
ESTIMATION OF ADULT MORTALITY USING SUCCESSIVE 
CENSUS AGE DISTRIBUTIONS 

A. BACKGROUND OF METHODS 

1. Use ofa sequence ofppulation age dt'stributions 
The value for demographic estimation purposes of 

having basically similar information about a population 
for two points in time has already been stressed, for 
example, in the discussion of the use of overlapping fer- 
tility estimates based on reverse-survival techniques 
(chapter VIII) and in the sections dealing with 
hypothetical-cohort methods (see chapters 11, 111 and 
IV). The age and sex distributions from successive 
enumerations of a population also provide a basis for 
estimating intercensal mortality. In a closed population 
with two accurate censuses t years apart, the population 
aged x +t at the second census represents the survivors 
of the population aged x at the first census, so that the 
intercensal survivorship probability from age x to age 
x +t can be calculated. Traditional mortality measures 
can then be obtained from the sequence of survivorship 
probabilities for successive initial ages x . 

This method of mortality estimation from intercensal 
survival is appealingly simple and straightforward, 
requiring only the most basic of census information, 
malting no assumptions about the age pattern of mortal- 
ity, and providing estimates of mortality for a clearly 
defined time period. The trouble is that these advan- 
tages a n  nullified by the requirements that the censuses 
be accurate and that the population be closed. In prac- 
tice, the application of this method very often gives 
disappointing results. Migration can affect a population 
as much as mortality; and, in particular, at young adult 
ages, its influence on population size may be more 
important than that of mortality. Age-misreporting can 
also distort the results severely; a marked preference for 
certain digit endings when declaring age, which will 
introduce considerable variability into the estimated sur- 
vivorship ratios, can be reduced to some extent by the 
use of grouped data, but systematic overreporting or 
undemporting of age can cause insuperable problems. 
Changes in enumeration completeness from one census 
to the other can, if no adjustment is feasible, completely 
swamp the effects of mortality, giving rise to very 
misleading results; indeed, it may be stated without 
exaggeration that, in many cases, intercensal survival 
estimates are better indicators of thz comparability of 
two census enumerations than of the level of intercensal 
mortality. 

Despite these problems, however, it is worth applying 
the method where possible, because if the errors in the 
basic data are not overwhelming, one can obtain useful 

estimates of mortality by using suitable age groups and 
certain smoothing techniques; and even if the data 
errors are severe, the calculated survivorship probabili- 
ties may be useful indicators of the nature of the errors 
involved. 

2. Organization ofthis chqter 
The methods described in this chapter are all based 

essentially on the use of two successive age (and prefer- 
ably sex) distributions of a population. The age disui- 
butions should be obtained from complete enumera- 
tions, because sampling errors would greatly distort the 
results were data from sample surveys used; and the 
population should ideally be closed to migration, failing 
which, one population or the other should be adjusted 
for the effects of net migration. The calculations are 
greatly simplified if the length of the intercensal period 
is an exact multiple of five years, though other periods 
can be accommodated; the period should not, in gen- 
eral, exceed 15 years. The main features of the methods 
available are described below (for data requirements 
and parameters estimated, see table 171): 

Section B. Ertimcrtion of mortality from intercensal sw- 
vivorship probcbilities. The traditional procedure for 
estimating adult mortality from two successive census 
age distributions by calculating cohort survivorship pro- 
babilities for the intercensal period is described. 
Different procedures for smoothing' the calculated 
probabilities, using the Coale-Demeny model life tables 
or the logit life-table system in order to estimate a single 
mortality parameter, are also presented. Variants based 
on cumulated and uncumulated age distributions are 
included; 

Section C. Zntercensal swrivol with d t i o n a l  i n f m -  
tion on the age p t e m  of mortaliy. In a closed popula- 
tion, the proportionate reduction in cohort size from one 
census to another can be compared with the propor- 
tionate reduction expected on the basis of cohort deaths 
as recorded by a vital registration system or retrospective 
survey question. Since the age patterns of the popula- 

I The term "to smooth" is used in this MMWI in its most general 
sense to mean the elimination or minimization of irregularities often 
present in reported data or in prcliminary estimates obtained from 
them.' In thls m s e ,  the set of possible "smoothing techniques" 
encompasses a wide variety of rocedurcs, ranging from the fitting of 
models to simple areraeing. $he traditional smoothin8 techniques 
applied to age distribut~ons and to observed age-spec~fic mortality 
rotes a n  pan of this set, but the do not exhaust it. The somewhat 
mulher p m d u n s  described in tKis M-f a n  necessary because the 
bas~c data available arc both deficient and incomplete. 



TABLE 171. SCHEMATIC GUIDE TO CONTENTS OP CHAPTER IX 

.%liar, 

B. Estimation of mortality 
from intercensal sur- 
vivorship probabilities 

~ l i m m l m t h d  

B.2 Survival ratios for five-year 
age cohorts smoothed by 
using the Coale-Demeny 
life tables 

B.3 Survival ratios for five-year 
age cohorts smoothed by 
using the logit system 

B.4 Survival ratios smoothed by 
cumulation and by using 
the Coale-Demeny life 
tables 

C. Intercensal survival with 
additional information 
on the age pattern of 
mortality 

D. Estimation of a post- 
childhood life table 
from an age distribution 
and intercensal growth 
rates 

7hc 0/iw b a  - 
Population classified by age and 

sex from two censuses IS years 
apart or less. If the intercensal 
period is not an exact multiple of 
five, at least one age distribution 
must be by single years. 

An estimate of net intercensal mi- 
gration 

Population classified by age and 
sex from two censuses IS years 
apart or less. If the intercensal 
period is not an exact multiple of 
five, at least one age distribution 
must be by single years. 

An estimate of child survivorship 
An estimate of net intercensal mi- 

gration 
Population classified by age and 

sex from two censuses IS years 
apart or less. If the intercensal 
period is not a multiple of five. 
at least one age distribution must 
be by single years. 

An estimate of net intercensal mi- 
gration 

Population classified by age and 
sex from two censuses IS years 
apart or less. If the intercensal 
period is not an exact multiple of 
five, at least one age distribution 
must be by single years. 

Registered deaths during the inter- 
censal period classified by age 
and sex 

Estimates of net intercensal migra- 
tion (to adjust raw data, if neces- 
='Y) 

Population classified by age and 
sex from two censuses I5 years 
apart or less. The same age 
classification must be used for 
both populations 

Estimates of net intercensal migra- 
tion (to adjust raw data, if neces- 
saw) 

A life table for the intemnsal 
period from age 10 or so onward 

A life table for the intemnsal 
period from age 10 or so onward 

A life table for the intercensal 
period from age 10 or so onward 

Completeness of coverage of 
recorded deaths with respect to 
the completeness of the first 
census 

Completeness of coverage of the 
first census in relation to that of 
the second 

Estimates of 4, from age 10 or IS 
onward 

tion and of deaths are very different, it is possible to 
disentangle the effects of changes in enumeration com- 
pleteness from undercoverage of deaths. Specifically, if 
enumeration completeness and coverage of deaths do 
not vary with age, at least after childhood, the enumera- 
tion completeness of one census in relation to the other, 
and the completeness of death recording in relation to 
either, can be estimated. The procedure is severely 
affected, however, by systematic age errors; 

Section D. &timation of a post-childhood life table from 
an age distribution and intercensal growth rates. Two 
census enumerations provide the data necessary to cal- 
culate intercensal growth rates for five-year age groups. 
These growth rates can then be used to convert the aver- 
age age distribution from the two censuses into station- 
ary population form, that is, a life-table 5Lx function. 
This method is computationally attractive if the length 
of the intercensal period is not a multiple of five years. 

B. ESTIMATION OF MORTALITY FROM INTERCENSAL 
SURVIVORSHIP PROBABILITIES 

1. h i s  of methodr and their rationale 

The methods described in this section are all based on 
the same, very simple information, namely, the change 
in size of successive age cohorts of a population from 
one census to the next. The methods differ only in the 
ways in which this basic information is smoothed to 
reduce the effects of errors and converted into a mortal- 
ity parameter. Therefore subsections B.3 and 8.4 only 
cover those steps which are different from the steps 
described in subsection 8.2. 

2. Intern& survivorship ratios fw@-year 
age cohorts smoothed uring the Cwlc-lkmmy lye tables 

(a) Dota required 
The data required for this method are two census 



enumerations with populations classified by age and sex. groups (such as 3 - 7.8 - 12 and 13 - 17) centred on 
(Classification by sex is not necessary, but since it is g n -  preferred-digit endings may be used. 
;rally availab1e;it is useful to consider it whenever k s -  

- step j: <wtment/or in;ercenml interval thcv Lt not o* the age reached, is the ex& n&r ofyeors. When the intercensal interval is theoretical limit for the value of the intercensal interval not an exact number of years, a small adjuament r (measured in years), in practice, with intervals longer be made to one population or the other, by moving if 
lhan l5 years the is rarity and the forward or backward in order to the popu- 
calculations ire more lo be changes lation corresponding to the nearest date defining an 
other than those caused by mortality. If t is divisible by interval with an exact number of years and thus to 
five* both age distributions can be 'IaSSified five-~ear remove the slight effect that normal popu~a~ion p w t h  
age group and the first census can be would have on the intercensal survivorship estimates. 
identified at the second census; if t is not a multiple of The intercensal growth rate can be calculated as five, it is convenient to have one of the age distributions 
by single year of age, so that comparable cohorts may be 
constructed. 

(b) Computational procedure where N2 is the total population recorded by the second 
census; N I  is the total population recorded by the first 

The steps the procedure are census; and t is the intercensal period measured in 
described below. years. This growth rate can then be used to move either 
step 1: 4uhlentfor inte rned  mgmtion ter- the first or second age distribution over the required 

*ton'(Il cowrage. substantial net migration during the length of time. If the decimal portion of r is less than 
intemensal period will generally render the method of 0.5, the interval should be shortened to t exact years, 
intemensal survival unusable. ~ ~ ~ ~ ~ h ~ l ~ ~ ~ ,  if it is possi- whereas if it is greater than 0.5, the interval should be 
ble to ad,ust one age distribution or the other on an lengthened to t + 1 exact years. If the decimal portion of 
age-specific basis for the eflecb of migntion, the t is denoted by $e interval a n  be shortened to t 

method may be applied after such adjustment has been Yea" either each age group at the 
made. However, it is most unusual for adequate infor- a exHrzl Or m u l t i ~ l ~ i n g  each age 
mation about migration to be available, and no general gmUp at the census a factor  ex^[ -rz 1. The 
proceduns for canying out an ad,ustment can be interval can be lengthened either by multiplying each 
expounded here.  problem^ introduced by changes in age bmup at the first census a factor ex~[r(z - la0)] Or 

temtorial coverage may not be quite so serious. By the by multiplying each age group at the second census by a 
judicious aggregation of subnational information from factor exp[r(l.O-z)l. 

one census or the other, it is usually possible to arrive at Step 4: calculation of cohort survivorship ratios. Cohort 
age distributions for comparable populations. No gen- survivorship probabilities or ratios during the intercensal 
era1 procedures for so doing need to be stated, however, period, denoted by , SXqx + 5 ,  can now be calculated by 
beyond pointing out the necessity of making suitable dividing the cohort size at the second census by its size 
adjustments if changes in territorial coverage have at the first census. These survivorship ratios approxi- 
occurred. mate life-table (or stationary-population) survivorship 

probabilities, provided the effects of deviations of the 
'lrp ': p V i n d  ddbtafrom Ma ceMues cohort' actual age distribution within coho* from that 

Simp1e intercensal "lvival Mhniques generally disre- corresponding to the stationary population are small (as 
gard the effects of age distribution within cohort group- is usually the caw). Thus, ings, assuming in effect that the population is distributed 
within each age group in the same way as if it were a 
stationary or life-table population. As a result of this ~ S X . ~ + ~ = ~ N , Z + , / ~ N , I = ~ L X + ~ / ~ L X  

simplifying assumption, the width of the cohorts should 
not be too large (probably not more than five years). where t is the adjusted length. of the intercensal interval 
Groupings that are five years in size are also convenient after applying step 3; 5Nxi is the population aged from x 
because most model life-table systems are tabulated for to x +4 enumerated by the first census; and sN;+, is the 
five-year age groups, though other intervals can be used population aged from x +t to x +t +4 enumerated by 
if necessary. If the intercensal interval t is divisible by the second Ct~sus. 
five, conventional five-year age groups from x to x +4 Step 5:fitring ofa Coale-Demeny model life table. The 
at the first census will survive to become convectional consistency of the cohort survivorship ratios calculated 
five-year age groups from x +t to x +t +4 at the second in step 4 may be conveniently examined by finding the 
census; and no regrouping is required. If t is not divisi- mortality level, in the Coale-Demeny model life tables, 
ble by five, a single-year age distribution from either the to which each ratio corresponds. A best estimate of 
first or the second census can be used in order to create mortality level can then be obtained by discarding any 
groups corresponding to conventional five-year cohorts detectable outliers and basing the estimate on the 
at the other census. In cases where there is substantial remaining levels (by taking their average, for example). 
age-heaping and a danger that it may introduce sys- If the adjusted intercensal period t is divisible by five, 
tematic age exaggeration, unconventional five-year age stationary-population ratios of the type SLx +, /5Lx can 
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be calculated directly for relevant levels of the selected 
regional family of model life tables. If t is not divisible 
by five, however, additional steps become necessary, 
since the Coale and Demeny life tables do not provide 
stationary-population age distributions for non-standard 
age groups. The simplest procedure is to calculate 
stationary-population distributions for non-standard age 
groups simply by weighting adjacent standard five-year 
values by the proportions of the age groups covered. 
Thus, 5L 19, the stationary population aged from 19 to 23, 
covers one fiflh of age group 15-19 and four fifths of age 
group 20-24; it can be approximated as 

In fact, if the I(x) function is linear with age, the 
approximation is exact. 

If somewhat more precision is required, 5Lx +,, values 
can be estimated from tabulated values of I(x ), I(x +5) 
and I(x + 10) using equation (B.l): 

where the coefficients a (n ), b (n ) and c (n ), for n ranging 
from 0 to 4, are calculated by fitting a second-order 
polynomial to the I(x) values. Values of these 
coefficients are shown in table 172. 

Step 6: completion of the Iije table. Intercensal survival 
provides no information about the mortality experience 

TABLE 172. COEFFICIENTS FOR ESTIMATION OF STATIONARY-POPULATION 
AGE DISTRIBUTION, 4,. FOR UNCONVENTIONAL AGE GROUPS 

Estimation equation: 
L,,. = a ( n ) l ( x ) + b ( n ) l ( x  +5 )+c (n ) l (x  +lo) - - , .. 

where x  is exactly divisible by five. 

of those born between the censuses, since the first census 
does not provide their initial number (accurate birth 
registration could supply this want, but where births are 
completely registered, better estimates of mortality 
would probably be available from other sources). In 
order to obtain a complete life table, therefore, it is 
necessary to supply further information about child 
mortality. The most satisfactory source of such esti- 
mates is information about children ever born and sur- 
viving (see chapter 111). If estimates of this type are 
available, the methods described in chapter VI for link- 
ing estimates of child and adult mortality can be used to 
obtain a complete life table. 

A problei remains, however, if no independent esti- 

mate of child mortality is available. Since the Coale- 
Demeny life-table system has been used in selecting a 
model life table (see step S), the mortality pattern of the 
model used can be adopted by taking the life table asso- 
ciated with the average mortality level of the intercensal 
survival probabilities as representative. 

(c) First detailed example: Panama, 1960-1 970 
The first detailed example illustrates a fairly simple 

case of a 10-year interval and reasonably good age- 
reporting. Population censuses were held in Panama on 
1 1 December 1960 and 10 May 1970. This example 
examines only the intercensal survival of the female 
population, though in a complete study, this analysis 
should be carried out for both males and females. Table 
173 shows the female population enumerated by the two 
censuses classified by five-year age group. 

The computational procedure for this example is . 
given below. 

Step 1: @ustrnent for net intercensal migration and ter- 
ritorial coverape. As no information on intercensal 
migration by i g e  is available, no adjustment can be 
made. No change in territorial coverage occurred 
between 1960 and 1970; therefore, no adjustment for 
coverage is needed. 

Step 2: grouping of data from the two censuses by cohort. 
Because the interval between the two censuses is about 
nine and one-half years, one of the populations has to be 
moved slightly to bring cohorts into alignment. The 
exact interval, 9.41 years, is somewhat closer to nine 
years than 10, so the adjustment for dates would be 
minimized by moving the first population forward 
slightly, or by moving the second one back, to create an 
intercensal period of nine years. However, there is also 
an advantage to working with intervals divisible by five, 
and since the actual interval was only slightly less than 
nine and one-half years, the convenience factor 
outweighs that of a marginal gain in accuracy. Thus, the 
first census will be moved back to approximate the 
female population on 10 May 1960 (the results would be 
precisely the same if the second census were moved for- 
ward to 11 December 1970). Standard five-year age 
groups will therefore define cohorts, and no regrouping 
is required. 

Step 3: mjurtrnent for length of the intercensal interval. 
The total female population in 1960 was 529,767, and in 
1970 it was 704,333; thus, the exponential rate of popu- 
lation growth during the intercensal period 1960-1970 is 

The growth factor k needed to adjust the 1960 popula- 
tion for 0.59 of a year's growth is then obtained as 

Column (3) of table 173 shows the adjusted population. 



TABLE 173. ENUMERATED AND ADJUSTED FEMALE POWLATION IN 1960, ENUMERATED POPULATION IN 1970 
AND COHORT SURVIVORSHIP RATIOS. PANAMA 

 n numerated population adjusted by a factor of 0 
1960. 

Step 4: cdculation ofcohort survivorship mtios. Cohort 
survivorship ratios or probabilities are calculated by 
dividing the number in each cohort at the second census 
by the corresponding number in the same cohort at the 
Brst census, using, of course, the date-adjusted numbep 
in columns (3) and (4) of table 173. Thus, for example, 
the survivors of the cohort aged 20-24 at the first census 
are aged 30-34 at the second census, and the 10-year sur- 
vivorship probability for the cohort, 10S20,24, is calcu- 
lated as 

where SN,' and S N ~ +  10 are the populations aged from x 
to x +4 at the first census and from x +10 to x +14 at 
the time of the second census, respectively. Results for 
all age groups are shown in column (5) of table 173. 
Note that the female population was classified by five- 
year age p u p  only up to age 74, with an open-ended 
age group 75 and over. Since those over 75 in 1970 are 
the survivors of those over 65 in 1960, the last survivor- 
ship ratio is a 10-year survivorship probability for those 
65 and over in 1960. 

Step 5: jirting of a Me-Lkmeny mo&l life table. The 
cohort survivorship ratios given in column (5) of table 
173 show a certain amount of variability; and one ratio 
even has a value that, in the absence of migration, would 
be impossible (greater than 1.0). The fitting of a model 
life table is therefore desirable. The mortality level 
associated with each estimate (excluding those which are 
impossible or out of range) can be found in a family of 
Coale-Demeny model life tables. In the case of 
Panama, the West family is selected as the most suitable. 

It is assumed that the cohort survivorship probabili- 
ties, IOSx, x +4, are equivalent to stationary-population 
survivorship ratios, s& + lo15L. These stationary sur- 

- -- 

1.9823 to move it from 1 1  December 1960 to 10 May 

vivorship probabilities or ratios are not tabulated in the 
Coale-Demeny tables, but their values are shown in the 
second half of annex X (tables 271-278). Table 174 
shows the cohort survivorship ratios (taken from column 
(5) of table 173), the stationary-population survivorship 
ratios (hereafter also called "model ratios") for a range 
of mortality levels of the West family of model life 
tables, and the levels implied by the cohort ratios, 
obtained by interpolating between the model values. 
The interpolation is straightforward: if the cohort ratio 
falls between levels v and v + 1, the interpolated level z is 
found as 

where v and v+l indicate the mortality levels of the 
ratios. If the interval .between the levels to which the 
model ratios correspond is two levels, as shown in table 
174, the term to be added to v has to be multiplied by 
two. 

It will be seen that two of the implied levels shown in 
table 174 are high (above 20) and two are below 14. 
Discarding these outlying values, an estimate of overall 
level can be obtained by averaging the remaining esti- 
mates; in this case, the estimate obtained is 16.1. This 
level is then taken as a best estimate of the level of mor- 
tality after age 10 for females in Panama, on the basis of 
the two census enumerations. 

Step 6: c~pletion of the life table. So far, the level of 
adult mortality has been estimated, but not the level of 
child mortality. If no information is available about 
child mortality, the best that can be done is to assume 
that the adult level also applies in childhood and to 
adopt the complete life table of the estimated level; in 
the case of Panama, this level is 16.1. 



If some information on child mortality is available, 
estimates of adult survivorship obtained from a model 
life table of the estimated level can be linked with the 
independent estimate of survivorship to age 5. In 
chapter 111, the level of female child mortality in 
Panama in the 1960s was estimated to be 18.05 (accord- 
ing to the West model), so a life table at this level is 
adopted up to age 5. Thus, 1(1)=0.9405 and 
1(5)= 0.9165. Probabilities of survival from age 5 
onward are then calculated for level 16.1 and are used to 
extend the life table from age 5, as shown in table 175. 

For comparison purposes, the life-table l ( x )  function, 
which will be generated in subsection 8.3 using the logit 
life-table system, is also included. As can be seen, the 
two life tables are slightly different in detail but very 
similar in broad shape and level. 

(d) Second detailed example: Colombia, 1951 -1 964 
The second detailed example considers a less tidy 

case, where age-misreporting is more extensive and the 
intercensal period is not a convenient multiple of five. 

The computational procedure is described below. 

TABLE 174. DETERMINATION OF THE MORTALITY LEVEL IMPLIED BY EACH COHORT SURVIVORSHIP RhTIO. 
PANAMA. 1960-1970 

Note: Mean level (excluding two lowest and two highest values) = 16.1. 
1 S~~ivorShip ratio in excess of 1.0. 
d65+ 
Not computed. 

TMLE 175. COMPLETION OF AN INTERCENSAL LIFE TABLE USING THE COALE-DEMENY 
MODEL LIFE TMLES, PANAMA, 1960-1970 

Not calculated. 
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Step I:  @wanmt for net intercensal migration and ter- 
rit& cowup. Once again, no basis exists for adjust- 
ing for migration, and no adjustment for territorial cov- 
mgcisneccssary. 

S&p 2: grot@ng of&afhm the tw cmrures by cohort. 
Population censuses were held in Colombia on 9 May 
1951 and on IS July 1964, the intercensal interval thus 
being 13.185 years. Since the population distribution by 
single year of age is available from the 1964 census, 
standard five-year age groups from x to x +4 identified 
at the first census can be reidentified at the second 
census as age groups from x + 13 to x + 17. Thus, sur- 
vivors of those aged 0 4  at the first census are aged 13-17 
yean at the second census. Suitably grouped data for 
the female population, based on a single-year age distri- 
bution for the population enumerated in 1964, are 
shown in columns (2) and (4) of table 176. 

Step 3: Hwnnmt for h g t h  4 the  i n t e m d  i n t e d .  
As the intemnsal interval was 13.185 years, the popula- 
tion enumerated at the second census can be moved 
back 0.185 of a year to improve comparability. The 
total female population in 1964 was 8,869,856, whereas 
that in 1951 was 5,649,250. Thus, the overall growth 
rate of the female population was 

The adjustment factor k for the second census is thus 

Column (5) of table 176 shows the 1964 population sys- 
tematically multiplied by the factor k (constant with 
rcspect to age). 

Stcp 4: cakuwon of cohort su~l~vwrfip mtios. sur- 
vivorship ratios for each cohort are calculated by divid- 

ing the number of survivors at the second census (after 
adjustment) by the corresponding number at the time of 
the first census. Thus, in table 176, the numbers in 
column (5) are divided by the numbers in column (2). 
The results are shown in column (6). Note that the sur- 
vivorship ratios for the first three age groups in 1951 
exceed 1.0, indicating the existence of problems related 
to coverage or to age-reporting. 

Step 5: firing afa W e - h n y  male1 life table. The 
cohort survivorship ratios g&n in column (6) of table 
176 are for five-year cohorts over a period of 13 years. 
Comparable ratios for stationary populations are not 
published in the Coale-Demeny life tables, nor can they 
be calculated directly from information which is pub- 
lished. It is possible to estimate them, but the calcula- 
tions necessary are rather heavy, particularly if the vari- 
ations in level are substantial. Time can be saved by 
finding the approximate mortality level for each cohort 
survivorship ratio and then estimating more accurately 
the model survivorship ratios (refemng to stationary 
populations) for adjacent mortality levels in order to 
perform the final interpolation. 

The first step is to find the approximate mortality level 
to which each cohort ratio corresponds. In the station- 
ary populations, a 13-year survivorship ratio should lie 
almost half-way between the 10-year and 15-year ratios, 
both of which can be calculated directly from the pub- 
lished tables. To give an example, consider the cohort 
aged 40-44 in 1951 whose 13-year survivorship ratio is 
estimated to be 0.7885. By trial and error, one can find 
the approximate level to which this cohort ratio 
corresponds in the West family of model life tables. At 
level 10, the 10-year female survivorship ratio, 
5LU)/SL40, has a value of 235,666/273,7% or 0.8607, 
whereas the 15-year ratio, sLss/sLJo, has a value of 
0.7719. The average of the two, 0.8163, is higher than 
the cohort survivorship ratio, so the approximate mor- 

TABU 176. F m  m W T I O N  BY AGE GROUP. 1951 AND 1964, ADJUSTED FEMALE POPULATION. 1964; 
AND COHORT SURVIVORSHIP RATIOS. COLOMBIA 

- -  . 

Adjusted for tbe difference bctwe.cn the observed intenmad period. 13.185 years. and 13 exact 
Yam 
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tality level of this ratio should be lower. At level 8, the values of 1(30,1(35) and f (40) for level 1 1 as follows: 
equivalent 10-year, 15-year and average survivorship 
ratios are 0.8377,0.7380 and 0.7879, the last value being jLs3 = (-0.017)1(30)+(4.533)1(35) +(0.483)1(40) 
very close to the cohort ratio; hence, level 8 is selected as 
the approximate level for the cohort ratio. Proceeding = (-0.017XO.66224) +(4.533)(0.63 186) + 
in this way, approximate levels for all the cohort ratios 
are estimated. They are shown in column (3) of table (0.483X0.59963) 
I L.L. 
1 1 1 .  

-The next step is to make a more accurate estimate of = 3.14258. 

the 13-year mdel survivorship ratios for the approxi- 
mate kvels determined above. Thus, for the cohort 
aged 15-19 in 195 1, the approximate level is 13, so a 
model survivorship ratio, 5L28/5LIS, is to be calculated 
for level 13. 

The value of SL15 is tabulated in the published tables 
(for West females, level 13, it has the value of 3.89403). 
The constants and equation given in table 172 can be 
used to estimate 5L28. The ?ge range from 28 to 32 is 
covered by the tabulated l(x) values for 25, 30 and 35, 
and n is equal to 28 minus 25, that is, 3. In the West 
female model life table of level 13, 1(25)=0.74769, 
l(30) = 0.72326, and l(35) = 0.69647; thus, 

The model survivorship ratio is then calculated as 

For the next cohort, aged 20-24 in 1951, the approxi- 
mate mortality level is 1 1 ; therefore, the 13-year model 
survivorship ratio, 5L33/5L20, is calculated for level 11. 
The value of jLZ0 is obtained directly from the model 
life tables as 3.51543; that of jL33 is estimated from 

The model survivorship ratio is then calculated as 

Results for each cohort are shown in column (4) of table 
177. Note that for the open-ended cohort, a cruder 
simplification is adopted. The model survivorship ratio 
reqiired can be approximated as 

that is, the stationary population over 78 divided by the 
stationary population over 65. The value for T6j is 
tabulated in the model tables, and T78 can be estimated 
by weighting the values of T7j and Tso in the following 
manner: 

The precision of the estimate for the open-ended inter- 
val need not be high, since the survivorship ratio for the 
open-ended cohort is likely to be distorted anyway by 
age-misreporting and agedistribution effects. 

Once 13-year model survivorship ratios have been 
estimated for each approximate level given in column 
(3). the model survivorship ratio for an adjacent level 
has to be computed in order that the level of the cohort 
survivprship ratio can be found by interpolation. If the 
cohort survivorship ratio exceeds that computed for the 
approximate level, a model ratio should be estimated for 
the next higher mortaFty level; whereas if the cohort 

TABLE 177. STEPS IN ESTIMATION OF THE MORTALITY LEVEL TO WHICH EACH COHORT SURVIVORSHIP RATIO 
CORRESPONDS IN THE WEST MODEL. COLOMBIA. 195 1 - 1%4 

war m&l, I 3 - y ~ l r r * ~  rrvlo 
6*n 13-yrr E t r d  

"gm "* ""M"" rcrclo w " " "  &O *rcl 
Mmakvry 

11) l 2 J  f3J 14) (5) (6) f7J 

Cannot be calculated. 
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ratio is lower than that computed for the approximate 
level, a model ratio should be estimated for the next 
lower level. Thus, for age group 15-19 the cohort ratio, 
13Sls, 19, is 0.9291, whereas the model ratio, 13Ss, 19, for 
the approximate level 13 is 0.925 1. In order to bracket 
the cohort ratio between estimated model ratios, it is 
therefore necessary to compute a model survivorship 
ratio for the next higher level, 14. (Had the cohort ratio 
IsSls, 19 been lower than 0.9251, a model ratio would 
instead have been computed for the next lower level, 
12.) The steps to follow to perform this computation are 
the same as those followed in calculating the model 
ratios corresponding to the approximate levels, except 
that now the adjacent level is used. Thus, in the case at 
hand, the life table of level 14 is used instead of that of 
level 13. The model ratio obtained is 0.9321, and it is 
listed together with all other model ratios corresponding 
to the selected adjacent levels in column (6) of table 177. 
It is worth noting that, in this instance, the cohort sur- 
vivorship ratios a n  generally higher than the model 
ratios corresponding to the approximate levels because 
the method used to select an ,approximate level approxi- 
mates a 12.5-year interval rather than the actual 13-year 
interval. Fortunately, in every case, the cohort ratio was 
less than one level away from the first approximation 
selected. 

The last step consists of interpolating between the 
model ratios for the approximate and adjacent levels in 
order to find the mortality level of the cohort ratio. As 
always, the amount to be added to the lower mortality 
level is equal to the difference between the cohort sur- 
vivorship ratio and the model ratio comsponding to the 
lower mortality level, divided by the difference between 
the model ratios corresponding to the higher and lower 
mortality levels. Thus, if v is the lower mortality level, 
z(x) is the estimated level and v+ I is the upper level, 

implausibly high survivorship ratios, the cohort aged 
55-59 in 1951, whose survivors include the number 
heaped on age 70, and the cohort corresponding to the 
openended interval (65 and over), whose survivors a n  
probably inflated by age exaggeration. In order to 
obtain some overall average estimate of intercensal mor- 
tality, these five cases should be excluded; and to bal- 
ance their exclusion, the five lowest levels should also be 
disregarded. Such Draconian elimination leaves as the 
only "acceptable" estimates the set 13.6, 16.1, 14.4 and 
19.8, the average of which is 16.0. However, because of 
the fairly wide range of levels covered by these esti- 
mates, their average cannot be considered a reliable 
indicator of intercensal mortality. 

To conclude, note that no independent information 
on child mortality is available for the period 195 1-1964, 
so that if the average mortality level estimated above 
were reliable, a life table could only be completed by 
assuming that the mortality pattern embodied in the 
model used (West) adequately represents that experi- 
enced by the population being studied (in terms of both 
adult and child mortality). 

3. Intemnsal swrivomhip ratios for jve-year age 
cohorts smoothed by use ofthe logit system 

(a) m a  mquired 
The data required for this method are listed below: 
(a) Two census enumerations separated by t years 

with populations classified by five-year age group (and 
sex); 

(b) An independent estimate of child mortality. Such 
estimates are generally derived from information on 
children ever born and children surviving analysed 
according to the procedures described in chapter 111. 

~ t a t i o & t p m m i i m  
The steps of the computational procedure are 

described below. 

so that, for the cohort aged 15-19 in 195 1, Step 1-4. These steps, by which cohort survivorship 
ratios analogous to those for a stationary population, 
5L+t 15L,  are calculated, are identical to those z(15)= +(0.929 -0'9251)/(0'932 -0'925 
debbed  in subsection B3@) and are not rrpclted 

= 13.57. here. 
Step 5: swamthing cohort survivorship ratios by ure of the 

Complete results, rounded to one decimal place, are logit lifc-table system. Somewhat more flexibility in the 
shown in column (7) of table 177. model pattern of mortality used can be introduced by 

Step 6: amyktion ofthe lij.2 table. The life table may smoothing through the logit life-table system (we 
be completed by adding information on child mortality chapter 1, subsection B.4). The cohort survivorship 
in exactly the same way as for the example for Panama. ratios, analogous to SL +I /5Lx, are transformed into 
However, the results obtained in step 5 are so erratic that estimates of SL +I by multiplying each by the 
they require some comment. For the first three cohorts, corresponding 5 L  ; the first value or values of 5 k  are 
more survivors were recorded in 1964 than had been estimated on the basis of information about child mor- 
enumerated in 195 1. It is probable that two factors were tality, and subsequent values are obtained from previous 
mainly responsible for this outcome: the general ten- estimates of sL The calculations thus form a chain: 
dency to underenumerate young children or to exag- the first value of 5Lx +t is calculated by assuming a value 
gerate their ages; and the tendency to shift the ages of of 5Lo; and if t is greater than 5, the second value of 
women into the peak reproductive years from either 5 k + t  can be obtained by assuming a value of 5L5; but 
side. The first factor would reduce the initial numbers in once x is greater than t ,  the denominators 5 L  will be 
the cohorts, and the second would increase the apparent provided by earlier estimates of 5 L  +i . 
numbers of survivors. Two older cohorts also show Once a series of 5L +I values has been obtained, it is 
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assumed that the proportion of the stationary population 
aged from x +t to x +t +5 approximates the probabil- 
ity of surviving from birth to age y = x +t +2.5, 
I(x +t +2.5). The logit transformations of each of these 
ICy) estimates can then be calculated and compared 
with the logit transformations of equivalent values 
derived from an appropriate standard life table. Then, 
the a and f l  parameters defining the linear relationship 
between the logit transformations of the estimated and 
the standard survivorship probabilities can be estimated 
by using a suitable line-fitting procedure, and a com- 
plete I(x) survivorship function can be generated. It 
must be noted, however, that for childhood ages the I(x) 
values generated in this way will not, in general, coin- 
cide with those used as input in applying the method. 
The magnitude of the differences between the input and 
output child mortality estimates depends, among other 
things, upon the appropriateness of the mortality pattern 
used as standard and upon the quality of the intercensal 
survivorship estimates. If the magnitude of such 
differences is unacceptably large, the use of a different 
standard should be considered. When changes in the 
standard fail to reduce the differences observed, one 
may either have to discard entirely the intercensal life 
table or one may adopt a life table built by linking in a 
manner similar to that described in step 6 in subsection 
B.2(b), the child mortality estimates used as input with 
the estimated I(x ) values over age 10. 

period for the estimates derived from information per- 
taining to women aged from 30-34 to 45-49 effectively 
covers the intercensal period 1960-1970 (see table 55). 
The average female mortality level for this period is 
18.05 in the West family of model life tables. For level 
18, 1Lo is 0.95377 and 4LI is 3.69742; for level 19, the 
corresponding values are 0.96004 and 3.75407. There- 
fore, interpolating linearly, 

and 

Interpolating in a similar fashion for 5Li8.O5, 

The chaining of survivorship probabilities can then 
begin. It is assumed that 

so 
(c) First detailed exmnple: Pawma, 1960-1 970 

The computational procedure for this example is 
1 

1(12.5)= ~ ( I o S O ,  rW5Lo) 
described below. 

and 
Step 1 4 .  These steps have already been presented in 

subsection B.2(c). 5L = 5.0 I(x +2.5) forx = 10, 15, ..., 60. 

Step 5: moothing cohort survivorship ratios by use of the 
logit I#-table ystem. The starting-point of this smooth- 
ing procedure is the cohort survivorship ratios shown in 
column (5) of table 173. It is assumed that a cohort sur- 
vivorship ratio approximates a life-table survival proba- 
bility from the central age of the cohort at the first 
census to its central age at the second census. In the case 
in hand, therefore, it is assumed that 

The one age group for which 5.0[1(x +2.5)] is not an 
adequate approximation to 5L is group 0-4. If esti- 
mates of 1(2), l(3) and l(5) are available from child sur- 
vival data, the mortality levels associated with these 
three estimates in a selected family of Coale-Demeny 

- model life tables can be averaged; and the value of 5L0 
for that level, sex and family can be read off from the 
relevant table. If an estimate of 5L5 is required, it 
should be taken also from this model table. 

In the case of Panama, no information relevant to the 
estimation of child mortality was collected by either the 
1960 or the 1970 census. However, child mortality esti- 
mates are available from the Retrospective Demo- 
graphic Survey conducted in 1976, and the reference 

Table 178 shows the full calculations. 
The essence of the logit life-table system lies in the 

comparison of an estimated I(x) survivorship function 
with a standard I,(x) function on the logit scale (see 
chapter I, subsection B.4). In this case, a Coale-Demeny 
West model life table of level 18 for females has been 
selected as standard on the basis of the child mortality 
estimates available. The I(x) function in the Coale- 
Demeny model life tables is given only for ages 0, 1, 5, 
10 and so on, whereas for comparison with the estimated 
probabilities, I@) values are required for ages y = 12.5, 
17.5, 22.5 and so on. These values can be obtained by 
averaging the standard I, (x) values for adjacent ages x 
(multiples of five) and then calculating the logit transfor- 
mations of these averages. Thus, to obtain an estimate 
of 1,(12.5), 

Therefore, the logit transformation of the standard at 
12.5, As (12.5), is 



TABLE 178. AWLICATION OF SMOOTHIN0 PROCEDURE BASED ON THE U)<iIT SYDlZM TOTHE 
COHORT SURVIVORSHIP RATIOS FOR THE PERIOD 1960-1970. PANAMA 

Female, level' 18, West model. 
Obtained as described in the text. 
Not computed. 

Note that computing ls(x +2.5) by directly averaging 
l,(x) aild l,(x +5) has an advantage over the use of 
closer approximations, since it is being assumed in the 
case of the estimated l(x) values that 5L is equal to 
5.0(1(x +2.5)). If the l(x) and 1, (x) functions are simi- 
lar, but not linear, between x and x +5, the logit 
transformations of the estimated and the standard ICy) 
values calculated as shown above will still be compar- 
able, but will not refer to exact age x +2.5. Yet, the 
form of their relationship (its linearity and the parame- 
ters that define it) will not be greatly affected. 

Columns (5) and (6) of table 178 show the logit 
transformations of the estimated and standard l(x) 
functions, respectively. The points defined by 
[A, (x ),A(x )] are plotted in figure 2 1. It can be seen that 
these points follow a generally linear trend, though there 
a n  outliers, notably the point associated with the cohort 
aged 10-14 in 1960, which had an apparent survivorship 
ratio from 1960 to 1970 greater than 1.0. A straight line 
has been fitted to the points by using group means (see 
chapter V, subsection C.4). This line has a slope of 
1.022 (an estimate of B in the logit system) and an inter- 
cept of 0.094 (an estimate of a in the logit system). The 
intercensal cohort survivorship probabilities thus indi- 
cate an age pattern of mortality similar to that of the 
standard, since 4 is roughly equal to one, but an overall 
level of mortality somewhat heavier than that of the 
standard, since a is slightly larger than zero. 

A complete life table can now be calculated by invert- 
ing the logit transformation estimated by means of a 
and B. Thus, 

and 

The results obtained in this case are shown in column (7) 
of table 175. Note that, as mentioned earlier, the child 
mortality estimates obtained by this procedure differ 
from those used as input (the latter are shown as l(1) 
and l(5) in column (6) of table 175). In terms of infant 
mortality, for example, the logit estimate is l(1) = 
0.9323, while the value. used as input is 0.9405 

Figure 21. Plot of tbe logit tmmfomution of the estimated survivor- 
sbp luaetbq I@), against that of tbe standard West model for fe 
mh, level 18 Panama 



(corresponding to level 18.05 in the Coale-Demeny West 
models for females). Hence, whereas according to the 
life table generated by using the logit system, some 68 
out of every 1,000 births die before reaching age one, 
according to the estimates derived from data on children 
ever born and surviving, about 60 deaths per 1,000 
births are expected. If the latter estimate were correct, 
the one obtained through the logit fit overestimates 
infant mortality by about 13 per cent. This outcome is 
due to the fact that intercensal adult mortality is sub- 
stantially higher than the child mortality used as input in 
terms of the West mortality pattern. In the case of 
Panama during the period 1960-1970, the fairly low 
child mortality estimates derived from reports of dder 
women are likely to be biased downward. Therefore, 
the estimates yielded by the logit fit are probably accept- 
able. 

It should also be pointed out that the chaining of sur- 
vivorship ratios used in this procedure introduces a sub- 
stantial element of smoothing into the results even 
before the smoothing action of the logit system is intro- 
duced. Each link in the chain depends upon one or 
more of the earlier links, and each l(x + 2.5) estimate is 
determined both by an earlier estimate of 1 (x  -7.5) and 
by the intercensal cohort survivorship probability 
IOSx-lo,r -6. Thus, the final estimates yielded by this 
procedure are likely to be smoother than those obtained 
directly from each survivorship probability, as was done 
in subsection B.2(c). 

(d) Sccond &tailed example: Colombiq 1951 -1964 
The computational procedure for this example is 

described below. 
Steps 14. These steps have already been covered in 

subsection B.2(d). Therefore, this example begins with 
the application of this procedure once the 13-year cohort 
survivorship ratios shown in table 176 are available. 

Step 5: smoothing the cohort survivorship ratios by use of 
the logit lifc-table system. To use the smoothing pro- 
cedure based on the logit system, it is necessary to have 
some estimate of child mortality in order to begin the 
chaining of survivorship probabilities. A recent study by 
~omoza? based on the results of the Colombian 
National Fertility Survey (part of the World Fertility 
Survey), found that mortality among female children 
born during the period 1941-1959 could be approxi- 
mated by level 14.5 of the West model life tables; for 
female children born during the period 1960-1967, the 
same procedure yielded a level of 16.2. Therefore, it is 
estimated that, for the intercensal period 195 1 - 1964, 
female child mortality was, on average, equal to that of 
level 15.35 (the arithmetic average of the two levels 
estimated by Somoza). For this level, 5L0 is equal to 
4.4699, 5L5 to 4.3076 and to 4.2508, these values 
being obtained by interpolating linearly between the 
tabulated values for levels 15 and 16, respectively. 

J e L. Somom. llhatmtiiw A+'? I ow and ChiU Mmaliy in a, Wodd Fertility Sumy !henttfic% n No. I0 (Voorburg. 
The Hague, International Sutistiluul Institute; 1% 

The first cohort survivorship ratio, 13S0,4, is regarded 
as being equivalent to the ratio 5L13/5L0. Therefore, 
multiplying by the assumed value of sLo, one obtains an 
estimate of 

Similar calculations for 5LI8 and 5LU give results of 
4.5105 and 4.3422, using the assumed values of 5L5 and 
5L10, respectively. The next survivorship ratio, 13SIS,19, 
is regarded as equivalent to 5L28/5L15, but no value has 
been assumed for 5L15, which therefore has to be 
estimated. Estimates of 5L13 and 5L have already been 
obtained, and 5L15 can be estimated from them by 
weighting them suitably. The age interval from 13 to 17 
shares three years, or 60 per cent, with age group 15-19; 
and the interval from 18 to 22 shares two years, or 40 per 
cent, with age group 15-19. An estimate of 5L15 can 
therefore be obtained by summing 60 per cent of 5L13 
and 40 per cent ofsL18: 

An estimate of 5L20 can be obtained in a similar way 
from the estimated values of 5L and 5L23 : 

These values of 5L15 and SL20 can now be used to esti- 
mate 5L2S and 5L33 from the cohort survivorship ratios 
13S15,19 and 13820,24, whereupon the values of 5L23r 5L28 
and 5L33 can be used to estimate 5L25 and 5LU), which 
can in turn be used to estimate and 5L43 from the 
cohort survivorship ratios 13S25.29 and 13Sm,34, and so on 
until all but the last of the cohort ratios have been used 
(the last ratio, for the open-ended cohort aged 65 and 
over in 1951, cannot be equated with an, L, value and 
therefore cannot be used). The results of the various sets 
of calculations are shown in table 179. 

It is assumed that the probability of surviving from 
birth to the mid-point of each age group can be approxi- 
mated by one fifth of the 5Lx values. That is, 

Column (5) of table 179 shows estimates of gLx for 
values of x of 13, 18, 23, 28 and so on up to 73. Each 
can be divided by five to estimate values of I(x +2.5), or 
survival probabilities from birth to ages 15.5, 20.5, 25.5 
and so forth up to 75.5. Thus, for example, 1(20.5), is 
estimated as 

Full results are shown in column (6) of table 179. 
The final stage of the smoothing process is the com- 

parison of the logit transformations of the estimated sur- 



'I'ABLE 179. SMOOTHING OF FEMALE COHORT SURVIVORSHIP RATIOS BY USE OF THE 
LOGIT LIFE-TABLE SYnEM. COLOMBIA. 195 1- 1964 

Females, West model of level IS. Obtained independently from child mortality estimates for the period. 

vivorship probabilities (equivalent to the stationary 
population at exact ages) with those of an adequate 
standard. The logit transformations of the I(x) values 
shown in column (6) of table 179 are easily calculated; 
for instance, for l(20.5). 

The full set of h(x) values is shown in column (7) of 
table 179. The selection of a suitable standard and the 
calculation of I,(x) values that match the estimated 
values present a problem, however, since the life tables 
published in the Code-Demeny set do not include the 
values of x required in this case. Estimates of I,(x) 
must be obtained for x = 15.5, 20.5 and so on, so that 
they may be compared with the estimated I(x) function 
on the logit scale. In this application, a West model life 
table of level I5 for females has been adopted as stand- 
ard. The required estimates of I, (x) are obtained by in- 
terpolating linearly between the published I, (y ) values. 
Thus, for x = 15.5, 

The logit transformations of these I, ( x )  values are calcu- 
lated next, the results being shown in column (8) of table 
179. The logit transformations of the estimated and 
standard I(x) functions are plotted one against the other 
in figure 22. The resulting points fluctuate substantially, 
that for the cohort aged 0-4 in 1951 being particularly 
divergent and the remainder following a broadly linear 
trend. The straight line shown in the figure has been 

fitted by group means (see chapter V, subsection C.4) 
calculated on the basis of all the points except the first; it 
has an intercept (a) of -0.03 and a slope @) of 1.32, indi- 
cating that the level of mortality in the population in 
question is similar to that of the standard, but that 
observed mortality increases much more rapidly with 
age than it does in the standard. However, little 
confidence can be placed in the final results, given that 
the slope of the line is heavily affected by points refer- 
ring to young women for whom age-reporting and cov- 
erage errors are substantial. The chaining process used 
by this smoothing procedure reduces the independence 
of the estimates derived from different cohorts, thus 
increasing the possibility of serious biases in the slope of 
the fitted line. Because of these problems, the calcula- 
tion of a final life table is omitted. If desired, it would be 
calculated just as explained in step 5 of subsection 
B.3(c). 

4. Zntercensol rhortoliry estimated by using 
projection and cumulotion 

(a) Ceneral characteristics of method 
Some of the effects of age-misreporting on intercensal 

mortality estimates can be eliminated by the use of 
cumulation. Irrstead of calculating survivorship ratios 
for cohorts, the initial population is projected forward to 
the date of the second census using a range of mortality 
levels. For each mortality level, the projected popula- 
tion over ages x from 10 or 15 to 50 or 55 is obtained by 
cumulation, and the observed population at the second 
census, N2(x+), is used to interpolate within the pro- 
jected values in order to determine the mortality level 
consistent with it. In this way, the effects of age- 
misreporting at the second census are limited to the 
effects of transfers across each age boundary x . Unfor- 
tunately, the effects of age-misreporting in the initial age 
distribution are not reduced. 



lt should be noted in passing that there is no theoreti- 
cal reason to prefer the forward projection of the first 
age distribution to make it comparable to the second age 
distribution over the reverse projection of the second age 
distribution to make it comparable to the first. The two 
procedures may, however, be expected to give somewhat 
different results because of different errors in the two 
distributions. The analyst might wish to carry out the 
calcuia@ons both ways, compare them and possibly 
obtain a final estimate by averaging the two results; but 
this discussion is confined to the description of the usual 
forward-projection procedure. Backward projection is 
camed out in an analogous way. 

Flgwe 22. Plot ofthe logit mdomution oltbe estimated suwivdlp function, I @ ) ,  
against that of the standard, West model for females, level 15; Colombia 

(b) Ikta-nd 
The only data required arc two census enumerations 

separated by t years with populations classified by age 
and sex. 
(c) Compctafiomlptvcedue 

The steps of the computational procedure are 
described below. 

Steps 1-3. These steps, by which two comparable age 
distributions for time-points separated by an exact 
number of years are obtained, are identical to those 
described in subsection B.2(b) and are not repeated 
here. 
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4: cundation of the mond age rb'sttibution. The 
ap % 'bution from the first census is not cumulated, 
but the second age distribution is cumulated by summa- 
tion from the uppermost age group downward. The 
ages above which populations should be cumulated will 
depend upon the intercensal interval t; normally, the 
oldest initial population that should be used is the popu- 
lation aged 45 and over at the first census, and this 
population will be aged 45+ t and over at the second 
census; the next age group will be aged 40+ t and over, 
the next 35 + t and over, and so on. 

Step 5: pmjection of initial population with diflemnt mor- 
tality l e d .  A suitable family of Coale-Demeny model 
life tables is selected, and life tables from different levels 
are used to project the initial population, five-year age 
group by five-year age group. If the intercensal interval 
is t years, and the initial population aged from x to 
x + 4 is 5N 1,. the population projected by using level v 
of the life tables, 5NP,'+,, is given by: 

where sG and 5L'+, come from a model life table of 
level v. If t is not a multiple of five, values of can 
be estimated by using the technique described in step 5 
of subsection B.2(b). Each age group has to be pro- 
jected using several levels v, and the populations over 
each age x + t are then obtained by cumulation. The 
observed population aged x + t and over at the time of 
the second census, N2((x + t)+), is then used to deter- 
mine the level consistent with it by interpolating linearly 
between the projected estimates NP'((x + t)+). Once 
mortality levels have been determined in this way for 
each initial age x = 5, 10, 15, ..., 45, the median of these 
levels can be used as an estimate of adult mortality dur- 
ing the intercensal period. 

(d) A &IrnImledexa?npIe: Panama 1960-1 970 
The steps of the computational procedure are 

described below. 
Steps 1-3. These steps have already been performed 

in subsection B.3(c) and need not be repeated here. 
Therefore, the starting-point of this example is the 1960 
and 1970 female age distributions for Panama given in 
columns (3) and (4), respectively, of table 173. 

Step 4: cumulatr'on of the second age rb'stribution. The 
Coale-Demeny model life tables tabulate the 
stationary-population function, 5&, only up to age 80, 
the Bnal category being the stationary population aged 
80 and over. For a 10-year survival period, therefore, 
the highest age group for which a model survivorship 
ratio can be calculated is the initial open-ended age 
group 70 and over. The initial age distribution therefore 
needs to be tabulated by five-year age group up to age 
group 65-69, with the last age group being 70 and over. 
For the, final age distribution, however, less detail is 
required, since the highest initial age group to be used is 
that aged 45 and over. Thus, the final population in 
1970 is required in age groups 55 + (survivors of the ini- 
tial population aged 45 and over, SO+, 45 + and so on 

down to 15 + (survivors of the initial population aged 5 
and over). The easiest way to cumulate the age distribu- 
tion is to begin with the number observed in the oldest 
age group and add in successively the number 
correspondirig to the age group immediately below it. 
Thus, given the 1970 age distribution in column (4) of 
table 173, the population over age x ,  N2(x +), is calcu- 
lated as 

where 5N2, is the population aged from x to x + 4 in 
1970. For example, for x = 75, 

and for x = 70, 

Then for x = 65, 

Full results are shown in column (1 5 )  of table 180. 
Step 5: projection of initial population with &flerenf mor- 

tality levels. For a 10-year intercensal interval, the pro- 
bability of surviving from the age group from x to x + 4 
to the age group from x + 10 to x + 14 is approximated 
by 5LX and such model survivorship ratios can 
be calculated for each level of any family of Coale- 
Demeny model life tables. The last survivorship ratio, 
that for the population aged 70 and over to 80 and over 
10 years later, is approximated as TsO/T70, that is, 
TsO/(SL70 +5L7~ + Tso). In a growing population with an 
age distribution 70 and over that is younger than the 
equivalent stationary population, this model survivor- 
ship ratio is likely to be somewhat lower than the true 
value, but an adjustment would not generally be worth- 
while. Table 174 shows 10-year model survivorship 
probabilities for initial age groups up to 60-64 and for a 
range of mortality levels in the West family of model life 
tables; in order to project the entire population over any 
age, 10-year model survivorship probabilities for the ini- 
tial age groups 65-69 and 70+ need to be added. For 
level 16, for example, 

and 

 lo^#+ = ~g /T# = TJ$ /[5~$ + 5 ~ j ;  +TE] 

In the application of forward projection with cumula- 
tion, then is no alternative to carrying out the calcula- 
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tions for a range of mortality levels. For each mortality 
level r, the projected population of each age group from 
x to x + 5 in 1960, 5NP,'+ 10, is obtained by applying the 
survivorship ratio, 10S:, +) , to the initial population, 
5N 1,. Thus, for age group 15- 19 and mortality level 16, 
the initial population is 53,468, and the survivorship 
probability is 0.9623, so 

whereas for the same age group but at mortality level 22, 

The 1960 population of each five-year age group, 
from 5-9 upward, has been projected forward using sur- 
vivorship probabilities from each mortality level (note 
that in practice it is sufficient to work with steps of two 
levels, that is, to use levels 16, 18, 20 and 22, and not to 
repeat the calculations for the intermediate levels), the 
results being shown in columns (4), (7), (10) and (13) of 
table 180. Each projected population can then be 
cumulated from the oldest age group towards the young- 
est to find the population over ages 55,50,45 and thus 
down to the population over 15. The results for the 
mortality levels being used are shown in columns (5). 
(8). (1 1) and (14) of table 180. The reported populations 
over each of these ages can then be compared with the 
projected populations, and linear interpolation can be 
used to estimate the mortality level implied by each. 
Thus, for instance, the reported population over age 20 
in 1970 is 324,738; the projected population over age 20 
for mortality level 16 (column (5) of table 180) is 
320,549, whereas for mortality level 18 it is 325,721 
(column (8) of table 180). Therefore, the mortality level 
implied by the observed population is obtained as 

where 16 is the level associated with the smaller pro- 
jected population; and the interpolation factor has to be 
multiplied by two because the levels used, 16 and 18, are 
two units apart. Column (15) of table I80 shows the 
cumulated populations observed in 1970, and column 
(16) shows the mortality levels yielding projected popu- 
lations over each age consistent with the observed. 

The mortality levels shown in column (16) are cer- 
tainly less variable than those obtained for individual 
age groups in table 174. However, after four rather con- 
sistent estimates of levels in the range from 16.8 to 17.8 
associated with the populations over 15,20,25 and 30 in 
1970, the estimates show a steady tendency to rise as the 
lower age boundary increases. One possible cause of 
this outcome is that the West mortality pattern is not a 
good representation of adult mortality in Panama, but it 
seems more likely that systematic age-reporting errors 
may be distorting the second age distribution (and prob- 
ably the firsf as well, though the method provides infor- 
mation only about relative differences). In the cir- 
cumstances, the best estimate of mortality level that one. 

can obtain from these data is the average of the first four 
values, 17.4, rather than the median of all the values, 
which is more likely to be affected by the apparent ten- 
dency towards age exaggeration. Note that this value of 
17.4 is substantially higher than the final estimate based 
on individual age groups, 16.1. The level based on 
cumulated data is probably .the better of the two esti- 
mates, although it should be remembered that the 
cumulation procedure is really only applied to the 
second age disthbution, not to the first, so the results are 
still dependent upon the age detail of the initial age dis- 
tribution. The greater consistency of the results 
obtained from cumulated data should not be interpreted 
as necessarily indicating greater accuracy. 

C. INTERCENSAL SURVIVAL WITH ADDITIONAL 
INFORMATION ON THE AGE PATTERN OF MORTALITY 

1. his of method and its rationale 
The two most serious problems affecting intercensal- 

survival techniques are age-misreporting and different 
levels of census coverage. A procedure often used to 
reduce the effects of age-misreponing is cumulation; the 
population over age x is affected only by erroneous 
transfers of people across the boundary x and not by 
errors over or under x .  The second problem, that of 
coverage changes between the first and second censuses, 
can play havoc with mortality estimates derived from 
intercensal survival, since the coverage change will 
appear either as excess deaths (when the second census 
is the less complete) or as a deficiency of deaths (when 
the second census in the more complete). However, a 
change in coverage that is more or less constant by age 
will inflate or deflate intercensal deaths by amounts pro- 
portional to the population at each age, rather than by 
amounts proportional to the number of deaths at each 
age. A change in coverage will therefore have much 
more effect on deaths at younger ages, where there are 
in reality few deaths but large numbers of people, than 
at older ages, where there are many more deaths but 
small numbers of people. 

A technique that is simple to understand but rather 
laborious to apply makes it possible to use what is essen- 
tially an intercensal-survival procedure while employing 
cumulated data and also making allowance for 
differential census coverage.3 The method is based on 
the simple idea that, in a closed population, the number 
of people in a particular age group at a first census 
should be equal to the number of survivors of the same 
cohort at the second census plus the deaths of cohort 
members during the intercensal period. It can be simply 
shown that if the coverages of the first and second cen- 
suses and of intercensal deaths are invariant with age 
and are denoted by C1, C2 and k ,  respectively, then 
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where n is the cohort width in years; r is the length of 
the intercensal period; , N 1, and , N2,+, are the 
enumerated cohort populations at the first and second 
censuses, respectively; and, Dx is the registered number 
of intercensal deaths to the cohort aged from x to x + n 
at the first census. Equation (C.1) defines a straight line 
with slope Cl /k and intercept CI /C2; that is, its slope is 
the completeness of the first census in relation to the 
completeness of death registration and the intercept is 
the completeness of the first census in relation to that of 
the second. The fitting of a straight line to points 
[, N 1, l, N2, +,,, D, /, N2, +,I for different cohorts 
should therefore provide estimates of the relative com- 
pleteness of the two censuses and of the completeness of 
death registration in relation to that of the first census. 

Equation (C.l) is valid for any cohort, be it an initial 
five-year age group, the initial population over some age 
x , or even the population between two ages, x and y , at 
the first census. All that is required is that the range of 
the ratios , N 1, lnN2, +, and . D, l, N2,+, be wide 
enough for the robust estimation of the parameters 
(mainly the slope) of the straight line to be possible. 
Cumulation can therefore be used to reduce the effects 
of some age errors, though the procedure remains sensi- 
tive to systematic age exaggeration on the part of the 
elderly. 

2. &a required 
The data listed below are required for this method: 
[a )  Two census enumerations with populations 

cla'ssified by age (and sex) for two points in -time not 
more that 15 years apart. (It may be necessary that the 
age classification be by single year for at least one census 
if the intercensal interval is not a multiple of five years); 

(b) Information on deaths by age (and sex) for the 
intercensal period; registered deaths for each intercensal 
year can be used but the calculations are lengthy, and 
deaths for every fifth year are adequate. If no informa- 
tion on deaths is available, a model life table can be 
used to supply the deficiency. 

3. Gqmtationalproceabe 
The steps of the computational procedure are 

described below. 
Step I:  aajwtment for net intercertsal migration and ter- 

ritorial coverage. See step 1 in subsection B.2(b). Note, 
however, that before applying this method, intercensal 
deaths should also be adjusted for migration and cover- 
age changes, though if the age pattern of deaths is not 
much affected, the adjustment is not crucial to the final 
mortality estimates. 

Step 2: grouping of &a fm the nu0 censuses by cohort. 
See step 2 in subsection B.2(b). 

Step 3: a@sfment of intercensal intetval that is not an 
exoct number o f p .  See step 3 in subsection B.2(b). 
Step 4(a): cumulation of cohort &athsfiom registration 

h. Registered deaths are normally tabulated by 
calendar year, five-year age group and sex. Given that 
the two censuses being .used probably do not have refer- 
ence dates at the beginning of a year and that a cohort 

will be continually moving across standard five-year age 
groups as it moves through the intercensal period, the 
task of cumulating intercensal cohort deaths is tedious 
and imprecise. Since the value of the information on 
intercensal deaths lies in their age pattern, not in their 
precise overall level, a degree of simplification is in 
order. 

If the first census was held in year a and initial 
cohorts are defined by standard five-year age group, 
deaths to the cohort aged from x to x + 4 in year a over 
the first five years of the intercensal period (that is, 
between a and a + 5) can be approximated by summing 
the deaths in year a to persons aged from x to x + 4 and 
the deaths in year a + 5 to persons aged from x + 5 to 
x + 9, and multiplying the sum by 2.5. Thus, if a, , +4 

denotes, in general, the number of deaths to the cohort 
aged from x to x + 4 at the beginning of the period (that 
is, in year a )  and recorded during year j, and 5& 
denotes the number of deaths to persons aged from x to 
x + 4 in year j , then 

Similar approximations can be applied for a second 
five-year period between a +5 and a + 10: 

Cohort deaths for intercensal periods that are multiples 
of five can therefore be approximated rather simply 
from registered deaths for calendar years five years 
apart. 

The case of an intercensal interval that is not a multi- 
ple of five years is slightly more complicated, but ade- 
quate approximations can be arrived at by suitable 
weighting of registered deaths. If the interval is between 
five and 10 years, cohort deaths for the first five years 
can be approximated as described above using the 
deaths registered in years a and a + 5. Cohort deaths 
over the period from a + 5 to a + t , where t is the length 
of the intercensal interval, are approximated by averag- 
ing the number of deaths recorded in years a + 5 and 
a + t belonging to the appropriate age groups and then 
weighting the averages according to the number of years 
between a + 5 and a + t . Thus, letting 

Values of w (t -5) are shown in table 18 1. 
If the intercensal interval is between 10 and 15 years, 

cohort deaths for the first 10 years can be obtained from 
equations (C.2) and (C.3). Cohort deaths for the extra 
period can then be obtained by using equations (C.4) 



and (C.5) with a + 5 substituted by a + 10, t -5 by These points can then be plotted. Typically, they will be 
r - 10; and x +5 and x + 10 replaced by x + 10 and very erratic, often to the extent that no linear trend can 
x + IS, respectively. The necessary weights can still be be plausibly associated with them. If an examination of 
calculated from table 181 using as point of entry (t - 10) their plot suggests that they do represent a line, its 
years. parameters may be estimated by using group means (see 

chapter V, subsection C.4). The slope can then serve as 

TABLE 181. WEIGHTING FACTORS FOR APPROXIMATION OF 
COHORT DEATHS FOR INTERVALS M A T  ARE NOT MULTIPLES OF FIVE 

Step 4(b): approximation of cohort deaths from a model 
life table. If no information is available about the age 
distribution of deaths over the intercensal period, model 
life tables can be used to fill the gap. The exact level of 
mortality is not critical, since the method will estimate 
the "completeness" of death registration; but because 
the age pattern of mortality is important, a model that 
adequately represents the pattern of mortality experi- 
enced by the population being studied and that roughly 
approximates its level should be chosen. 

What is required as input is an estimate of the number 
of deaths occumng to an initial cohort during the inter- 
censal period. The life-table s& function can con- 
veniently be used to synthesize the required number. If 
the intercensal period is five years in length, the number 
of deaths occumng to the cohort aged from x to x + 4 
at the time of the first census is given by 5LX -5& +s; the 
proportion of the initial cohort dying during the period 
is given by (5& -5& +5)/5Lx. In general, for any inter- 
censal interval t , the number of deaths occumng during 
the intercensal interval to the cohort aged from x to 
x + 4 at the first census can be estimated as 

where SN 1, is the population aged from x to x + 4 at 
the time of the first census (year a) .  If r is not a multiple 
of five, values cannot be read directly from the 
Coale-Demeny model life tables, though they can be 
estimated from the tabulated values of l ( x )  for adjacent 
ages that are multiples of five, as described in step 5 of 
subsection B.2(b), using the coefficients and equation 
given in table 172. 

Step S(a): calcuIation and plotting of population and 
death ratios for five-year cohorts. Working with five-year 
age groups, one can calculate the ratios of the cohort 
aged from x to x + 4 at the first census to its survivors t 
years later, 5N 1, 15N2, +, , and of the intercensai deaths 
of its members to its survivors t years later, 

an adjustment factor for the record& number of deaths, 
adjustment that will make them consistent with the cov- 
erage of the first census, while the intercept is an esti- 
mate of the coverage of the first census in relation to that 
of the second. 

Step S(b): calculation anti plotting of  population and 
&ath mtios for open-ended cohorts. Cohorts can also be 
defined in terms of open-ended age intervals, that is, as 
all those of aged x and over at the time of the first 
census; and the ratios Nl(x +)/N2((x + t ) + )  and 
a + r  x g,, /N2((x + r )+) can be calculated for values of 
j = a  
x of 5 ,  10, 15 and so on. Many of the irregularities 
observed in the five-year ratios will be smoothed out by 
this cumulation, and a group mean procedure (see 
chapter V, subsection C.4) can be used to fit a straight 
line to these points. 

Step S(c): dculation and plotting of population and 
&ath ratios for truncated cohorts. It is often useful to 
exploit the advantages of cumulation without using 
information for the elderly, whose age-misreporting may 
be substantial. Therefore, initial cohorts aged between 
x and 60, or x and 65, can be used for values of x that 
are multiples of five. The use of truncated cumulation 
will have a substantial smoothing effect, but the slope of 
the resulting line may be highly sensitive to the upper 
age-limit chosen. 

Step 6: intetpretation of results. Often, selective migra- 
tion, age exaggeration and other reporting problems 
may distort the slope of the fitted line. in such cases, this 
method may not be very useful for mortality estimation 
purposes. The estimate of the intercept, on the other 
hand, appears to be more robust, so that the main value 
of this method lies in the assessment it provides of the 
relative coverage of successive censuses. 

4. A &tailed example 
The method is applied to the case of Panama, 1960- 

1970, since some of the necessary calculations have 
already been made. The steps of the procedure are 
given below. 

Step I :  @ustment for net interceml migration and rer- 
ritorial cowmge. As no basis exists for making the neces- 
sary adjustments, the basic population data used are 
those presented in table 173. Mathb do not require any 
adjustment either. 

Step 2: gmqing of data from the two censuses by cohort. 
This step has been fully described in subsection B.2(c); 
standard five-year age groups in both 1960 and 1970 are 
used to define cohorts, since the intercensal interval is 
approximately 10 years. 

Step 3: 4ustment for length of  the intercensal interval. 
As described in subsection B.2(c), the 1960 female popu- 



TABLE 182. FEMME FOWLATION. 1960 AND 1970; AND REGISTERED DEATHS OF FEMALES. 

1960,1965 AND 1970; BY AGE GROUP. PANAMA 

Adjusted to approximate an intercensal interval of 10 years. 

lation was moved back from the actual census date, 11 
December 1960, to a date exactly 10 years before the 
1970 census, 10 May 1960. Results are shown in column 
(2) of table 182. 

Step 4(a): cumulation of cohort deaths from registration 
&fa. Registered deaths by age and sex are available for 
Panama for 1960, 1965 and 1970; and these data can be 
used to estimate intercensal deaths for each cohort. The 
numbers of female deaths for each year and age group 
are shown in table 182. 

The approximate procedure for estimating cohort 
deaths is too crude to give reasonable results for the 
cohort aged 0-4 in 1960, so the cohort aged 5-9 is the 
starting-point. Deaths occumng over the first five years, 
from mid-1960 to mid-1965, to this cohort are estimated 
as 

Deaths for the cohort aged 5-9 in 1960 over the second 
five years, from mid-1965 to,mid-1970, are estimated as 

Cohort deaths for the 10-year period are then obtained 
by summing the deaths during the two five-year periods: 

The results for each cohort are shown in table 183. The 
only age group that requires special treatment is the 
open-ended interval 65 and over. For the period 1960- 
1965, all the annual deaths of persons over 70 belong to 

this cohort, as do some of the deaths of persons aged 
65-69. The total number of deaths of persons over 70 
during the period 1960-1965 can be estimated by sum- 
ming the deaths over age 70 in 1960 and 1965 and multi- 
plying the sum by 2.5: 

where, as usual, o-70Dj70 denotes the number of deaths 
occurring during year j to persons aged 70 and over. 

For age group 65-69, the average number of deaths 
per annum between 1960 and 1965 is estimated as 
0.5(152+ 174), or 163; and since the cohort aged 65-69 
in 1960 averaged 2.5 years of exposure to the risk of 
dying during the period 1960- 1965, the deaths of persons 
aged 65-69 belonging to that cohort are estimated as 
2.5(163)=407.5 during'that period. Hence, the total 

TABLE 183. ESTIMATED COHORT DEATHS, FEMALE POPULATION. 
PANAMA 1960- 1970 



number of deaths during rbe period 1960-1965 for the Deaths occuning to tbe cohort during the period 1965- 
cohort aged 65 md over in 1960 is 1970 at ages 70-74 can be estimated from the average - 

196) 196s 
annual number of deaths at these ages, 0.5(239+270), 
and the average expure  to risk, 2.5 years, giving 

+ = +w'5 = 496026025' (2.5)(0.5)(239 +270)= 63625. Hence, the deaths occur- j =  1%0 ]= I%0 
ring during the intercensal period to the cohort aged 65 

-(M 1965 and 1970,d the da tb ,  at age 75 .nd and Over at the binning of it are 
over belong to the initial 65 + cohort, as do a proportion lorn 
of the deaths of persons aged 70-74. Deaths at age 75 Z a,, =4,137.5+636.25+4,602.5 
and wer ue estimated as j = ~ w  

1970 = 9,376.25 2 @-7s&s = 2.5~-7@!p' +u-n~+? 
I= 1 % ~  Step 5(a): col&ion and plotting of population and 

&ath mtim for @-yaar cohorts. Ratios of the initial to = 2.5(742 +913)= 4,137.5. the ha1  cohort size, Nl/N2, and of cohort deaths to 
Anal cohort size, D lN2, are calculated for each cohort. 

-23. PkbdcohottpCrlrtk.atkr,Nl/N2,rphstmtkrdeoboltdmths 
over p)rlrtloq D /N2, for v u k r r  types deoeorb 

(b) Cohorts wed X + 

(c) cohorts agot~ from x to 84 
N I I ~  

r 



Thus, for the cohort aged 5-9 in 1960, 

Values for all cohorts are shown in columns (2) and 
(3) of table 184 and are plotted in panel (a) of figure 23. 
The points show a fair amount of variability; and the 
straight line, fitted by group means, is heavily influenced 
by the last three points and does not approximate the 
others very well. The intercept, which estimates tile cov- 
erage of the k t  census in relation to that of the second, 
is 1.0278, suggesting that the 1960 census was some 3 per 

cent more complete than the 1970 census. The slope, 
which estimates the coverage of the first census in rela- 
tion to the completeness of death registration, is 1.0623, 
suggesting that death registration was some 6 per cent 
less complete than the enumeration of the 1960 popula- 
tion. These estimates are by no means unreasonable, 
but the estimate of the slope is sensitive to the fitting 
procedure used; for instance, if the line is fitted by using 
least squares (see chapter V, subsection C.4) the value of 
the.intercept becomes 1.046, not very different from that 
obtained by group means; but the slope is 0.914, a value 
totally different from that associated with the line fitted 
by using group means. Furthermore, the former value is 
rather implausible, because it implies that the coverage 
of deaths is more complete than that of the population. 

TABLE 184. COHORT POPULATION RATIO$ N 1 /N 2, AND RATIOS OF COHORT DWTHS OVER FOPULATION. D /N2, 
FOR DIFFERENT TYPeS OF COHORTS. PANAMA 1960- 1970 
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Step 5(b): col&ion and plotting of population and 
dearh ratios for open-ended cohons. The most convenient 
way to cumulate is to begin with the higher ages and 
work towards younger ones, beginning with the cohort 
aged 65 and over in 1960. In this case, the values of 
N 1, N2 and D are exactly the same as those obtained in 
step *a): 

N l(65 +)/N2(75 +)= 18,403/9,873 = 1.8640 

For the initial cohort aged 60 and over, 

The calculations continue in the same way, adding a 

new age group to the previous sums at each step, until 
the youngest cohort, aged 5-9 in 1960, has been .added 
in. Columns (4) and (5) of table 184 show the ratios 
obtained, which are plotted in panel (b) of figure 23. 

The linearity of the points has been greatly improved 
by the cumulation, and the straight line fits the observa- 
tions quite closely. However, the parameters of the 
line-an intercept of 1.0409 and a slope of 0.9399- 
imply a similar enumeration coverage differential 
between the 1960 and 1970 censuses as that obtained in 
step 5(a), but a quite different coverage of death regis- 
tration, which is now estimated to overrecord deaths, in 
relation to the 1960 census, by some 6 per cent. 

Step 5(c): calculation and plotting of population and 
dearh ratios for truncated cohorts. Cumulations similar to 
those carried out in step 5(b) can also be made so that 
the age groups considered are not entirely open-ended, 
but rather exclude the last one or two age groups. Such 
truncated cumulation can be useful if there is reason to 
suppose that special types of errors affect the oldest age 
groups. Estimates of completeness of death registration 
will then refer to registered adult deaths excluding both 
those at young ages and those at old ages. 



The cumulations are carried out as before. However, 
they begin not with the last, open-ended cohort, but with 
the oldest cohort that one intends to include in the cal- 
culations. In this case, the cohort aged 60-64 in 1960 
was chosen as the upper limit. For this cohort, the ratios 
required are the same as those calculated in step 5(a), in 
which ratios were calculated for individual five-year age 
cohorts. Thus, 

For the cohort aged 55-64 in 1960, 

The cumulations continue downward with age, adding 
the next younger age group each time, until age group 
5-9, the youngest to be used, has been included. The 
resulting ratios are shown in columns (6) and (7) of table 
184 and are plotted in panel (c) of figure 23. 

The plot shows that the degree of linearity of the 
points is somewhere between that in the fully cumulated 
case and that in which no cumulation was used. The 
intercept of the fitted Line is similar to those obtained 
earlier; but the slope is once more quite different, indi- 
cating that registered deaths in the approximate age 
range from 10 to 70 are only about 72 per cent complete 
with respect to the 1960 census coverage. 

D. ESTIMATION OF A POST-CHILDHOOD LIFE TABLE 
FROM AN AGE DISTRIBUTION AND INTERCENSAL 
GROWTH RATES 

1. h i s  of method and its mtionale 
Traditional intercensal survival techniques are greatly 

complicated by intercensal intervals that are not exact 
numbers of years in length or are not multiples of five. 
Furthermore, the application of the method described in 
subsection B.4, which uses cumulation to reduce the 

it is not very sensitive to certain types of age- 
misreporting, particularly heaping., It is also innovative, 
bccause it uses the two census age distributions to esti- 
mate age-s~cific growth rates (rather than cohort sur- 
vivorship probabilities) and then uses these growth rates 
to transform the observed population age structure into 
the equivalent of a stationary-population (life-table) 5Lx 
function. 

Bennett and ~ o r i u c h i ~  show that in any closed popu- 
lation, at a particular time t , the number of persons aged 
y, NV), is qua1 to the number of persons aged 
x ,  N(x), multiplied by the probability of surviving from 
age x to age y, I(v)N(x) measured at time t ,  and by an 
exponential factor involving the integral of the popula- 
tion growth rates also at time r between ages x and y. 
Thus, 

which can be regarded as being equivalent to a stable 
population relationship, except for the replacement of 
the exponential of the stable growth rate times the 
number of years between x and y , exd -0, -x  )r 1, by 
the exponential of the integral of the variable growth 

rates between x and y ,  exd - f r ( u  )du ]. 

If N(x), NO,) and the set of r(u) values for u between 
x and y are all known, then the period survivorship 
probability, I(v)/l(x), can be estimated from equation 
(D.l). However, in order to introduce a certain amount 
of smoothing, Preston and Bennett propose the estima- 
tion of the expectation of life at each age x , using exten- 
sive cumulation both of the reported population and of 
the observed age-specific growth rates. 

In discrete terms, using five-year age groups, the basic 
equation proposed by Preston and Bennett is 

where N(x), the number of people aged x ,  is estimated 
as 

of age-re~'ing is timeeonsuming The advantages of this method are: (a )  its application 
since it involves the projection of an initial population is relatively dmple even in cases where the intercensal 
using different mortality levels. period docs not have a convenient length; (b) it makes 

Reston and  enn nett^ P r o F  a different method to no assumptions concerning stability; (c) it introduces an 
estimate adult mortality during the intercensal period element of cumulation, thus limiting the effects of age 
from the age distributions produced by two consecutive errors, and (d) the use of growth rates eliminates the 
ce~uses.  The application of the method proposed is effects of age errors for which the pattern is the same at 
simple whatever the length of the intercensal period, and 

' %muel H. Rcston and Neil G. Btnnett, "A census-based method Neil G. Bennett and Shim Horiuchi, "Estimating the completeness 
'for estimating adult mortality". Popula~ion S~udies, vol. 37. No. I of death mgistration in a closed ulation". Popvlorion In&x, vol. 47, 
(March 1983). pp. 91-104. No. 2  (Summer 1981). pp. 2 0 7 - 2 p  



both censuses. The estimates yielded by this procedure 
are probably as reliable as those obtained from any of 
the intercensal techniques available, and its simplicity of 
application makes it extremely attractive. 

2. Dalarequired 
The data required for this method are listed below: 
(a) Two census enumerations with populations 

classified by the same age groups (and sex), separated by 
an intercensal interval which should not exceed 20 
years; 

(b) Sufficient information to adjust one census or the 
other for net intercensal migration and territorial cover- 
age, if necessary. 

3. Computational procedure 
The steps of the computational procedure are 

described below. 
Step 1: @usfment for net intercensal migration Md ter- 

ritorial coverage. See step I in subsection B.2(b). 
Step 2: calculation of age-specific intemtwl growth 

rates. The rate of growth of the population in each five- 
year age group from the first to the second census is cal- 
culated as 

where sr, denotes the intercensal growth rate of the 
population of the age group from x to x + 4; 5N2, is 
the population aged from x to x + 4 at the second 
census; 5N 1, is the population aged from x to x + 4 at 
the first census; and t is the length of the intercensal 
interval in years (with a decimal portion if necessary). 
Both age distributions must share the same open inter- 
val, A +. The value of A should be set as high as the 
two age distributions permit, since age exaggeration is a 
less severe problem with this method than with the death 
distribution methods described in chapter V. 

Step 3: calculation of ave~ge  in terned age distribu- 
tion. Equation (D.2) requires the use of an average 
intercensal age distribution, 5N,. An adequate approxi- 
mation to this age distribution can be obtained by sim- 
ply averaging the initial and final populations of each 
age group. Thus, 

Step 4: cumulation of age-specicific growth ratesfram age 
5 +. The calculation of the growth rate "inflator" 
appearing in equation (D.2) requires the summation of 
the age-specific growth rates, ~r,,  calculated in step 2. It 
is normally convenient to begin the cumulation process 
with age 5 and continue upward. 

The only difficulty involved in the cumulation is the 
treatment of the inflation factor associated with the open 
age interval, A +. Although the relative importance of 
the open interval is much less in this case than in the 
conceptually similar death distribution techniques dis- 
cussed in chapter V, because in the calculation of expec- 

tations of life the open interval is always present, it is 
sound practice to minimize the influence of biases due 
entirely to the weight it may be assigned in the inflation 
factor. For this reason, a special procedure is suggested 
to deal with the open interval. 

If R ( x )  is used to denote the inflation factor for the 
age group from x to x + 4, then, according to equation 
(D.2). 

for x = 10, 15, .... A -5. In the case of x = 5 ,  (D.6) 
becomes 

A -5 
and forx =A,  R(A)= p(A)+5.0 2 5ry 

y = 5  
(D.8) 

where p(A ) is calculated by using an equation derived 
from simulated stable populations and whose form is 

where r(10+) is the growth rate of the population over 
age 10, that is, 

N (lo+) and N (45 +) are the mid-period populations 
aged 10 and over, and 45 and over, respectively, and 
estimated as 

and . 
N(45 +)= 0 . 5 ( ~  1(45+)+N2(45 +)I; (D.' 1) 

and a(A ), b(A ) and c(A ) are constant coefficients 
depending upon the actual value of A .  Their values are 
shown in table 185. 

TABLE 185. COEFFICIENTS FOR ESTIMATION OF THE EQUIVALENT 
OROWM RATE OVER AGE A ,  p(A ). FROM THE GROWTH RATE OVER AGE 
10 AND THE RATIO OF THE POPULATtON OVER AGE 45 TO THE POPULA- 
TION OVER AGE 10 

Cor$icun~s --- .~- .- 

"t 9'AI b(A/ 64) 
(2) - (4) fJ) .......... 

45.. .............................. 0.229 20.43 0.258 
50 ................................ 0.205 18.28 0.235 
55 ................................ 0.179 16.02 0.207 
60.. .............................. 0.150 13.66 0.176 
65 ................................ 0.119 1 1.22 0.141 
70.. .............................. 0.086 8.77 0.102 
75 ................................ 0.053 6.40 0.063 
80.. .............................. 0.025 4.30 0.029 
85 ................................ 0.006 2.68 0.006 

Estimation equation: 
p(A )=a(A )+b(A )r(lO+)+c(A ) In(N(45+)/N( lo+ ) )  



Step 5: h t i o n  of age dstriburion to a stationary f a .  
The average intercensal age distribution obtained in step 
3 is converted into a stationary population by multiply- 
ing each value sNX by the exponential of R(x). The 
results can be regarded as "pse~do"~L, * values, analo- 
gous to the values of sLX in the usual life table. How- 
ever, the life-table radix corresponding to the pseudo 
sLX* values is not known. Therefore, in general, the 
pseudo 5Lx * values cannot be manipulated as can nor- 
mal & values. 

Recapitulating, the estimation of the 5&* values is 
camed out according to the following equations: 

s k  * = sN. exp(R (x 1) (D. 12) 

and 

-A LA * = @-A NA exp(R (A )). (D. 13) 

It should be noted that the sequence of 51, values 
obtained in this way is likely to be more erratic than one 
derived from a set of sqx values calculated on the basis 
of observed central mortality rates. In some instances, 
the estimated sk * values may even increase with age. 
Errors in the age distributions used as input are usually 
the cause of this erratic behaviour. It is in order to 
minimize the effects of such errors and also to generate a 
measure that is comparable with those usually found in 
other sources that the pseudo sL, values are converted 
into expectation of life in the manner described below. 

Step 6: calculation of  expectation of  life. The expecta- 
tion of life at age x , ex, is calculated by cumulating the 
pseudo st ,* values obtained in the previous step and 
dividing the sum by an estimate of I (x), the number of 
survivors to exact age x in the life table. An adequate 
estimate of I (x ) can be obtained as 

1 *(x)= (sLx*-5-s&*)/10.0 (D. 14) 

they often show progressively lower mortality as age x 
increases. The best estimate of overall mortality may 
therefore be an average of the levels associated with ex 
for x ranging from 10 to 30, though this conclusion 
implies that the results will not be a useful basis for the 
selection of an age pattern of mortality, nor will they be 
good indicators of the necessity of adjustment when 
errors in the growth rates arise because of changes in 
enumeration completeness. 

4. A &tailed example: Panama, 1960-1 970 
The case of Panama between 1960 and 1970 is used to 

illustrate 'the application of this method, so it will be 
possible to compare its results with those obtained above 
through the application of the intercensal-survival tech- 
niques. 

The basic data are shown in columns (2) and (4) of 
table. 173, but for the sake of completeness, they are 
reproduced in columns (2) and (3) of table 186. Note 
that when using this method there is no need to adjust 
for intercensal intervals that are not round numbers'bf 
years; therefore, the populations just as enumerated in 
1960 and 1970 can be used. 

The computational procedure for this example is 
given below. 

Step 1: 4ustment for net in terced migration and ter- 
ritorial cowmge. As described in step 1 of subsection 
B.2(c), no adjustments are camed out in this case. 

Step 2: cdculation of age-specijk intercensal growth 
mtes. The interval between the 1960 and 1970 censuses 
was 9.41 years (see subsection B.2(c)). The growth rate 
for each age group is therefore calculated by dividing 
the difference between the natural logarithms of the final 
and initial populations of each age group by 9.41. Thus, 
for the population of age group 5-9, 

where the * has been added to remind the reader that ~~~~l~ are in column (4) of table 186. 
these are also pseudo I *(x) values with unknown radix. Step 3: cal&ion of awmge interced age dstribu- Then. letting Tx * be the number of pmon-yea* lived An average age distribution for the interccnul above age x ,  its value is calculated as period is obtained simply by calculating the arithmetic 

A -5 means of the initial and final populati~ns of each age 
Tx = 2 sLy * +,+A LA *, (D. 15) group. Thus for age group 5-9, 

y = x  
sNS = 0.5(sN IS +5N25)= 0.5(76,598 + 

so by combining equations (D.14) and (D. 15), ex can be 
estimated as 

Once the life expectancy figures have been calculated, 
usually for x ranging from 10 to 50, the levels they 
imply in a model life-table system can be found, and a 
final estimate of mortality can be obtained by averaging 
the most reliable estimates of mortality level (those left 
after discarding any clearly unsuitable values). In prac- 
tice, the mortality estimates for values of x up to age 30 
or so are reasonably consistent, but after age 30 or 35 

Full results are shown in column (5) of table 186. 
Step 4: cumulation of age-specijk growth mtes from age 

5 u p d .  Cumulated age-specific growth rates are 
required to estimate 5L for all values of x from 5 
upward. The average population aged 5-9 years, ,Ns, 
needs to be inflated by 2.5 years of growth at the age- 
specific growth rate for the 5-9 age group, namely, 5r5. 
The average population aged 10-14 years, 5Nlo, needs to 
be inflated by five years of growth at the age-specific rate 
for the 5-9 age group, srs, plus 2.5 years of growth at the 



Tlu~e 186. ESllkllrTlON OF INTERCENSAL MOIITALITY FOR FEMALES USlNO INTERCENSAL OROWTH RATES, PANAMA. 1960-1970 ' 

rate for the 10-14 group, P 10. Values of R (x ) are there- 
fore found by successive cumulation of the age-~pacific 
rates following equations (D.6) and (D.7). For age 
group 5-9, 

For age group 10- 14, 

For age group 20-24, 

To calculate R (A ), the inflation factor corresponding 
to the open-ended interval, equation (D.8) is used in 
conjunction with equation (D.9) to estimate p(A ). The 
latter uses as inputs the values of r(lO+), N(10+) and 
N(45+). The symbol r(10+) is the growth rate of the 
population .lo and over during the intercensal period, 
and it is calculated as any other growth rate, as is illus- 
trated below: 

The values of N(10+) and N(45 +) are found by cumu- 
lating the necessary entries in column (5) of table 186. In 
the case of N(45 +), on2 begins with 5N45 and continues 
until N(75+). For N(10+), the starting-point is SN1O. 
The resulting values are N(10+)= 423,238 and 
N (45 +) = 90,55 1. Hence, 

and 

The complete set of R(x) values is shown in column (6) 
of table 186. 

Step 5: &tion of age &stribution to a stationary fonn. 
Values of 5Lx are now obtained for each x by multi- 
plying the average population of the age group, SNx, by 
exp(R(x)]. Thus, for age group 5-9, 

and for age group 45-49, 

The open interval is treated in just the same way, 
remembering that the result is an estimate of ,-A LA *, or 
TA *. Full results are shown in column (7) of table 186. 

Step 6: cdculation of expectation of life. The expecta- 
tion of life at age x ,  ex, is equal to the person-years lived 
from age x onward, Tx *, divided by the number of sur- 
vivors to age x,  I*(x). The value of I*@) can be 
estimated with sufficient accuracy by averaging adjacent 
values of person-years lived, that is, 5Lx -5 * and 5Lx *. 
Thus, for age 10, 



N o t e c b r t ~ w e 5 b t h e ~ v r l u e o f x  wedintbe ~~ 8nd no d u e  of A* is Obt8ined. 1 *(lo) is 
the youapt population thrt can k calculated. It may 
be noted in prairie that no value of is obtained 

up 04 is g c n d l y  w m f y  distorted by "s" wgf" ormrrron qc-mirnporting. Similarly, the highest 
ap for which an 1 *(x) vdue can be estimated is age 
A -5, since no value is available for &A *. Column (8) 
of table 186 shows the nnge of 1 *(x) values. 

The t, column is calculated by cumulating from age 
A downward the d v c  JI, values. Thus, for 75, 

and for 50, 

Full results uc shown in column (9) of table 186. 
Theexpectation oflife at each rgex from 10 to 50is 

then cakuhtd by dividing each Tx by the comapond- 
ing 1 *(x ). Thus, for x = 10, 

w h e w  for x = 50, 

The Bgum for expectation of life &own in column 

(10) of trbk 186 cm be compared with those of a model 
life-table system. Given the assumption made earlier 
that the West family provides the best dt to the age pat- 
tern of mortality in Panama, the West mortality level 
implied by each female ex in column (10) has been 
found by interpolation, the results being shown in 
column (I I). 

It will be noticed that the first five values, for the age 
nnge from 10 to 30, are more or less consistent, the 
avenge level being 17.1. Above age 25, however, the 
mortality kveIs rise steadily with age, no doubt as a 
mult of age exaggeration. It is interesting to compare 
the results obtained by this method with those obtained 
by the projection technique using cumulated values and 
dacribcd in subsection B.4(d). The similarities between 
the mortality estimates given in column (1 1) of table 186 
and those in column (16) of table 180 are striking. In the 
latter case, as in the former, a series of five approxi- 
mately consistent estimates of mortality level, averaging 
a level of 17.4 instead of 17.1, is followed by a pro- 
nounced upward trend in level with age. The present 
technique may be preferred on two grounds, the first 
being its simplicity of application and the second that it 
does not have thc drawback of giving different results 
according to the direction, forward or backward, in 
which the projection is performed. It must be pointed 
out, however, that the estimated yhl t  mortality level of 
17.1, which is the best available from table 186, is to 
some extent ditortcd by the age exaggeration detected, 
since it inflates the T, values at all ages. 




