.0 41.7 41.:f

100 43.4 43.0 43.9 43.4-
200 47.9 47.4 49.1 48.6
300 53.5 52.9 55.8 55.2
400 60.5 59.8 64.6 63.9
500 69.7 68.9 76.6 75.8

It can be seen very clearly that the variation of ). has
little effect on boo Finally, the crude birth rates compatible
with the age distribution vary from 40.0 to 76.6. We may
recall that for the same age distribution (but on the
assumption that we knew both the 0 and the 1-4 age
groups) we found compatible crude birth rates varying
from 42.7 to 55.0.

Direct computation of probabilities of death over a
finite age range. We can obviously determine the proba­
bilities of death from the survivorship table in table IV.2.

A- 0~6

r-()·

A ... 0.9

, ... 0.015,-0
qo

(rate per
thousand) , == O.OlS

A§. we already know bop(5), we obtain (rom thfs equa-
tion:: bop(l) = 39,067.7. .

(d) Finany, in order to complete t~e computatI.on,
we must select a valUe of bo from the senes of compatible
crude birth rates. We have selected bo = 0.0450746,
which is the crude birth rate of the Malthusian population
constructed as a first step in table 11.3 in order to obtai!1
the age distribution Ca. We need not have made thIS
particular ch~ice, but co~d ~av~ adopted any value
compatible With the age dIstnbutIOn.

Column 7 gives the differences between successive
figures in column 6.

Column 8 gives the death rates by age groups rna·
These are obtained by dividing column 7 by column 5.

Finally, column 9 gives the survivors to the initial
ages of the age groups: p(O), p(l), p(5), p(lO), p(15), and
so forth.

It should be noted that it is not necessary to know bo
in order to calculate the survivorship function from 1 year
of age onwards. All that is necessary is to divide the terms
of the series bop(l), bop(5), bop(lO), bop(l5), and so forth,
by bop(l).

Similarly, all the death rates rna except the first can be
calculated without reference to boo

Let us now suppose that we know only the 0-4 age
group. Table IV.3 is then written as follows:

TABLE N.3

Age distribution
Product 0/ the
two procedlng

Median age Age group 0/ the population, columns,
a (years) C.. era c..e"l - boL..

(J) (2) (3) (4) (5)

2.5 . 0-4 179922 1.03821 186797

7.5 . 5-9 146358 1.11397 163799
12.5 • 10.14 123799 1.20623 149330
17.5 . 15-19 104623 1.30128 136144

boL.. +boL..+1
10

= bop(a + S)
(6)

34206.8
31 312.9
28547.4

or

Over 4 years of age, nothing needs to be changed.
Only the first line, which is a combination of the first
two lines of table IV.2, is changed, so that we have:

Co-4e2.5r = 186,797

and 2.lbop(5) = 2.1 x 34,206.8 = 71,834.3.

Formula IVA is written:

(186,797 -71,834) b= 01- ).+),(1- qo) +1.9(1- qo)

bo = 114,963
2.9 - (i. + 1.9)qo

These probabilities can also be obtained directly, however,
without making use of the survivorship table.

If we divide each five-year age group by the group
which precedes it, we can write:

ellrCa+5 = La+5 = p(a + 7.5)
Ca La p(a + 2.5)

We thus obtain the survivorship rates for:

from 7.5 to 12.5 years of age

from 12.5 to 17.5 years of age

from 17.5 to 22.5 years of age

This formula enables bo to be computed, once ). and
qo are known. Table IVA gives the results of this computa­
tion. It was stated above that the result depends scarcely
at all on the value of r used. This can easily be verified
in the following table, which shows two series of compa­
tible crude birth rates corresponding to r = 0 and
r = 0.015. The two series are almost identical.

from 77.51to 82.5,iyears of age

from 82.5 to 85 and over

For earlier ages, we can write:

eUr Cl)-9 ~ = p(7.5)
Cl'45 p(3)
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whence we have the difference:

In the case of the finite probabilities of death, this
property is only approximate. Thus, we have:

i.e., an approximate formula similar to the exact formula
regarding the instantaneous probabilities.

C'(a)
r< - C(a)

This condition is easily expressed in discontinuous
notation when considering the survivorship rates. It is
tantamount to saying that survivorship rates computed
in the manner described above must all be less than unity.

Numerical example of the direct computation of survival
ratios. Let us again take the age distribution in table 11.3
and compute the life table corresponding to r = 0.03.
It will be noted that this is exactly the same value as
was used for the original construction of the age distribu­
tion in table II.3. If, therefore, we take bo = 0.0450751,
we should obtain the same life table ffS was used with
r = 0.03 for that construction. In fact, however, as we
are using approximate formulae, we cannot hope to
obtain exactly the same life table as in the first case, and
indeed the differences enable us to evaluate the usefulness
of the approximate formulae.

Table IV.5 gives the details of the computation, which
does not call for any special comments, since it is the
direct application of the formulae already given. A
comparison of columns 10 and 11 and of columns 12 and
14 shows that the approximate formulae give very good
results.

Determination of the values of r compatible with the
age distribution. We shall, however, describe at this point
how the computations in table IV.5 enable the values of
r compatible with the age distribution to be determined.
We have already seen that the condition of compatibility
is tantamount to saying that the survivorship rates must
all be less than unity. These survivorship rates, for
r = 0.03, are given in column 6. They pass through a
maximum equal to 0.84586 x e5 x 0.03 for the 5-9 age
group, whatever the value of r. We should therefore
have: 0.84586eSr < 1, which gives: r < 0.033480.

Thus, all the values of r below this limit of
rm = 0.033480 are compatible with the age distribution
computed in table IV.5.

Verification of the important property of the instan­
taneous death rates. If we leave aside the extreme ages,
the death rate for an age group ma is close to the pro­
bability of death at the median age of the age group.
Consequently, the two series of death rates in tables IV.2
and IV.5 should illustrate in an approximate manner the
remarkable property of the instantaneous death rates
mentioned above. There should be a difference between
the two series, at all ages, of about 0.015,9 and this is in
fact exactly what we observe in table IV.6.

Numerical application on the basis of an actually
observed age distribution. We now propose to repeat the
same calculations, by using the age distributions of actual
populations. We shall begin by using an age distribution

8 In the example in table III.2, we did not take the trouble to
verify that this condition was fulfilled because we were quite sure
that it was, since the age distribution used had been constructed
as a first step, by using the value r = 0.03. When using this age
distribution in the opposite sense, we were sure that at least all the
values of r equal to or less than 0.03 would be compatible with this
age distribution.

8 0,015 is the difference between the rate of r = 0.015 used in
table IV.2 and the rate of r = 0.030 used in table IV.5.

The condition of compatibility ofr. As was seen above,
not all values of r are compatible with a given age
distribution. r must therefore satisfy the condition: 8

C(a + 5) 5
C(a) e r

pea) - pea + 5)
5qa = pea) . =

C(a) - C(a + 5)e5r
= =1-

qa)

We also have:

Q _ C(a) - C(a + 5) = 1 _ C(a + 5)
5 a - C(a) C(a)

C(a + 5)
5Qa - 5qa = (e5r - 1)

C(a)

For a given value of r, this difference varies with age,
since C(a + 5)/C(a) is not constant. If we set aside the
extreme ages of life, however, C(a + 5)/C(a) remains in
reality close to unity, and as r is relatively small, we have
approximately:

Co peO.5)
er -=--

bo peO)

by multiplying by eSr.

This remarkable property corresponds to that already
pointed out above in the case of the instantaneous proba­
bilities. It will be recalled that these probabilities were
deduced from Q(a) (the logarithmic derivative bearing
the sign of C(a» by taking away a constant, r.

q(a) = Q(a) - r

Ca + 5
~

i.e., the survivorship rate from birth to 0.5 years of age.

The complements to 1 of all these survivorship rates
are the probabilities of death calculated for fimte age
ranges: 0.5 years in the case of the first age group,
2.5 years for the second, 4.5 years for the third and 5 years
for all the others. All this clearly shows that we must
know bo in order to obtain the complete life table:
otherwise, it is possible to determine the probabilities
only from the age of 0.5 years.

An important property of the survival ratios. We see
that the survival ratios for five-year periods have a
remarkable property: over the age of 7.5 years, they
can be deduced from the series of coefficients,

r Cl-41 p(3)
e Co "4 = p(0.5)

i.e., the survivorship rate from 0.5 to 3 years of age" and
finally:

i.e., the survivorship rate from 3 to 7.5 years of age, and
likewise:
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TABLE IV.5. CoMPUTATION OF THE MORTAUTY RATES CORRESPONDING, IN A MALTHUSIAN POPULATION, TO A GIVEN AGE DISTRIBUTION Ca AND AN INTRINSIC RATE OF NATURAL VARIATION
OF r = 0.03 (DIRECT CALCULATION OF THE PROBABILITIES OF DEATH)

Age Probability of I Survivors I Death rate
distribution Survivorship death between Deaths in each age group (per 1 000)

Age group of the
Ca + 5

era
rate one age and the Survivors between

Median (years) population for La + 5 following age to age "a"
age "a" Ca .-ca r = 0.03 (C)

~
(per 1,000) age "a" and the \ La La

\

rna rna

a p(a) following age reconstitued initial reconstitued initial

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13

0 ... Births 45 075 (a) 0.89366(b) 1.0151 (c) 0.90715 92.85 100000 9285
I I

0.5 ••. Under 1 year 40282 0.86664 1.0779 0.93415 65.85 90715 5974 90715 90719 136.41 136.41
3.0 .•. 1-4 139640 0.83849 1.1445 0.95965 40.35 84741 3419 338964 338974 16.19 16.19
7.5 ... 5-9 146 358 0.84586 1.1618 0.98272 17.28 81322 1405 406610 406628 3.72 3.99

12.5 ... 10-14 123799 0.84510 1.1618 0.98184 18.16 79917 1451 399585 399620 3.57 2.96
17.5 ... 15-19 104623 0.83876 1.1618 0.97447 25.53 78466 2003 392 330 392370 4.40 4.38
22.5 •.. 20-24 87754 0.83440 1.1618 0.96941 30.59 76463 2339 382315 382368 5.67 5.97
27.5 ... 25-29 73222 0.83265 1.1618 0.96737 32.63 74124 2419 370620 370680 6.41 6.45
32.5 ..• 30-34 60968 0.83094 1.1618 0.96539 34.61 71 705 2482 358525 358600 6.83 6.80
37.5 .•. 35-39 50661 0.82819 1.1618 0.96219 37.81 69223 2617 346115 346202 7.36 7.28
42.5 ... 40-44 41957 0.82248 1.1618 0.95556 44.44 66606 2960 333030 333118 8.37 8.15
47.5 ... 45-49 34509 0.81222 1.1618 0.94364 56.36 63646 3587 318230 318325 10.28 10.06
52.5 ... 50-54 28029 0.79632 1.1618 0.92516 74.84 60059 4495 300295 300392 13.45 13.22
57.5 ... 55-59 22320 0.77030 1.1618 0.89493 105.07 55564 5838 277820 277922 18.59 18.05

62.5 ... 60-64 17193 0.72809 1.1618 0.84589 154.11 49726 7663 248630 248722 27.15 26.79
67.5 ... 65-69 12518 0.66360 1.1618 0.77097 229.03 42063 9634 210315 210400 41.12 41.19
72.5 ... 70-74 8307 0.57337 1.1618 0.66614 333.86 32429 10827 162145 162220 63.08 65.38
77.5 ... 75-79 4763 0.46210 1.1618 0.53687 463.13 21602 10005 108010 108068 96.42 102.30
82'5 ... 80-84 2201 0.40709 1.1618 0.47296 527.04 11597 6112 57985 58022 163.49 154.48
87.5 .•• 85and over 896 5485 27425 27443 259.56 259.56

(&) This refers to the crude female birth rate bl = 45.075 per thousand.
(1)) The first figure in the column represents the ratio Co/b, the second Cl-4/4Co and the third 4CS-9/5Cl-4.
(C) The first figure in the column corresponds to k = 0.5, the second to k = 2.5, the third to k = 4.5 and all the others to k = 5.



TABLE IV.6. CoMPARISON Of DEATH RATES BY AGE GR.OUPS mIl IN
TWO MALTHUSlAN POPULATIONS COMPUTED ON THE BASIS Of AGE
DlSTAmUTION IN TABLE I1.3 (ASSUMED TO BE CONSTANT) BY TAKING
SUCCESSIVl\LY TWO VALUES, 0.030 AND 0.015, AS THE RATE Of

NATURAL VARIATION r

Death rate mIl
(per thousand)

Age group (a) r = 0,015 (a) r = 0,030 (b) Difference

0 147.53 136.41 11.12
1-4 33.53 16.19 17.34
5·9 17.56 3.72 13.84

10-14 18.52 3.57 14.95
15·19 19.36 4.40 14.96
20-24 20.76 5.67 15.09
25·29 21.43 6.41 15.02
30-34 21.86 6.83 15.03
35-39 22.39 7.36 15.03
40-44 23.37 8.37 15.00
45-49 25.19 10.28 14.91
50-54 28.38 13.45 14.93
55-59 33.52 18.59 14.93
60-64 41.98 27.15 14.83
65-69 55.90 41.12 14.78
70-74 78.00 63.08 14.92
75-79 111.97 96.42 15.55
80-84 .•.• 169.68 163.49 6.19
85 and over. 298.97 259.56 39.41

(&) Rate taken from column 8 of table IV.2.
(1)) Rate taken from column 12 of table IV.S.

TABLE IV.7. AGE DISTRIBUTION Of THE FEMALE POPULATION Of
BRAZIL AT THE 1900, 1940 AND 1950 CENSUSES, AND ADJUSTED
DISTRIBUTION BASED ON THE RESULTS Of THE CENSUSES

Year of census
Age group Adjusted

(years) distribution
1900 1940 1950

Q.4

1
4443

1546 1590 1764
5-9 1376 1329 1367

10-14 1284 1209 1203
15-19 1 134 1110 1099 1047
20-24 927 960 1003 902
25-29 864 829 808 776
30-34 532 622 624 650
35-39 624 560 583 544
40-44 356 459 447 456
45-49 387 343 368 378
50-54 195 294 298 301
55-59 223 187 198 223
60-64 101 171 178 155
65·69 94 97 100 107
70-74 40 76 76 58
75-79 41 38 39 39
80-84 ... 15 27 28 20
85 and over 24 21 23 10

ALL AGES 10000 10000 10000 10000

0-14 •• 4443 4206 4128 4334

adjusted to the female population of Brazil, as recorded
in the censuses of 1900, 1940 and 1950. The age distribu­
tions of these three censuses are close to one another and
the adjustment, made graphically by hand, simply
smoothed out some irregularities in the age pyramid.
Table IV.7 gives the three age distributions provided by
the censuses as will as the smooth and adjusted age
distribution. It should be noted in passing, however,

that there is still a good deal of uncertainty about t~e
first age group. Moreover, it should be not~d that thIS
first age group covers the first five years of life, w~e.reas.

in the preceding example those fiv~ years were diVIded
into the age groups under 1 year and 1-4.

Let us now consider the sub-set F(r) attached to the
adjusted age distribution, and let us determine which of
the populations of that sub-set corresponds to r = 0.025.
We can use either of the two methods already mentioned:

(1) We can determine the sequence of the quantities:
boLo-", bO~ll' bO~o-l" etc., by multiplying the sequence
of the quantities, Co-", C5-g, Cto-w etc. by e2

•5r, e7•5r,

e12•5r etc., respectively. We can then determine without
difficulty the series of quantities: bop(5), bop(10),bop(15)
etc.

(2) We can also calculate the survivorship rates directly
by multiplying the quantities:

C5-9 ClO'14 CI5-19 t-,--,--, e c.,
Co'4 C5-9 CIO-14

by e5r• We thus obtain the survivorship rates from 2.5
7.5 years of age, from 7.5 to 12.5, from 12.5 to 17.5.
and so on.

In both methods it is necessary, in order to complete
the computation, to make an assumption regarding bo,
and we must therefore begin by determining the series
of birth rates compatible with the age structure.
Table IV.8 gives the essentials of the computation.

In order to complete the computation, we have arbi­
trarily assumed that bo = 45 per thousand. As can be
seen from table IV.8, this is tantamount to assuming an
infant mortality of between 96 and 106 per thousand,
depending on the value of A(96 per thousand corresponds
to A- 0.6, while 106 per thousand corresponds to
A= 0.9). Once a value has been adopted for bo, the
computation presents no difficulty. Table IV.9 gives
details of the computation by the second method, which
involves first computing the survivorship rates.

We have dealt with this first example at some length
because, as will be seen later, the other examples can
always be referred back to it.

SECOND EXAMPLE: MALTHUSIAN POPULATION WITH GIVEN
AGE DISTRIBUTION Co(a) AND KNOWN SURVIVAL RATIO
AT A GIVEN AGE ao

If ro represents the rate of natural variation of the
population which is sought, we have:

p(a ) = Co (ao) et".(],
o Co(O)

This formula enables ro to be calculated, and this
brings us back to the preceding case. In discontinuous
notation, we apply the preceding approximate formulae,
the best method being to begin by calculating Co(ao).

If, for example, ao = 21 years, we write:

~5-19 = 5C(17.5)

C20-2" = 5C(22.5)

and we determine C(21) by interpolation. We then have
the formula:

(21) = C(21) 21rO
p C(O) e
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TABLE IV.8. CoMPULATION OP THE CRUDE BIRTH RATES COMPATIBLE WITH THE AGE STRUCTURE OP THE
FEMALE POPULATION OP BRAZIL, AS ADJUSTED TO FIT THE RESULTS OP THE CENSUSES OF 1900, 1940
AND 1950

boLa+boL.+a
=

Median age, Age
10

a group Ca e-r• Cae's .. boLa = bop(a)

(A) r = 0.025

2.5. 0-4 1764 0.93941 1878
7.5. 5-9 1367 0.82901 1649 330.3 (a) boP(S)

12.5. 10-14 1203 0.73162 1644 329.3 boP(10)
17.5. 15-19 1047 0.64565 1622 326.6 boP(15}

(B) r = 0 (stationary population)

2.5. 0-4 1764 1764
7.5. 5-9 1367 1367 289.8 (b) bop(S)

12.5. 10-14 1203 1203 257.0 bop(10)
17.5. 15-19 1047 1047 225.0 bop(lS)

(C) Compatible crude birth rates (per thousand), application of formula IV.4

Value of A:

0.6 0.9

Infant mortality
(qoper thousand) r = 0.025 r- 0 r - 0.025 r'" 0

10 41.2 40.2 41.2 40.2
50 42.7 41.6 42.9 41.9

100 44.7 43.6 45.2 44.1
200 49.3 48.1 50.6 49.4
300 55.1 53.7 57.5 56.1
400 62.3 60.8 66.5 64.9
500 71.8 70.0 78.9 77.0

(&) We assume that bop(7.S) = 1 649/5 = 329.8 and we selected bop(S) symmetric of bop(lO) with respect
to bop(7.5).

(b) We assume that bop(7.5) ... 1367/5 ... 273.4 and we selected boP(S) symmetric of bop(lO) with respect
to bop(7.5).

and

In continuous notation, we calculate r by the formula:

FOURTH EXAMPLE: MALTHUSIAN POPULATION WITH GIVEN
AGE DISTRIBUTION Co(a) AND KNOWN AGE DISTRIBUTION
OF DEATHS AT A GIVEN AGE tlo

In discontinuous notation-if, for example, we know
the proportion d2D-24 of deaths in the 20-24 age group­
we shall assume that we can write:

5d(22.5) = d2D-24

(11.12)
C(O)d(ao) + C'(ao)

r = --'--'=C(7-ao~)---'+--;;-d(·ao)

5C(22.5) = C2D-24

In order to apply the preceding formula, we must
calculate C'(22.5). We assume that we can write:

5C'(22,5) = 5 C(17.5) - C(27.5) =
10

1 C15-19 C25-29 1= 2: -5- - -5- = 10(C15-19 - C25-29)

which makes it possible to calculate ro, provided that
C(o)-in other words, bo-is known. If it is not known,
it can be chosen from the series of birth rates compatible
with the age distribution. There is thus an infinity of
possible values of ro and consequently an infinity of
populations satisfying the given conditions. Thus,
the problem, which was a determinate one in continuous
notation, becomes indeterminate in discontinuous
notation.

TroRD EXAMPLE: MALTHUSIAN POPULATION WITH GIVEN
AGE DISTRIBUTION Co(a) AND KNOWN CRUDE DEATH

RATE do

In continuous notation, the problem is determinate,
since knowledge of do is tantamount to knowledge of
ro = bo - do = C(O) - do, thus bringing us back to the
first example. In discontinuous notation, however, the
problem is not determinate. All values of ro, such as
ro = bo- do, are valid, provided that bo is within the
range ofvalues compatible with the age distribution.
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TABLE IV.9. CoMPUTATION OF THE FEMALE MORTAUlY RATES IN A MALTHUSIAN FEMALE POPULATION WITH A DISTRIBUTION BY AGE GROUPS ADJUSTED TO FIT THE FEMALE POPULATION
OF BRAZIL, AS RECORDED IN THE CENSUSES OF 1900, 1940 AND 1950, AND WITH A RATE OF NATURAL VARIATION OF r = 0.025

Probability
Deathsofdeath Deaths Survivors

Median Age group Distribution from one age between Survivors to initial between Death rate
age, (years) by age groups c, + 5 Multiplier (a) kCa + 5 to the next Survivors age a and in each age of one age rna

a a Ca --c;;- k = e 5r Ca (per 1 000) to age a the next age age group age group and the next (per 1000)

o .... Births 2250 0.7840 1.0645 (a) 0.8346 165.4 10000 1654
(5b)

2.5 0-4 1764 0.7749 1.1332 0.8781 121.9 8346 1017 41730 10000 2660 63.7
7.5 · . 5-9 1367 0.8800 1.1332 0.9972 2.8 7329 21 36645 7340 22 0.6

12.5 10-14 1203 0.8703 1.1332 0.9862 13.8 7308 101 36540 7318 60 1.7

17.5 · . 15-19 1047 0.8615 1.1332 0.9762 23.8 7207 171 36035 7258 137 3.8
22.5 20-24 902 0.8603 1.1332 0.9748 25.2 7036 177 35180 7121 173 4.9

0'1 27.5 25-29 776 0.8376 1.1332 0.9791 50.9 6859 349 34295 6948 264 7.7N

32.5 30-34 650 0.8369 1.1332 0.9483 51.7 6510 336 32550 6684 342 10.5
37.5 35-39 544 0.8382 1.1332 0.9498 50.2 6174 310 30870 6342 323 10.5
42.5 40-44 456 0.8289 1.1332 0.9393 60.7 5864 356 29320 6019 333 11.3

47.5 · . 45-49 378 0.7963 1.1332 0.9023 97.7 5508 537 27540 5686 446 16.2
52.5 · . 50-54 301 0.7409 1.1332 0.8396 160.4 4971 798 24855 5240 668 26.9
57.5 55-59 223 0.6951 1.1332 0.7877 212.3 4173 886 20865 4572 842 40.4

62.5 ... 60-64 155 0.6903 1.1332 0.7822 217.8 3287 718 16435 3730 802 48.8
67.5 ... 65-69 107 0.5421 1.1332 0.6143 305.7 2569 981 12845 2928 850 66.1
72.5 70-74 58 0.6724 1.1332 0.7619 238.1 1588 385 7940 2078 682 86.0

77.5 · . 75-79 39 0.5128 1.1332 0.5811 418.9 1203 504 6015 1396 445 73.9
82.5 80-84 20 0.5000 1.1332 0.5666 433.4 699 303 3495 951 404 115.5
87.5 85 + 10 396 1980 547 547 276.5

(a) Except for the first line, where k = e 2.5r

-............_~--~~~-~-_.._-----
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(IV.S)

C'(a) + rC(a) + dd(a) = 0

For each value of a we have a pair of values (x, y),
and if we plot a graph with x on the horizontal axis and y
on the vertical axis, the points obtained will be on a
straight line defined by the equation IV.6.

If there is no exact coincidence, we shall obtain a
cluster of points to which a straight line can be fitted
and whose equation enables us to compute ro. The
population from Fo(r) corresponding to ro, which is the
population sought, is one whose age distribution of
deaths coincides apprOXimately with the age distribution
of deaths do(a) actually observed.

In discontinuous notation, the formulae giving x and y
are easily written. In accordance with the previous
example, we have:

values. If we are satisfied with approximate values, then
we must resolve equations whose solutions are "statistical
variables" diverging to a greater or lesser degree from the
mean values, and new problems then arise. We have
already encountered problems of this kind when dealing
with the sub-sets H(r), and we have already studied the
compatibility between:

(a) An age distribution of the population and a given
death rate;

(b) An age distribution of deaths and a given death
rate.

In the study of the sub-set Fo(r) a third problem is
encountered: that of the compatibility of a given age
distribution of deaths and a given age distribution of the
population.

In a sub-set Fo(r) we cannot arbitrarily assume know­
ledge of the entire age distribution of deaths. As was
seen in the fourth example above, knowledge of this age
distribution of deaths at a single age d(ao) was sufficient
to determine a population from Fo(r) and was therefore
sufficient to define d(a) at all ages.

Let us now consider an actual population in which
CoCa) and do(a) are the observed age distributions of the
population and the distribution of the observed deaths.
Let us take the sub-set Fo(r) corresponding to CoCa)
and pose the following question: is the age distribution
do(a) consistent with the sub-set Fo(r)? If we want do(a)
to coincide exactly with the age distribution of deaths of
a population from Fo(r), then obviously the answer will
in most cases be "no", for it is unlikely that we should
find in Fo(r) an age distribution of deaths which coincides
exactly with the observed age distribution do(a). If we
are satisfied with an approximate coincidence, however,
the question takes on a different aspect.

If there is exact coincidence, we can write in accordance
with the formulae in table Il2 (see chapter II) :

C'(a) d(a)
- qa) - r = qa) (bo - r)

which is written:

(IV.6)

C(a)
d(a) = xand

If we put:

C'(a)
d(a) = y

we therefore have:

y+ rx+ d=O

INTRODUCTION OF STATISTICAL VARIABLES

A = _ r _..!.. [CO-4 - ClO-14 + CS-9 - ClS-19 +
60 CS-9 ClO-14

+ + C2S-29 - CSS-S9]
••• CSo-S4'

This formula enables us to calculate r, thus bringing us
back to the first example.

Although it would be easy to think of many other
examples, we shall confine ourselves to the six described
above. All these examples lead us to an r equation the
solution of which gives us an exact and determinate value
of r or, at most, a small number of exact and determinate

q(ao) + C'(ao) = _ r
qao)

which brings us back to the first example.
In discontinuous notation, the formulae which we have

written for the fourth example make it easy for us to
calculate such quantities as:

C'(22.5) Cl5-19 -C2S-29-q22.5) lOC2o-24

Furthermore, if m20-24 is the death rate between the
ages of 20 and 24, we have, approximately,
q(22.5) = m20-24, whence we have the formula;

+ Clli-19 - C2S-29 + = 0
m20-24 10C r20-24

In continuous notation we write:

FIFTH EXAMPLE: MALTHUSIAN POPULATION WITH GIVEN
AGE DISTRIBUTION CoCa) AND KNOWN PROBABILITY OF
DYING AT A GIVEN AGE q(ao)

SIXTH EXAMPLE: MALTHUSIAN POPULATION WITH GIVEN
AGE DISTRIBUTION CoCa) AND KNOWN MEAN DEATH RATE
FOR FIVE-YEAR GROUPS BETWEEN THE AGES OF 5 AND 34

We shall finally obtain:

1
bod2o-24 +10(C15-19-C25-29)

r=
- C20-24 + d20-24

As in the previous examples, to each value of r corres­
ponds some value of bo which is compatible with the age
distribution. There will thus be an infinite number of
populations satisfying the condition.

Finally, in discontinuous notation, formula IV.5,
which gives the value of r by approximation, is not valid
at the beginning and the end of life.

In this example, the quantity which we assume to be
known in addition to the age distribution is written:

A=
(mS-9 + mlO-14 + ml5-19 + m20-24 + m2S-29 + mSo-s4)

6
In accordance with the formula in the fifth example,
we can write:
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1
SC'(22.S) = 10(Cl5-19 -C25-29)

5C(22.S) = C20-24

and 5d(22.S) = d20024

We therefore have:

C15-19 - 45-29 y
y=

lOd2o-24

C20-24x=--x
d20-24

Tables IV.ll and IV.l2 give an example of the applica­
tion of this formula, using for Ca the age distribution
adjusted to fit the results of the population censuses
carried out in Mexico in 1930, 1940 and 1950 and for da
the age distribution of deaths actually observed in Mexico
in 1950.

Table IV.lO shows that the age distribution of the
female population of Mexico varied only slightly in the
three censuses mentioned. Graph IV.1 shows how the
adjustment was made. It was drawn by hand so as to
eliminate the fluctuations in age distribution observed
in the three censuses. As a result, the fluctuations caused
by variations in the birth rate during the civil war of
1911-1921 and the period which followed it were
eliminated.

In the case of the female deaths observed in 1950, we
have taken the crude figures without making any adjust­
ment. This does not mean that we considered the crude
figures to be more accurate than the population figures
given by the censuses; on the contrary, the age distribution

T IV 10 AGE DISTRIBUTION OF nm FEMALE POPULATION OF
~~ ~ RECORDED IN nm 1930, 1940 AND 1950 CENSUSES,
AND AG~ DlSTIUBUTION ADJUSTED ON nm BASIS OF nm RESULTS

OF nm THREE CENSUSES

Year of census
Adjusted

Age group distri-
(years) 1930 1940 1950 bution

Under 1 year 29772 26278 30830 35796
1-4.. 117442 115992 119929 125 921
5-9 133338 139361 138465 135521

10-14 . 95335(a) 116107 115558 117193
15-19 . 105799(b) 103136 105875 103624
20-24. 99863 81141 (a) 94320 90714
25-29 . 91695 84 317(b) 79433 77745
30-34 . 68903 68743 56 082(a) 65707
35-39 • 62710 70407 61 097(b) 55900
40-44 • 50661 48971 47634 46621
45-49 . 38067 39699 41235 40358
50-54 . 34326 31818 32359 31672
55-59 • 19261 22054 20411 24027
6Q.64 • 23547 21571 22106 18633
65-69 . 10175 11 583 12967 12691
70-74 . 8866 8446 9735 9528
75-79 . 4014 4500 5049 4942
80-84 . 3831 3363 3941 2603
85-89 • 1139

]90-94. 734 2510 2974 804
95-99 ••. 336
100 and over. 187

ALL AGES .. 1000000 1000000 1000000 1000000

CO.) Decline in birth rate during revolution of 1911-1921.
(b) Resurgence of birth rate after the civil war.

TABLE IV.11. CoMPUTATION OF THE DERIVATIVE C'(a) CORRESPONDING TO THE AGE DISTRIBUTION OF THE
FEMALE POPULATION OF MEXICO, AS ADJUSTED TO FIT THE RESULTS OF THE CENSUSES OF 1930, 1940
AND 1950 (SEE TABLE IV.I0)

Distribution Average of
Age group Distribution by years ofage Successive two successive

Median age (years) by age groups (o.) for median years differences differences
a a Ca C(a) =- CalS C(a) - C(a + 5) C'(a)

0.5 0 35796 35796 (b) 1726.4(d)
3.0 1-4 125 921 31480 (e) 972.6 (e) 1 349.5 (I)
7.5 5-9 135521 27104 733.0 852.8 (I)

12.5 10-14 117193 23439 542.8 637.9
17.5 15-19 103624 20725 516.4 529.6
22.5 20-24 90714 18143 518.8 517.6
27.5' 25-29 77745 15549 481.6 500.2
32.5 30-34 65707 13141 392.2 436.9
37.5 35-39 55900 11180 371.2 381.7
42.5 40-44 46621 9324 25G.4 310.8
47.5 45-49 40358 8072 347.6 299.0
52.5 50-54 31672 6334 305.8 326.7
57.5 55-59 24027 4805 215.6 260.7
62.5 60.64 18633 3727 237.8 226.7
67.5 65-69 12691 2538 126.4 182.1
72.5 70-74 9528 1906 183.6 155.0
77.5 75-79 4942 988 93.4 138.5
82.5 8Q..84 2603 521 72.0 82.7 (I)
87.5 85 and over 804 161

ALL AGES 1000000

CO.) Adjusted age distribution of table IV.I0.
(b) C(O.S) = Co.
(") CC3.0) = (l/4)Cl..40
(d):'CCO.S) - C(3.0)/2.S.
CO) C(3.0) - C(7.S)/4.S.
Cf) Approximate figures.
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Graph IV.l. Distribution by five-year age groups of the female
population of Mexico, as recorded in the 1930, 1940 and 1950
censuses- and an adjusted distribution on the basis of the results
of those three censuses

Graph IV.2. Compatibility of the age distribution of the female
population of Mexico, as adjusted to fit the age distributions
recorded in the 1930, 1940 and 1950 censuses-with the age
distribution of female deaths recorded in Mexico in 1950

TABLE IV.12. CoMPATIBIUTY OF THB AGE DISTRIBUTION OF A POPULATION AND ITS AGE DlSTRIBUTION OF DEATHS

Computation of the quantities x and y of equation IV.6 in the text, using an age distribution adjusted to that of the female population of
Mexico, as recorded in the censuses of 1930, 1940 and 1950 (see table IV.lO), and the age distribution of female deaths recorded in
Mexico in 1950

C'(a)
Distribution by

Distribution by years ofage
C(a) Figures from the age group offemale

C(a) C'(a)Age group Figures last column offemale deaths, for the
Median age (years) from column 4 of table IV.ll deaths (a) median age d(a) d(a)

a a of table IV.ll da d(a) = daIS -x ""y

0.5 • 0 35796 256964 256964 (b)
3.0. 1-4 31480 1349.5 (C) 221 823 55431 (d) 0.568 0.0243 (c)
7.5. 5-9 27104 852.8 (c) 40466 8093 3.349 0.1053 (c)

12.5 . 10-14 23439 637.9 17141 3428 6.837 0.1861
17.5 • 15-19 20725 529.6 22245 4449 4.658 0.1195
22.5 •• 20-24 18143 517.6 27877 5575 3.254 0.0928
27.5 25-29 15549 500.2 28168 5.634 2.760 0.0888
32.5 30-34 13141 436.9 23396 4679 2.809 0.0934
37.5 35-39 11180 381.7 31107 6221 1.797 0.0614
42.5 40-44 9324 310.8 26139 5228 1.784 0.0595
47.5 45-49 8072 299.0 28861 5772 1.330 0.0518
52.5 50-54 6334 326.7 27922 5584 1.134 0.0585
57.5 55-59 4805 260.7 24320 4864 0.988 0.0537
62.5 60-64 3727 226.7 38411 7682 0.485 0.0295
67.5 65-69 2538 182.1 35025 7005 0.362 0.0260
72.5 70·74 1906 155.0 38391 7678 0.248 0.0202
77.5 75·79 988 138.5 29329 5866 0.168 0.0236
82.5 80-84 521 82.7 (C) 31524 6305 0.083 0.0131 (C)
87.5 85 and over 161 50890 10178

ALL AGES 1000000

SOURCE: United Nations Demographic Yearbooks.
(a) Female deaths recorded in Mexico in 1950.
(1)) d(O.S) = do.
(0) Approximate figures.
(4) d(3.0) = .(1/4)dl_••
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of deaths is no doubt less accurate than the age distribu­
tion of the population-but the errors involved are such
as to be very difficult to correct and, since any adjustment
would be arbitrary, it was decided to keep the crude
figures as they were.

Graph IV.2 was drawn by using the values x and y
of table IV.l2. As may be seen, to the points obtained
can easily be fitted a straight line with the equation:

y + rx + d= 0

The ordinate-intercept of this straight line is equal to d.
Graph IV.2 gives: d = 0.020.

The slope of the straight line is equal to r and we
have: r = 0.024, whence we obtain the crude birth
rate b = d + r = 0.044.

Thus, the sub-set Fo(r) of Malthusian populations
associated with the adjusted age distribution of the
female population of Mexico, as recorded in the 1930,
1940and 1950censuses and having the vital rates:

I
r = 0.024
d =0.020
b = 0.044

has an age distribution of female deaths which coincides
approximately with the age distribution of female deaths
observed in Mexico in 1950.

We shall now leave the sub-sets F(r) of Malthusian
populations and turn to an examination of the "processes
of demographic evolution where the age distribution is
invariable".
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