Chapter 1X

ESTIMATION OF ADULT MORTALITY USING SUCCESSIVE
CENSUS AGE DISTRIBUTIONS

A. BACKGROUND OF METHODS

1. Use of a sequence of population age distributions

The value for demographic estimation purposes of
having basically similar information about a population
for two points in time has already been stressed, for
example, in the discussion of the use of overlapping fer-
tility estimates based on reverse-survival techniques
(chapter VIII) and in the sections dealing with
hypothetical-cohort methods (see chapters II, III and
IV). The age and sex distributions from successive
enumerations of a population also provide a basis for
estimating intercensal mortality. In a closed population
with two accurate censuses ¢ years apart, the population
aged x +t at the second census represents the survivors
of the population aged x at the first census, so that the
intercensal survivorship probability from age x to age
x +t can be calculated. Traditional mortality measures
can then be obtained from the sequence of survivorship
probabilities for successive initial ages x .

This method of mortality estimation from intercensal
survival is appealingly simple and straightforward,
requiring only the most basic of census information,
making no assumptions about the age pattern of mortal-
ity, and providing estimates of mortality for a clearly
defined time period. The trouble is that these advan-
tages are nullified by the requirements that the censuses
be accurate and that the population be closed. In prac-
tice, the application of this method very often gives
disappointing results. Migration can affect a population
as much as mortality; and, in particular, at young adult
ages, its influence on population size may be more
important than that of mortality. Age-misreporting can
also distort the results severely; a marked preference for
certain digit endings when declaring age, which will
introduce considerable variability into the estimated sur-
vivorship ratios, can be reduced to some extent by the
use of grouped data, but systematic overreporting or
underreporting of age can cause insuperable problems.
Changes in enumeration completeness from one census
to the other can, if no adjustment is feasible, completely
swamp the effects of mortality, giving rise to very
misleading results; indeed, it may be stated without
exaggeration that, in many cases, intercensal survival
estimates are better indicators of the comparability of
two census enumerations than of the level of intercensal
mortality.

Despite these problems, however, it is worth applying
the method where possible, because if the errors in the
basic data are not overwhelming, one can obtain useful
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estimates of mortality by using suitable age groups and
certain smoothing techniques; and even if the data
errors are severe, the calculated survivorship probabili-
ties may be useful indicators of the nature of the errors
involved.

2. Organization of this chapter

The methods described in this chapter are all based
essentially on the use of two successive age (and prefer-
ably sex) distributions of a population. The age distri-
butions should be obtained from complete enumera-
tions, because sampling errors would greatly distort the
results were data from sample surveys used; and the
population should ideally be closed to migration, failing
which, one population or the other should be adjusted
for the effects of net migration. The calculations are
greatly simplified if the length of the intercensal period
is an exact multiple of five years, though other periods
can be accommodated; the period should not, in gen-
eral, exceed 15 years. The main features of the methods
available are described below (for data requirements
and parameters estimated, see table 171):

Section B. Estimation of mortality from intercensal sur-
vivorship probabilities. The traditional procedure for
estimating adult mortality from two successive census
age distributions by calculating cohort survivorship pro-
babilities for the intercensal period is described.
Different procedures for smoothing! the calculated
probabilities, using the Coale-Demeny model life tables
or the logit life-table system in order to estimate a single
mortality parameter, are also presented. Variants based
on cumulated and uncumulated age distributions are
included;

Section C. Intercensal survival with additional informa-
tion on the age pattern of mortality. In a closed popula-
tion, the proportionate reduction in cohort size from one
census to another can be compared with the propor-
tionate reduction expected on the basis of cohort deaths
as recorded by a vital registration system or retrospective
survey question. Since the age patterns of the popula-

! The term “to smooth” is used in this Manual in its most general
sense to mean the elimination or minimization of irregularities often
present in reported data or in preliminary estimates obtained from
them. In this sense, the set of possible “smoothing techniques™
encompasses a wide variety of grocedures, ranging from the fitting of
models to simple averaging. The traditional smoothing techniques
applied to age distributions and to observed age-specific mortality
rates are part of this set, but they do not exhaust it. The somewhat
rougher procedures described in this Manual are necessary because the
basic data available are both deficient and incomplete.



TaBLE I7]. SCHEMATIC GUIDE TO CONTENTS OF CHAPTER IX
Section Subsection and method Type of input dota Parameters estimated
B. Estimation of mortality B.2 Survival ratios for five-year Population classified by age and A life table for the intercensal
from intercensal sur- age cohorts smoothed by sex from two censuses 15 years period from age 10 or so onward

using the Coale-Demeny

vivorship probabilities
life tables

B.3 Survival ratios for five-year
age cohorts smoothed by
using the logit system

B.4 Survival ratios smoothed by
cumulation and by using
the Coale-Demeny life
tables

C. Intercensal survival with

additional information
on the age pattern of
mortality

D. Estimation of a post-
childhood life table
from an age distribution
and intercensal growth
rates

apart or less. If the intercensal
period is not an exact multiple of
five, at least one age distribution
must be by single years.

An estimate of net intercensal mi-
gration

Population classified by age and
sex from two censuses IS years
apart or less. If the intercensal
period is not an exact multiple of
five, at least one age distribution
must be by single years.

An estimate of child survivorship

An estimate of net intercensal mi-
gration

Population classified by age and
sex from two censuses 15 years
apart or less. If the intercensal
period is not a multiple of five,
at least one age distribution must
be by single years.

An estimate of net intercensal mi-
gration

Population classified by age and
sex from two censuses 15 years
apart or less. If the intercensal
period is not an exact multiple of
five, at least one age distribution
must be by single years.

Registered deaths during the inter-
censal period classified by age
and sex

Estimates of net intercensal migra-
tion (to adjust raw data, if neces-
sary)

Population classified by age and
sex from two censuses 15 years
apart or less. The same age
classification must be used for
both populations

Estimates of net intercensal migra-
tion (to adjust raw data, if neces-
sary)

A life table for the intercensal
period from age 10 or so onward

A life table for the intercensal
period from age 10 or so onward

Completeness of coverage of
recorded deaths with respect to
the completeness of the first
census

Completeness of coverage of the
first census in relation to that of
the second

Estimates of (L, from age 10 or 15
onward

tion and of deaths are very different, it is possible to
disentangle the effects of changes in enumeration com-
pleteness from undercoverage of deaths. Specifically, if
enumeration completeness and coverage of deaths do
not vary with age, at least after childhood, the enumera-
tion completeness of one census in relation to the other,
and the completeness of death recording in relation to
cither, can be estimated. The procedure is severely
affected, however, by systematic age errors;

Section D. Estimation of a post-childhood life table from
an age distribution and intercensal growth rates. Two
census enumerations provide the data necessary to cal-
culate intercensal growth rates for five-year age groups.
These growth rates can then be used to convert the aver-
age age distribution from the two censuses into station-
ary population form, that is, a life-table sL, function.
This method is computationally attractive if the length
of the intercensal period is not a multiple of five years.

B. ESTIMATION OF MORTALITY FROM INTERCENSAL
SURVIVORSHIP PROBABILITIES

1. Basis of methods and their rationale
The methods described in this section are all based on

the same, very simple information, namely, the change
in size of successive age cohorts of a population from
one census to the next. The methods differ only in the
ways in which this basic information is smoothed to
reduce the effects of errors and converted into a mortal-
ity parameter. Therefore subsections B.3 and B.4 only
cover those steps which are different from the steps
described in subsection B.2.

2. Intercensal survivorship ratios for five-year
age cohorts smoothed using the Coale-Demeny life tables
(a) Data required
The data required for this method are two census
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enumerations with populations classified by age and sex.
(Classification by sex is not necessary, but since it is gen-
erally available, it is useful to consider it whenever pos-
sible.) Although w, the highest age reached, is the
theoretical limit for the value of the intercensal interval
¢ (measured in years), in practice, with intervals longer
than 15 years the information available is scanty and the
calculations are more likely to be affected by changes
other than those caused by mortality. If ¢ is divisible by
five, both age distributions can be classified by five-year
age groups and cohorts from the first census can be
identified at the second census; if # is not a multiple of
five, it is convenient to have one of the age distributions
by single year of age, so that comparable cohorts may be
constructed.

(b) Computational procedure

The steps of the computational procedure are
described below.

Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. Substantial net migration during the
intercensal period will generally render the method of
intercensal survival unusable. Nevertheless, if it is possi-
ble to adjust one age distribution or the other on an
age-specific basis for the effects of migration, the
method may be applied after such adjustment has been
made. However, it is most unusual for adequate infor-
mation about migration to be available, and no general
procedures for carrying out an adjustment can be
expounded here. Problems introduced by changes in
territorial coverage may not be quite so serious. By the
judicious aggregation of subnational information from
one census or the other, it is usually possible to arrive at
age distributions for comparable populations. No gen-
eral procedures for so doing need to be stated, however,
beyond pointing out the necessity of making suitable
adjustments if changes in territorial coverage have
occurred.

Step 2: grouping of data from the two censuses by cohort.
Simple intercensal survival techniques generally disre-
gard the effects of age distribution within cohort group-
ings, assuming in effect that the population is distributed
within each age group in the same way as if it were a
stationary or life-table population. As a result of this
simplifying assumption, the width of the cohorts should
not be too large (probably not more than five years).
Groupings that are five years in size are also convenient
because most model life-table systems are tabulated for
five-year age groups, though other intervals can be used
if necessary. If the intercensal interval ¢ is divisible by
five, conventional five-year age groups from x to x +4
at the first census will survive to become convertional
five-year age groups from x +¢ to x +1 +4 at the second

. census; and no regrouping is required. If ¢ is not divisi-
ble by five, a single-year age distribution from either the
first or the second census can be used in order to create
groups corresponding to conventional five-year cohorts
at the other census. In cases where there is substantial
age-heaping and a danger that it may introduce sys-
tematic age exaggeration, unconventional five-year age
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groups (such as 3—7,8~12 and 13—17) centred on
preferred-digit endings may be used.

Step 3: adjustment for intercensal interval that is not an
exact number of years. When the intercensal interval is
not an exact number of years, a small adjustment should
be made to one population or the other, by moving it
forward or backward in order to approximate the popu-
lation corresponding to the nearest date defining an
interval with an exact number of years and thus to
remove the slight effect that normal population growth
would have on the intercensal survivorship estimates.
The intercensal growth rate r can be calculated as

r=[In(Ny)— In(N)}/t

where N, is the total population recorded by the second
census; N, is the total population recorded by the first
census; and ¢ is the intercensal period measured in
years. This growth rate can then be used to move either
the first or second age distribution over the required
length of time. If the decimal portion of ¢ is less than
0.5, the interval should be shortened to ¢ exact years,
whereas if it is greater than 0.5, the interval should be
lengthened to 7 +1 exact years. If the decimal portion of
¢t is denoted by z, the interval can be shortened to ¢
years either by multiplying each age group at the first
census by a factor expfrz] or by multiplying each age
group at the second census by a factor exp[—rz]. The
interval can be lengthened either by multiplying each
age group at the first census by a factor exp[r(z —1.0)] or
by multiplying each age group at the second census by a
factor exp{r(1.0—2z)].

Step 4: calculation of cohort survivorship ratios. Cohort
survivorship probabilities or ratios during the intercensal
period, denoted by , S, , s, can now be calculated by
dividing the cohort size at the second census by its size
at the first census. These survivorship ratios approxi-
mate life-table (or stationary-population) survivorship
probabilities, provided the effects of deviations of the
actual age distribution within cohorts from that
corresponding to the stationary population are small (as
is usually the case). Thus,

1Sx. x+5— SNX2+I /Sle =3k, +1 /SLx

where ¢ is the adjusted length of the intercensal interval
after applying step 3; sN, is the population aged from x
to x +4 enumerated by the first census; and sN}? +¢ is the
population aged from x +¢ to x +¢ +4 enumerated by
the second census.

Step 5: fitting of a Coale-Demeny model life table. The
consistency of the cohort survivorship ratios calculated
in step 4 may be conveniently examined by finding the
mortality level, in the Coale-Demeny model life tables,
to which each ratio corresponds. A best estimate of
mortality level can then be obtained by discarding any
detectable outliers and basing the estimate on the
remaining levels (by taking their average, for example).
If the adjusted intercensal period ¢ is divisible by five,
stationary-population ratios of the type sL, ,,/sL, can



be calculated directly for relevant levels of the selected
regional family of model life tables. If ¢ is not divisible
by five, however, additional steps become necessary,
since the Coale and Demeny life tables do not provide
stationary-population age distributions for non-standard
age groups. The simplest procedure is to calculate
stationary-population distributions for non-standard age
groups simply by weighting adjacent standard five-year
values by the proportions of the age groups covered.
Thus, 5L s, the stationary population aged from 19 to 23,
covers one fifth of age group 15-19 and four fifths of age
group 20-24; it can be approximated as

1 4
sLig= (g) sLis +(g) sLg.

In fact, if the /(x) function is linear with age, the
approximation is exact.

If somewhat more precision is required, sL, ,, values
can be estimated from tabulated values of /(x), /(x 45)
and /(x +10) using equation (B.1):

sLy yn =a(@) 1(x)+b(n) I(x +5)+c(n) 1 (x +10)
(B.1)

where the coefficients a(n), b(n) and ¢ (n), for n ranging
from O to 4, are calculated by fitting a second-order
polynomial to the I(x) values. Values of these
coefficients are shown in table 172.

Step 6: completion of the life table. Intercensal survival
provides no information about the mortality experience

TABLE 172. COEFFICIENTS FOR ESTIMATION OF STATIONARY-POPULATION
AGE DISTRIBUTION, 5L, , FOR UNCONVENTIONAL AGE GROUPS

Coefficients

a(n) L 1] on)

2) 3) (4)

2.083 3.333 -0417

1.183 4133 -0317

0.483 4.533 -0.017
-0.017 4.533 0.483
-0.317 4133 1.183
-0417 3.333 2.083

Estimation equation:
shy sn=a(@)(x)+b(n)(x +5)+c(n)l(x +10)
where x is exactly divisible by five.

of those born between the censuses, since the first census
does not provide their initial number (accurate birth
registration could supply this want, but where births are
completely registered, better estimates of mortality
would probably be available from other sources). In
order to obtain a complete life table, therefore, it is
necessary to supply further information about child
mortality. The most satisfactory source of such esti-
mates is information about children ever born and sur-
viving (see chapter III). If estimates of this type are
available, the methods described in chapter VI for link-
ing estimates of child and adult mortality can be used to
obtain a complete life table.

A problem remains, however, if no independent esti-
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mate of child mortality is available. Since the Coale-
Demeny life-table system has been used in selecting a
model life table (see step 5), the mortality pattern of the
model used can be adopted by taking the life table asso-
ciated with the average mortality level of the intercensal
survival probabilities as representative.

(c) First detailed example: Panama, 1960-1970

The first detailed example illustrates a fairly simple
case of a 10-year interval and reasonably good age-
reporting. Population censuses were held in Panama on
11 December 1960 and 10 May 1970. This example
examines only the intercensal survival of the female
population, though in a complete study, this analysis
should be carried out for both males and females. Table
173 shows the female population enumerated by the two
censuses classified by five-year age group.

The computational procedure for this example is .
given below.

Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. As no information on intercensal
migration by age is available, no adjustment can be
made. No change in territorial coverage occurred
between 1960 and 1970; therefore, no adjustment for
coverage is needed.

Step 2: grouping of data from the two censuses by cohort.
Because the interval between the two censuses is about
nine and one-half years, one of the populations has to be
moved slightly to bring cohorts into alignment. The
exact interval, 9.41 years, is somewhat closer to nine
years than 10, so the adjustment for dates would be
minimized by movmg the first population forward
slightly, or by moving the second one back, to create an
intercensal period of nine years. However, there is also
an advantage to working with intervals divisible by five,
and since the actual interval was only slightly less than
nine and one-half years, the convenience factor
outweighs that of a marginal gain in accuracy. Thus, the
first census will be moved back to approximate the
female population on 10 May 1960 (the results would be
precisely the same if the second census were moved for-
ward to 11 December 1970). Standard five-year age
groups will therefore define cohorts, and no regrouping
is required.

Step 3: adjustment for length of the intercensal interval.
The total female population in 1960 was 529,767, and in
1970 it was 704,333; thus, the exponential rate of popu-
lation growth during the intercensal period 1960-1970 is

_ In[N;]-In[N)]
= -y =

13.4650—13.1802

941 =0.0303.

The growth factor k needed to adjust the 1960 popula-
tion for 0.59 of a year’s growth is then obtained as

k = exp{(0.0303)9.41 —-10.00)] =
exp(—0.0179)= 0.9823.
Column (3) of table 173 shows the adjusted population.



TABLE 173. ENUMERATED AND ADJUSTED FEMALE POPULATION IN 1960, ENUMERATED POPULATION IN 1970
AND COHORT SURVIVORSHIP RATIOS, PANAMA

Cohort

1960 pop swyivorship
. 1970 population ratio (cohort
Emaverated Adjusted enwmerated age in 1970)
@2 3) 4 )
90071 88477 114017 -
76 598 75242 106 944 -
63 635 62 509 85253 0.9636
54 431 53 468 73 381 0.9753
45 634 44 826 63010 1.0080
37818 37149 50 924 0.9524
32179 31609 40 885 0.9121
28724 28216 36115 0.9722
23974 23 550 29 409 0.9304
20618 20253 25360 0.8988
15 068 14 801 21775 0.9246
11999 11787 17632 0.8706
10283 10 101 13 004 0.8786
6737 - 10061 0.8536
5242 18 403 6 690 0.6623
6756 - 9873 0.5365
529 767 704 333

*Enumerated population adjusted by a factor of 0.9823 10 move it from 11 December 1960 to 10 May

1960.

Step 4: calculation of cohort survivorship ratios. Cohort
survivorship ratios or probabilities are calculated by
dividing the number in each cohort at the second census
by the corresponding number in the same cohort at the
first census, using, of course, the date-adjusted numbers
in columns (3) and (4) of table 173. Thus, for example,
the survivors of the cohort aged 20-24 at the first census
are aged 30-34 at the second census, and the 10-year sur-
vivorship probability for the cohort, 1S3, 24, is calcu-
lated as

where sN,' and sN2, o are the populations aged from x
to x +4 at the first census and from x +10 to x +14 at
the time of the second census, respectively. Results for
all age groups are shown in column (5) of table 173.
Note that the female population was classified by five-
year age group only up to age 74, with an open-ended
age group 75 and over. Since those over 75 in 1970 are
the survivors of those over 65 in 1960, the last survivor-
ship ratio is a 10-year survivorship probability for those
65 and over in 1960.

Step 5: fitting of a Coale-Demeny model life table. The
cohort survivorship ratios given in column (5) of table
173 show a certain amount of variability; and one ratio
even has a value that, in the absence of migration, would
be impossible (greater than 1.0). The fitting of a model
life table is therefore desirable. The mortality level
associated with each estimate (excluding those which are
impossible or out of range) can be found in a family of
Coale-Demeny model life tables. In the case of
Panama, the West family is selected as the most suitable.

It is assumed that the cohort survivorship probabili-
ties, 105x, x +4» are equivalent to stationary-population
survivorship ratios, sLy .10/sLy. These stationary sur-
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vivorship probabilities or ratios are not tabulated in the
Coale-Demeny tables, but their values are shown in the
second half of annex X (tables 271-278). Table 174
shows the cohort survivorship ratios (taken from column
(5) of table 173), the stationary-population survivorship
ratios (hereafter also called “model ratios™) for a range
of mortality levels of the West family of model life
tables, and the levels implied by the cohort ratios,
obtained by interpolating between the model values.
The interpolation is straightforward: if the cohort ratio
falls between levels v and v + 1, the interpolated level z is
found as

109 x +4 —[sLx +10 /sL¢]
Lo /L) ~IsLe w10 /sL2)

z(x)=v+ (B.2)

where » and »+1 indicate the mortality levels of the
ratios. If the interval between the levels to which the
model ratios correspond is two levels, as shown in table
174, the term to be added to » has to be muitiplied by
two.

It will be seen that two of the implied levels shown in
table 174 are high (above 20) and two are below 14.
Discarding these outlying values, an estimate of overall
level can be obtained by averaging the remaining esti-
mates; in this case, the estimate obtained is 16.1. This
level is then taken as a best estimate of the level of mor-
tality after age 10 for females in Panama, on the basis of
the two census enumerations.

Step 6: completion of the life table. So far, the level of
adult mortality has been estimated, but not the level of
child mortality. If no information is available about
child mortality, the best that can be done is to assume
that the adult level also applies in childhood and to
adopt the complete life table of the estimated level; in
the case of Panama, this level is 16.1.



If some information on child mortality is available,
estimates of adult survivorship obtained from a model
life table of the estimated level can be linked with the
independent estimate of survivorship to age 5. In
chapter III, the level of female child mortality in
Panama in the 1960s was estimated to be 18.05 (accord-
ing to the West model), so a life table at this level is
adopted up to age S. Thus, I(1)=09405 and
1(5)=0.9165. Probabilities of survival from age 5
onward are then calculated for level 16.1 and are used to
extend the life table from age 5, as shown in table 175.

For comparison purposes, the life-table /(x) function,
which will be generated in subsection B.3 using the logit
life-table system, is also included. As can be seen, the
two life tables are slightly different in detail but very
similar in broad shape and level.

(d) Second detailed example: Colombia, 1951-1964

The second detailed example considers a less tidy
case, where age-misreporting is more extensive and the
intercensal period is not a convenient multiple of five.

The computational procedure is described below.

TABLE 174. DETERMINATION OF THE MORTALITY LEVEL IMPLIED BY EACH COHORT SURVIVORSHIP RATIO,
PANAMA, 1960-1970

survivorship
ratio

LT T Wt o morety el Inpld
105, x +4 " 16 18 20 22 level
‘@) 3) (4) ) (6) (7) 8r
0.9636 0.9382 0.9568 0.9723 0.9854 0.9941 16.9
09753 0.9668 0.9758 0.9836 0.9905 0.9956 149
1.0080 0.9602 0.9705 0.9796 0.9875 0.9941 *
0.9524 0.9497 0.9623 09734 0.9831 0.9919 144
09121 0.9415 0.9556 0.9683 0.9794 0.9897 <140
09722 0.9341 0.9493 0.9631 0.9754 0.9868 18.5
0.9304 0.9260 0.9417 0.9563 0.9697 0.9822 14.6
0.8988 09160 09316 0.9465 0.9604 0.9743 <140
0.9246 0.8987 09147 09303 0.9454 0.9613 173
0.8706 0.8688 0.8866 0.9045 0.9220 0.9414 14.2
0.8786 0.8210 0.8422 0.8639 0.8855 0.9101 194
0.8536 0.7489 0.7741 0.8002 0.8266 0.8580 217
0.6623 0.6473 0.6750 0.7042 0.7342 0.7719 15.1
0.5365" ¢ [ c c [ [
Note: Mean level (excluding two lowest and two highest values) = [6.1.
8 Survivorship ratio in excess of 1.0.
® 10Ses4-
¢ Not computed.
TABLE 175. COMPLETION OF AN INTERCENSAL LIFE TABLE USING THE COALE-DEMENY
MODEL LIFE TABLES, PANAMA, 1960-1970
Final estimanes of
Values of probability of survivin,
4!0 age x, i:{ s surviving o ape x
West female model life tables Level 16.1 Coolle- Logit
Level 16 Level 17 Level 16.1 Kx+5)/1 (x) Demeny system
@) [&] “ ) (6) )
a . a2 . 1.0000 1.0000
s s o A 0.9405 09323
0.8804 0.8985 0.8822 0.9870 0.9165 0.9046
0.8687 0.8887 0.8707 0.9899 0.9046 0.8954
0.8598 0.8811 0.8619 0.9854 0.8955 0.8883
0.8470 0.8701 0.8493 0.9808- 0.8824 0.8777
' 0.8305 0.8558 0.8330 0.9780 0.8655 0.8638
08119 0.8394 0.8147 0.9748 0.8465 0.8478
0.7912 0.8211 0.7942 0.9710 0.8262 0.8297
0.7680 0.8001 0.7712 0.9663 0.8013 0.8088
0.7418 0.7760 0.7452 0.9585 0.7743 0.7841
0.7107 0.7466 0.7143 0.9434 0.7422 0.7533
0.6702 0.7075 0.6739 0.9222 0.7002 0.7121
06177 0.6560 0.6215 0.8838 0.6457 0.6575
0.5454 0.5843 0.5493 0.8287 0.5707 0.5817
04515 0.4889 0.4552 0.7399 0.4729 0.4813
0.3335 0.3663 0.3368 0.6173 0.3499 0.3547
0.2055 0.2297 0.2079 - 0.2160 0.2179
* Not calculated.
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Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. Once again, no basis exists for adjust-
ing for migration, and no adjustment for territorial cov-
erage is necessary.

Step 2: grouping of data from the two censuses by cohort.
Population censuses were held in Colombia on 9 May
1951 and on 15 July 1964, the intercensal interval thus
being 13.185 years. Since the population distribution by
single year of age is available from the 1964 census,
standard five-year age groups from x to x +4 identified
at the first census can be reidentified at the second
census as age groups from x +13 to x +17. Thus, sur-
vivors of those aged 0-4 at the first census are aged 13-17
years at the second census. Suitably grouped data for
the female population, based on a single-year age distri-
bution for the population enumerated in 1964, are
shown in columns (2) and (4) of table 176.

Step 3: adjustment for length of the intercensal interval.
As the intercensal interval was 13.185 years, the popula-
tion enumerated at the second census can be moved
back 0.185 of a year to improve comparability. The
total female population in 1964 was 8,869,856, whereas
that in 1951 was 5,649,250. Thus, the overall growth
rate of the female population was

,  In(8,869,856) - In(5,649,250)
= 13.185

The adjustment factor k for the second census is thus

= 0.0342.

k = exp{(0.0342)(—0.185)] = 0.9937.

Column (5) of table 176 shows the 1964 population sys-
tematically multiplied by the factor k (constant with
respect to age).

Step 4: calculation of cohort survivorship ratios. Sur-
vivorship ratios for each cohort are calculated by divid-

ing the number of survivors at the second census (after
adjustment) by the corresponding number at the time of
the first census. Thus, in table 176, the numbers in
column (5) are divided by the numbers in column (2).
The results are shown in column (6). Note that the sur-
vivorship ratios for the first three age groups in 1951
exceed 1.0, indicating the existence of problems related
to coverage or to age-reporting.

Step 5: fitting of a Coale-Demeny model life table. The
cohort survivorship ratios given in column (6) of table
176 are for five-year cohorts over a period of 13 years.
Comparable ratios for stationary populations are not
published in the Coale-Demeny life tables, nor can they
be calculated directly from information which is pub-
lished. It is possible to estimate them, but the calcula-
tions necessary are rather heavy, particularly if the vari-
ations in level are substantial. Time can be saved by
finding the approximate mortality level for each cohort
survivorship ratio and then estimating more accurately
the model survivorship ratios (referring to stationary
populations) for adjacent mortality levels in order to
perform the final interpolation.

The first step is to find the approximate mortality level
to which each cohort ratio corresponds. In the station-
ary populations, a 13-year survivorship ratio should lie
almost haif-way between the 10-year and 15-year ratios,
both of which can be calculated directly from the pub-
lished tables. To give an example, consider the cohort
aged 40-44 in 1951 whose 13-year survivorship ratio is
estimated to be 0.7885. By trial and error, one can find
the approximate level to which this cohort ratio
corresponds in the West family of model life tables. At
level 10, the 10-year female survivorship ratio,
sLso/sLsy, has a value of 235,666/273,796 or 0.8607,
whereas the 15-year ratio, sLss/sLyg, has a value of
0.7719. The average of the two, 0.8163, is higher than
the cohort survivorship ratio, so the approximate mor-

TABLE [76. FEMALE POPULATION BY AGE GROUP, {951 AND 1964; ADJUSTED FEMALE POPULATION, 1964;
AND COHORT SURVIVORSHIP RATIOS, COLOMBIA

1951 cenws 1964 censss Cohort
Sl Age Fomale Adjited fomale rivrsip
ol Al s
921 747 13-17 988 879 982 649 1.0661
768 958 18-22 810294 805 189 1.0471
657 753 23-27 676 158 671 898 1.0215
605 411 28-32 566 038 562 472 0.9291
550 555 33-37 499 191 496 046 0.9010
447242 38-42 419 342 417197 0.9328
337311 447 307 196 305 261 0.9050
334197 48-52 284 416 282624 0.8457
239771 53-57 190 266 189 067 0.7885
196 659 58-62 175311 174 207 0.8858
175 580 63-67 124 648 123 863 0.7055
105 721 68-72 91170 90 596 0.8569
116 939 73-717 49 108 48 799 04173
63 339 78-82 39882 39631 0.6257
57175 83-87 16 949 16 842 0.2946
27398 88-92 10213 10 149 0.3704
24807 93-97 3642 3619 0.1459
18 687 98+ 3199 319 0.1701

3 Adjusted for the difference between the observed intercensal period, 13.185 years, and 13 exact

years.
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tality level of this ratio should be lower. At level 8, the
equivalent -10-year, 15-year and average survivorship
ratios are 0.8377, 0.7380 and 0.7879, the last value being
very close to the cohort ratio; hence, level 8 is selected as
the approximate level for the cohort ratio. Proceeding
in this way, approximate levels for all the cohort ratios
are estimated. They are shown in column (3) of table
177.

“The next step is to make a more accurate estimate of
the 13-year model survivorship ratios for the approxi-
mate levels determined above. Thus, for the cohort
aged 15-19 in 1951, the approximate level is 13, so a
model survivorship ratio, sLy/sL;s, is to be calculated
for level 13.

The value of sL,s is tabulated in the published tables
(for West females, level 13, it has the value of 3.89403).
The constants and equation given in table 172 can be

used to estimate sLy. The age range from 28 to 32 is
covered by the tabulated / (x) values for 25, 30 and 35,
and n is equal to 28 minus 25, tha is, 3. In the West
female model life table of level 13, /(25)=0.74769,
1(30)= 0.72326, and /(35)= 0.69647; thus,

sLas=a(3) 1(25)+b(3) 1(30)+c(3) I(35)
= (—0.017X0.74769) +(4.533X0.72326) +
(0.483)(0.69647)
= 3.60222.
The model survivorship ratio is then calculated as

13875 19 = sLag/sL1s= 3.60222/3.89403 = 0.9251.

For the next cohort, aged 20-24 in 1951, the approxi-
mate mortality level is 11; therefore, the 13-year model
survivorship ratio, sLj3/sLy, is calculated for level 11.
The value of sLjy is obtained directly from the model
life tables as 3.51543; that of sLj; is estimated from

values of /(30, /(35) and /(40) for level 11 as follows:
sLy3= (—0.017)! (30)+(4.533)/ (35) +(0.483)/ (40)
= (—0.017)(0.66224) +(4.533)(0.63186) +
(0.483)0.59963)
=3.14258.

The model survivorship ratio is then calculated as
138%0,24 = 3.14258/3.51543 = 0.8939.

Results for each cohort are shown in column (4) of table
177. Note that for the open-ended cohort, a cruder
simplification is adopted. The model survivorship ratio
required can be approximated as

1388+ = T13/Ts,

that is, the stationary population over 78 divided by the
stationary population over 65. The value for Tgs is
tabulated in the model tables, and T+5 can be estimated
by weighting the values of T35 and Ty, in the following
manner:

T13=0.6 Tgy+0.4 Tys.

The precision of the estimate for the open-ended inter-
val need not be high, since the survivorship ratio for the
open-ended cohort is likely to be distorted anyway by
age-misreporting and age-distribution effects.

Once 13-year model survivorship ratios have been
estimated for each approximate level given in column
(3), the model survivorship ratio for an adjacent level
has to be computed in order that the level of the cohort
survivorship ratio can be found by interpolation. If the
cohort survivorship ratio exceeds that computed for the
approximate level, a model ratio should be estimated for
the next higher mortality level; whereas if the cohort

TABLE {77. STEPS IN ESTIMATION OF THE MORTALITY LEVEL TO WHICH EACH COHORT SURVIVORSHIP RATIO
CORRESPONDS IN THE WEST MODEL, COLOMBIA, 1951-1964

Cohart 13-year West model, 13-year swr ip ratio o
m';?ﬁp “r level ratio level ratio .”:vdd"y
3) 4 (5) (6) )
a 1 3 a L L)
a 2 2 a s
) a a ] &
13 09251 14 0.9321 13.6
11 0.8939 12 0.9042 1.7
16 09318 17 0.9410 16.1
14 0.9014 15 09115 144
10 0.8406 3 0.8533 104
8 0.7805 9 0.7958 85
20 0.8876 19 0.8758 19.8
11 0.6998 12 0.7175 1.3
24 . 0.8473 : * >24.0
8 0.3983 9 0.4209 8.8
24 0.3245 s s >24.0

4 Cannot be calculated.
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ratio is lower than that computed for the approximate
level, a model ratio should be estimated for the next
lower level. Thus, for age group 15-19 the cohort ratio,
13515, 19, is 0.9291, whereas the model ratio, 13875, 19, for
the approximate level 13 is 0.9251. In order to bracket
the cohort ratio between estimated model ratios, it is
therefore necessary to compute a model survivorship
ratio for the next higher level, 14. (Had the cohort ratio
13815, 19 been lower than 0.9251, a model ratio would
instead have been computed for the next lower level,
12.) The steps to follow to perform this computation are
the same as those followed in calculating the model
ratios corresponding to the approximate levels, except
that now the adjacent level is used. Thus, in the case at
hand, the life table of level 14 is used instead of that of
level 13. The model ratio obtained is 0.9321, and it is
listed together with all other model ratios corresponding
to the selected adjacent levels in column (6) of table 177.
It is worth noting that, in this instance, the cohort sur-
vivorship ratios are generally higher than the model
ratios corresponding to the approximate levels because
the method used to select an approximate level approxi-
mates a 12.5-year interval rather than the actual 13-year
interval. Fortunately, in every case, the cohort ratio was
less than one level away from the first approximation
selected.

The last step consists of interpolating between the
model ratios for the approximate and adjacent levels in
order to find the mortality level of the cohort ratio. As
always, the amount to be added to the lower mortality
level is equal to the difference between the cohort sur-
vivorship ratio and the model ratio corresponding to the
lower mortality level, divided by the difference between
the model ratios corresponding to the higher and lower
mortality levels. Thus, if » is the lower mortality level,
z(x) is the estimated level and »+ 1 is the upper level,

2(x)=»+(138x, x +4— 1387, x 1)/ 138y K4 — 1382, 2 44),
so that, for the cohort aged 15-19 in 1951,
z(15)= 13.0+(0.9291 -0.9251)/(0.9321 —0.9251)
= 13.57.

Complete results, rounded to one decimal place, are
shown in column (7) of table 177.

Step 6: completion of the life table. The life table may
be completed by adding information on child mortality
in exactly the same way as for the example for Panama.
However, the results obtained in step 5 are so erratic that
they require some comment. For the first three cohorts,
more survivors were recorded in 1964 than had been
enumerated in 1951. It is probable that two factors were
mainly responsible for this outcome: the' general ten-
dency to underenumerate young children or to exag-
gerate their ages; and the tendency to shift the ages of
women into the peak reproductive years from either
side. The first factor would reduce the initial numbers in
the cohorts, and the second would increase the apparerit
numbers of survivors. Two older cohorts also show
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implausibly high survivorship ratios, the cohort aged
55-59 in 1951, whose survivors include the number
heaped on age 70, and the cohort corresponding to the
open-ended interval (65 and over), whose survivors are
probably inflated by age exaggeration. In order to
obtain some overall average estimate of intercensal mor-
tality, these five cases should be excluded; and to bal-
ance their exclusion, the five lowest levels should also be
disregarded. Such Draconian elimination leaves as the
only “acceptable” estimates the set 13.6, 16.1, 14.4 and
19.8, the average of which is 16.0. However, because of
the fairly wide range of levels covered by these esti-
mates, their average cannot be considered a reliable
indicator of intercensal mortality.

To conclude, note that no independent information
on child mortality is available for the period 1951-1964,
so that if the average mortality level estimated above
were reliable, a life table could only be completed by
assuming that the mortality pattern embodied in the
model used (West) adequately represents that experi-
enced by the population being studied (in terms of both
adult and child mortality).

3. Intercensal survivorship ratios for five-year age
cohorts smoothed by use of the logit system

(a) Data required
The data required for this method are listed below:

(a) Two census enumerations separated by ¢ years
with populations classified by five-year age group (and
sex);

(b) An independent estimate of child mortality. Such
estimates are generally derived from information on
children ever born and children surviving analysed
according to the procedures described in chapter III.

(b) Computational procedure
The steps of the computational procedure are
described below.

Steps 1-4. These steps, by which cohort survivorship
ratios analogous to those for a stationary population,
sly i /sLy, are calculated, are identical to those
described in subsection B.2(b) and are not repeated
here.

Step 5: smoothing cohort survivorship ratios by use of the
logit life-table system. Somewhat more flexibility in the
model pattern of mortality used can be introduced by
smoothing through the logit life-table system (see
chapter I, subsection B.4). The cohort survivorship
ratios, analogous to sL,.,/sLy, are transformed into
estimates of sL,,, by multiplying each by the
corresponding sL, ; the first value or values of sL, are
estimated on the basis of information about child mor-
tality, and subsequent values are obtained from previous
estimates of sL, ,,. The calculations thus form a chain:
the first value of sL, ., is calculated by assuming a value
of sLo; and if ¢ is greater than 5, the second value of
sLy ., can be obtained by assuming a value of sLs; but
once x is greater than ¢, the denominators sL, will be
provided by earlier estimates of sL, ;.

Once a series of sL, ., values has been obtained, it is.



assumed that the proportion of the stationary population
aged from x +¢ to x +¢ +5 approximates the probabil-
ity of surviving from birth to age y=x+1+25,
I(x 41 +2.5). The logit transformations of each of these
I(p) estimates can then be calculated and compared
with the logit transformations of equivalent values
derived from an appropriate standard life table. Then,
the a and B parameters defining the linear relationship
between the logit transformations of the estimated and
the standard survivorship probabilities can be estimated
by using a suitable line-fitting procedure, and a com-
plete I(x) survivorship function can be generated. It
must be noted, however, that for childhood ages the /(x)
values generated in this way will not, in general, coin-
cide with those used as input in applying the method.
The magnitude of the differences between the input and
output child mortality estimates depends, among other
things, upon the appropriateness of the mortality pattern
used as standard and upon the quality of the intercensal
survivorship estimates. If the magnitude of such
differences is unacceptably large, the use of a different
standard should be considered. When changes in the
standard fail to reduce the differences observed, one
may either have to discard entirely the intercensal life
table or one may adopt a life table built by linking in a
manner similar to that described in step 6 in subsection
B.2(b), the child mortality estimates used as input with
the estimated /(x ) values over age 10.

(c) First detailed example: Panama, 1960-1970

The computational procedure for this example is
described below.

Steps 1-4. These steps have already been presented in
subsection B.2(c).

Step 5: smoothing cohort survivorship ratios by use of the
logit life-table system. The starting-point of this smooth-
ing procedure is the cohort survivorship ratios shown in
column (5) of table 173. It is assumed that a cohort sur-
vivorship ratio approximates a life-table survival proba-
bility from the central age of the cohort at the first
census to its central age at the second census. In the case
in hand, therefore, it is assumed that

skx+10 5001 (x +12.5))
sL, — S.0{I(x +2.5)]

The one age group for which 5.0{/(x +2.5)] is not an
adequate approximation to sL, is group 0-4. If esti-
mates of /(2), /(3) and /(5) are available from child sur-
vival data, the mortality levels associated with these
three estimates in a selected family of Coale-Demeny
- model life tables can be averaged; and the value of 5L,
for that level, sex and family can be read off from the
relevant table. If an estimate of sLs is required, it
should be taken also from this model table.

In the case of Panama, no information relevant to the
estimation of child mortality was collected by either the
1960 or the 1970 census. However, child mortality esti-
mates are available from the Retrospective Demo-
graphic Survey conducted in 1976, and the reference

losX.X +4= (B.3)
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period for the estimates derived from information per-
taining to women aged from 30-34 to 45-49 effectively
covers the intercensal period 1960-1970 (see table 55).
The average female mortality level for this period is
18.05 in the West family of model life tables. For level
18, Lo is 0.95377 and 4L, is 3.69742; for level 19, the
corresponding values are 0.96004 and 3.75407. There-
fore, interpolating linearly,

1 L4395 = (0.95)(0.95377) +(0.05)0.96004) = 0.9541

and
oL 305 = (0.95X3.69742) 4+-(0.05)3.74507) = 3.7003.

Interpolating in a similar fashion for sL{

8.05

sL4895 = (0.95)(sL4%)+(0.05)(sL{?)
= (0.95)(4.55832) +(0.05)(4.64405)
= 4.5626.

The chaining of survivorship probabilities can then
begin. Itis assumed that

1080, 4= > ILZS
sLo
$O
1
1(12.5)= g(loso. 4)(sLo)
and

sL, =5.01(x +2.5) forx =10, 15,..., 60.

Table 178 shows the full calculations.

The essence of the logit life-table system lies in the
comparison of an estimated /(x) survivorship function
with a standard /;(x) function on the logit scale (see
chapter I, subsection B.4). In this case, a Coale-Demeny
West model life table of level 18 for females has been
selected as standard on the basis of the child mortality
estimates available. The /(x) function in the Coale-
Demeny model life tables is given only for ages 0, 1, 5,
10 and so on, whereas for comparison with the estimated
probabilities, /(y) values are required for ages y =12.5,
17.5, 22.5 and so on. These values can be obtained by
averaging the standard /;(x) values for adjacent ages x
(multiples of five) and then calculating the logit transfor-
mations of these averages. Thus, to obtain an estimate
of [;(12.5),

§,(12.5)= 0.5(; (10) + 4 (15))= 0.5(0.90762 +
0.90136) = 0.90449.
Therefore, the logit transformation of the standard at

12.5, A, (12.5), is

1.0-090449

A (125)=05 In[—— 0

= —1.1241.



TABLE 178. APPLICATION OF SMOOTHING PROCEDURE BASED ON THE LOGIT SYSTEM TO THE
COHORT SURVIVORSHIP RATIOS FOR THE PERIOD 1960-1970, PANAMA

Stationary population
uc:::’ﬂp Flve-year Logit tronsformation
ratio ape groups Exact o Estimated Standard®
losx x+4 sky I(x +125) Nx +12.5) A'(x +12.5)
2 B ) 2] 1
0.9636 (4.6544)® 0.8970 —1.0822 —1.1241
09753 (4.5626)® 0.8900 —1.0454 —1.0807
1.0080 4.4850 0.9042 -1.1224 —1.0252
0.9524 4.4499 0.8476 —0.8580 ~0.9633
09121 4.5209 0.8247 -0.7743 —0.8988
0.9722 4.2381 0.8241 -0.7722 -0.8314
0.9304 4.1235 0.7673 -0.5966 —0.7595
0.8988 4.1203 0.7407 —0.5248 —0.6795
0.9246 3.8365 0.7094 -0.4462 ~0.5852
0.8706 3.7033 0.6448 -0.2981 -04713
0.8786 3.5472 0.6233 -0.2518 —0.3302
0.8536 3.2241 0.5504 -0.1011 —0.1529
0.6623 3.1166 04128 0.1762 0.0715
(0.5365) 2.7521 € ¢ ¢
¢ 2.0641 ¢ ¢ c
¢ 1.4765 ¢ ¢ ¢

2 Female, level 18, West model.
b Obtained as described in the text.
¢ Not computed.

Note that computing /(x +2.5) by directly averaging
l,(x) and I(x +5) has an advantage over the use of
closer approximations, since it is being assumed in the
case of the estimated /(x) values that sL, is equal to
5.0(1(x +2.5)). If the I(x) and [ (x) functions are simi-
lar, but not linear, between x and x +5, the logit
transformations of the estimated and the standard /(y)
values calculated as shown above will still be compar-
able, but will not refer to exact age x +2.5. Yet, the
form of their relationship (its linearity and the parame-
ters that define it) will not be greatly affected.

Columns (5) and (6) of table 178 show the logit
transformations of the estimated and standard /(x)
functions, respectively. The points defined by
[As (x)A(x)] are plotted in figure 21. It can be seen that
these points follow a generally linear trend, though there
are outliers, notably the point associated with the cohort
aged 10-14 in 1960, which had an apparent survivorship
ratio from 1960 to 1970 greater than 1.0. A straight line
has been fitted to the points by using group means (see
chapter V, subsection C.4). This line has a slope of
1.022 (an estimate of B in the logit system) and an inter-
cept of 0.094 (an estimate of a in the logit system). The
intercensal cohort survivorship probabilities thus indi-
cate an age pattern of mortality similar to that of the
standard, since B is roughly equal to one, but an overall
level of mortality somewhat heavier than that of the
standard, since a is slightly larger than zero.

A complete life table can now be calculated by invert-
ing the logit transformation estimated by means of a
and 8. Thus,

A(x)=a+BA(x)

and

1(x)=[1.0+ expR.OA*(x))]~".
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The results obtained in this case are shown in column (7)
of table 175. Note that, as mentioned earlier, the child
mortality estimates obtained by this procedure differ
from those used as input (the latter are shown as /(1)
and /(5) in column (6) of table 175). In terms of infant
mortality, for example, the logit estimate is /(1) =
09323, while the value used as input is 0.9405

Figure 21. Plot of the logit transformation of the estimated survivor-
ship function, /(x), against that of the standard, West model for fe-
males, level 18; Panama

Afx)

Agl)

F-1.0




(corresponding to level 18.05 in the Coale-Demeny West
models for females). Hence, whereas according to the
life table generated by using the logit system, some 68
out of every 1,000 births die before reaching age one,
according to the estimates derived from data on children
ever born and surviving, about 60 deaths per 1,000
births are expected. If the latter estimate were correct,
the one obtained through the logit fit overestimates
infant mortality by about 13 per cent. This outcome is
due to the fact that intercensal adult mortality is sub-
stantially higher than the child mortality used as input in
terms of the West mortality pattern. In the case of
Panama during the period 1960-1970, the fairly low
child mortality estimates derived from reports of older
women are likely to be biased downward. Therefore,
the estimates yielded by the logit fit are probably accept-
able.

It should also be pointed out that the chaining of sur-
vivorship ratios used in this procedure introduces a sub-
stantial element of smoothing into the results even
before the smoothing action of the logit system is intro-
duced. Each link in the chain depends upon one or
more of the earlier links, and each /(x 4 2.5) estimate is
determined both by an carlier estimate of /(x —7.5) and
by the intercensal cohort survivorship probability
1052 —10,x-¢- Thus, the final estimates yielded by this
procedure are likely to be smoother than those obtained
directly from each survivorship probability, as was done
in subsection B.2(c).

(d) Second detailed example: Colombia, 1951-1964
The computational procedure for this example is
described below.

Steps 1-4. These steps have already been covered in
subsection B.2(d). Therefore, this example begins with
the application of this procedure once the 13-year cohort
survivorship ratios shown in table 176 are available.

Step 5: smoothing the cohort survivorship ratios by use of
the logit life-table system. To use the smoothing pro-
cedure based on the logit system, it is necessary to have
some estimate of child mortality in order to begin the
chaining of survivorship probabilities. A recent study by
Somoza,? based on the results of the Colombian
National Fertility Survey (part of the World Fertility
Survey), found that mortality among female children
born during the period 1941-1959 could be approxi-
mated by level 14.5 of the West model life tables; for
female children born during the period 1960-1967, the
same procedure yielded a level of 16.2. Therefore, it is
estimated that, for the intercensal period 1951-1964,
female child mortality was, on average, equal to that of
level 1535 (the arithmetic average of the two levels
estimated by Somoza). For this level, sLq is equal to
4.4699, sLs to 4.3076 and 5L,y to 4.2508, these values
being obtained by interpolating linearly between the
tabulated values for levels 15 and 16, respectively.

2 Jorge L. Somoza, Miustrative Analysis: Ir{am and Child Mortality in
, World Fertility Survey Scientific egort No. 10 (Voorburg,
The Hague, International Statistical Institute, 1980).
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The first cohort survivorship ratio, (354, is regarded
as being equivalent to the ratio sL,3/sLo. Therefore,
multiplying by the assumed value of 5Ly, one obtains an
estimate of sL3:

sL13= (13804)XsLo)= (1.0661)(4.4699) = 4.7654.

Similar calculations for sL;3 and sLy; give results of
4.5105 and 4.3422, using the assumed values of sLs and
sLyo, respectively. The next survivorship ratio, 1355 19,
is regarded as equivalent to sLy3/sL s, but no value has
been assumed for sL;s, which therefore has to be
estimated. Estimates of sL,3 and sL g have already been
obtained, and sL;s can be estimated from them by
weighting them suitably. The age interval from 13 to 17
shares three years, or 60 per cent, with age group 15-19;
and the interval from 18 to 22 shares two years, or 40 per
cent, with age group 15-19. An estimate of sL;s can
therefore be obtained by summing 60 per cent of sL3
and 40 per cent of sLg:

sL1s=0.6 sL13+0.4 L3 = (0.6)(4.7654) +
(0.4)(4.5105) = 4.6634.

An estimate of 5L, can be obtained in a similar way
from the estimated values of sL ;3 and 5L,;:

sL20=0.6 sL3+0.4 sLy; = (0.6)(4.5105)+
(0.4Y4.3422) = 4.4432,

These values of sL s and 5L, can now be used to esti-
mate sLyg and sLj; from the cohort survivorship ratios
1351519 and 13520,245 whereupon the values of sL,3, sLog
and sL3; can be used to estimate sLys and sLjg, which
can in turn be used to estimate sL3g and sL4 from the
cohort survivorship ratios 1352529 and ;3539.34, and so on
until all but the last of the cohort ratios have been used
(the last ratio, for the open-ended cohort aged 65 and
over in 1951, cannot be equated with an , L, value and
therefore cannot be used). The results of the various sets
of calculations are shown in table 179,

It is assumed that the probability of surviving from
birth to the mid-point of each age group can be approxi-
mated by one fifth of the sL, values. That is,

1(x +2.5)= (0.2)s L.

Column (5) of table 179 shows estimates of sL, for
values of x of 13, 18, 23, 28 and so on up to 73. Each
can be divided by five to estimate values of /(x +2.5), or
survival probabilities from birth to ages 15.5, 20.5, 25.5
and so forth up to 75.5. Thus, for example, /(20.5), is
estimated as

1(20.5)= %SL.,;: %(4.5105)—_— 0.9021.

Full results are shown in column (6) of table 179.

The final stage of the smoothing process is the com-
parison of the logit transformations of the estimated sur-



‘FABLE 179. SMOOTHING OF FEMALE COHORT SURVIVORSHIP RATIOS BY USE OF THE
LOGIT LIFE-TABLE SYSTEM, COLOMBIA, 1951-1964

Stationary populati
Non-
Cobor S ord Atan
. N Logit transformation

Age gl Yo - -y Evimated ondard
x 135 x 44 sky sbeans I(x +15.5) Mx +15.5) Alx+ 15.5°
2 [1]] 4 ) (6 ) (8

0 1.0661 (4.4699)® 4.7654 0.9531 - 1.5059 ~0.8142

5 1.0471 (4.3076)b 45105 0.9021 —-1.1104 -0.7615
10 1.0215 (4.2508)® 43422 0.8684 —0.9434 —0.6997
15 0.9291 4.6634 43328 0.8666 -0.9356 -0.6358
20 0.9010 4.4432 4.0033 0.8007 —0.6953 ~0.5702
25 09328 43384 40469 0.809%4 —0.7231 ~0.5207
30 0.9050 4.2010 3.8019 0.7604 —0.5774 —0.4323
35 0.8457 4.0207 3.4003 0.6801 —0.3711 —0.3549
40 0.7885 3.9489 3.1137 0.6227 —0.2505 ~0.2606
45 0.8858 3.6413 3.2255 0.6451 —0.2988 —0.1459
50 0.7055 3.2857 2.3181 0.4636 0.0729 0.0035
55 0.8569 3.1584 2.7064 0.5413 —0.0828 0.1936
60 04173 2.8625 1.1945 0.2389 0.5794 0.4457.
65 0.3860 2.4734 - - - -

2 Females, West model of level 15.

vivorship probabilities (equivalent to the stationary
population at exact ages) with those of an adequate
standard. The logit transformations of the I(x) values
shown in column (6) of table 179 are easily calculated;
for instance, for /(20.5),

A(20.5)=0.5 Inf(1.0—7(20.5))/1(20.5)]=
0.5 In(0.10852)= —1.1104.

The full set of A(x) values is shown in column (7) of
table 179. The selection of a suitable standard and the
calculation of /(x) values that match the estimated
values present a problem, however, since the life tables
published in the Coale-Demeny set do not include the
values of x required in this case. Estimates of [ (x)
must be obtained for x = 15.5, 20.5 and so on, so that
they may be compared with the estimated /(x) function
on the logit scale. In this application, a West model life
table of level 15 for females has been adopted as stand-
ard. The required estimates of /; (x) are obtained by in-
terpolating linearly between the published [ (y) values.
Thus, for x = 15.5,

1,(15.5)= 0.9 1,(15)+0.1 £,(20)
= (0.9)(0.83740) +(0.1)(0.82284)
=0.83594.

The logit transformations of these /; (x) values are calcu-
lated next, the results being shown in column (8) of table
179. The logit transformations of the estimated and
standard /(x ) functions are plotted one against the other
in figure 22. The resulting points fluctuate substantially,
that for the cohort aged 0-4 in 1951 being particularly
divergent and the remainder following a broadly linear
trend. The straight line shown in the figure has been
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b Obtained independently from child mortality estimates for the period.

fitted by group means (see chapter V, subsection C.4)
calculated on the basis of all the points except the first; it
has an intercept (a) of -0.03 and a slope (B) of 1.32, indi-
cating that the level of mortality in the population in
question is similar to that of the standard, but that
observed mortality increases much more rapidly with
age than it does in the standard. However, little
confidence can be placed in the final results, given that
the slope of the line is heavily affected by points refer-
ring to young women for whom age-reporting and cov-
erage errors are substantial. The chaining process used
by this smoothing procedure reduces the independence
of the estimates derived from different cohorts, thus
increasing the possibility of serious biases in the slope of
the fitted line. Because of these problems, the calcula-
tion of a final life table is omitted. If desired, it would be
calculated just as explained in step 5 of subsection
B.3(c).

4. Intercensal mortality estimated by using
projection and cumulation

(a) General characteristics of method

Some of the effects of age-misreporting on intercensal
mortality estimates can be eliminated by the use of
cumulation. Instead of calculating survivorship ratios
for cohorts, the initial population is projected forward to
the date of the second census using a range of mortality
levels. For each mortality level, the projected popula-
tion over ages x from 10 or 15 to 50 or 55 is obtained by
cumulation, and the observed population at the second
census, N2(x*), is used to interpolate within the pro-
jected values in order to determine the mortality level
consistent with it. In this way, the effects of age-
misreporting at the second census are limited to the
effects of transfers across each age boundary x. Unfor-
tunately, the effects of age-misreporting in the initial age
distribution are not reduced.



Figure 22.  Plot of the logit transformation of the estimated survivorship function, /(x),
against that of the standard, West model for females, level 15; Colombia
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It should be noted in passing that there is no theoreti-  (b) Data required

cal reason to prefer the forward projection of the first
age distribution to make it comparable to the second age
distribution over the reverse projection of the second age
distribution to make it comparable to the first. The two
procedures may, however, be expected to give somewhat
different results because of different errors in the two
distributions. The analyst might wish to carry out the
calculations both ways, compare them and possibly
obtain a final estimate by averaging the two results; but
this discussion is confined to the description of the usual
forward-projection procedure. Backward projection is
carried out in an analogous way.
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The only data required are two census enumerations
separated by ¢ years with populations classified by age
and sex.

(c) Computational procedure

The steps of the computational procedure are
described below.

Steps 1-3. These steps, by which two comparable age
distributions for time-points separated by an exact
number of years are obtained, are identical to those
described in subsection B.2(b) and are not repeated
here.



4. cumulation of the second age distribution. The
age distribution from the first census is not cumulated,

but the second age distribution is cumulated by summa- .

tion from the uppermost age group downward. The
ages above which populations should be cumulated will
depend upon the intercensal interval ¢; normally, the
oldest initial population that should be used is the popu-
lation aged 45 and over at the first census, and this
population will be aged 45+ ¢ and over at the second’
census; the next age group will be aged 40+ ¢ and over,
the next 35+ 1 and over, and so on.

Step 5: projection of initial population with different mor-
tality levels. A suitable family of Coale-Demeny model
life tables is selected, and life tables from different levels
are used to project the initial population, five-year age
group by five-year age group. If the intercensal interval
is ¢ years, and the initial population aged from x to
x +4is sN1,, the population projected by using level »
of the life tables, sNP; ,,, is given by:

SNP;-N =(sN1, )(5Lx'+l /(Ly))

where sL; and sL;,, come from a model life table of
level ». If 7 is not a multiple of five, values of sL; ., can
be estimated by using the technique described in step 5
of subsection B.2(b). Each age group has to be pro-
jected ‘using several levels », and the populations over
cach age x +¢ are then obtained by cumulation. The
observed population aged x + ¢ and over at the time of
the second census, N2((x + ¢)+), is then used to deter-
mine the level consistent with it by interpolating linearly
between the projected estimates NP’((x +¢)+). Once
mortality levels have been determined in this way for
cach initial age x = 5, 10, 15, ..., 45, the median of these
levels can be used as an estimate of adult mortality dur-
ing the intercensal period.

(d) A detdiled example: Panama, 1960-1970

The steps of the computational procedure are
described below.

Steps 1-3. These steps have already been performed
in subsection B.3(c) and need not be repeated here.
Therefore, the starting-point of this example is the 1960
and 1970 female age distributions for Panama given in
columns (3) and (4), respectively, of table 173.

Step 4: cumulation of the second age distribution. The
Coale-Demeny model life tables tabulate the
stationary-population function, sL,, only up to age 80,
the final category being the stationary population aged
80 and over. For a 10-year survival period, therefore,
the highest age group for which a model survivorship
ratio can be calculated is the initial open-ended age
group 70 and over. The initial age distribution therefore
needs to be tabulated by five-year age group up to age
group 65-69, with the last age group being 70 and over.
For the final age distribution, however, less detail is
required, since the highest initial age group to be used is
that aged 45 and over. Thus, the final population in
1970 is required in age groups 55+ (survivors of the ini-
tial population aged 45 and over, 50+, 45+ and so on
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down to 15+ (survivors of the initial population aged 5
and over). The easiest way to cumulate the age distribu-
tion is to begin with the number observed in the oldest
age group and add in successively the number
correspondirig to the age group immediately below it.
Thus, given the 1970 age distribution in column (4) of
table 173, the population over age x, N2(x +), is calcu-
lated as

N2(x +)=N2((x + 5)+)+sN2,

where sN2, is the population aged from x to x +4 in
1970. For example, for x = 75,

N2(75+)=9,873;
and for x = 70,
N2(704+)= N2(75+)+sN250= 9,873 +6,690 = 16,563.
Then for x = 65,
N2(65+)= N2(70+)+5N 2= 16,563 +
10,061 = 26,624.

Full results are shown in column (15) of table 180.

Step 5: projection of initial population with different mor-
tality levels. For a 10-year intercensal interval, the pro-
bability of surviving from the age group from x to x + 4
to the age group from x +10 to x + 14 is approximated
by sLy +10/sLy, and such model survivorship ratios can
be calculated for each level of any family of Coale-
Demeny model life tables. The last survivorship ratio,
that for the population aged 70 and over to 80 and over
10 years later, is approximated as Tgo/Ty, that is,
T30/(sLyg+sL+s+Tgo). In a growing population with an
age distribution 70 and over that is younger than the
equivalent stationary population, this model survivor-
ship ratio is likely to be somewhat lower than the true
value, but an adjustment would not generally be worth-
while. Table 174 shows 10-year model survivorship
probabilities for initial age groups up to 60-64 and for a
range of mortality levels in the West family of model life
tables; in order to project the entire population over any
age, 10-year model survivorship probabilities for the ini-
tial age groups 65-69 and 70+ need to be added. Fo
level 16, for example, :

10588 6o = sE1S /sL &8 = 134,741/249,225 = 0.5406

and
10876+ = Ty /T1§ = Tg§ /sL7§ +sLis +Tss

= 102,911/(196,255 +134,741 + 102,91 1)
=0.2372.

In the application of forward projection with cumula-
tion, there is no alternative to carrying out the calcula-
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TABLE 180. PROJECTION OF THE INITIAL FEMALE POPULATION OVER 10 YEARS USING DIFFERENT MORTALITY LEVELS, PANAMA, 1960-1970

Projection at West level 16 Projection at West kevel 18 Projection at West level 20 Projection s West level 22
1970 197 1970 1970
T mamm B pewm T pmm g S e
ranio From x+10 x+10 - P From x+10 x+10 ratio From x+10  x+10 ratio From x+10 x+10 aged x+ 10 morsality
sk 41075k ox+14 adover sy 4105ty t0x+14 and over sly 1075ty tox+i4 adover  sky 4 q0/shx ox+14 and over and over devel
3) 4) 3 {6) (7) 8 ®) 10 (1) (12) 13) (14) (13) (16)

0.9758 73 421 393970 0.9836 74 008 339759 0.9905 74 527 405 151 0.9956 74911 410558 398119 17.43
0.9705. 60 665 320 549 0.9796 61234 325 721 0.9875 61728 330 624 0.9941 62 140 335647 324738 17.62
0.9623 51452 259 884 0.9734 52 046 264 518 0.9831 52564 268 896 0.9919 53 035 273506 261728 16.80
0.9556 42 836 208 432 0.9683 43 405 212472 0.9794 43 902 216 332 0.9897 44 364 220471 210804 17.81
0.9493 35266 165 596 0.9631 35778 169 067 0.9754 36235 172 429 0.9868 36 659 176 107 169 919 18.51
0.9417 29 766 130 331 0.9563 30228 133 289 0.9697 30651 136 194 0.9822 31046 139449 133804 18.35
0.9316 26 286 100 565 0.9465 26 706 103 061 0.9604 27099 105 543 0.9743 27 491 108402 104 395 19.07
0.9147 21 541 74 278 0.9303 21913 76 354 0.9454 22264 78 444 0.9613 22 639 80911 79 035 20.48
0.8866 17 956 52737 0.9045 18 319 54 441 0.9220 18 673 56 180 09414 19 066 58273 57 260 21.03
0.8422 12 465 34781 0.8639 12 787 36122 0.8855 13.106 37 507 0.9101 13470 39207 39628 >22
0.7741 9124 22316 0.8002 9432 23336 0.8266 9743 24 400 0.8580 10113 25736 26 624 >22
0.6750 6818 13191 0.7042 713 13904 0.7342 7416 14 657 0.7719 7797 15623 16 563 >22
0.5406 3578 6373 0.5704 3775 6791 0.6016 3981 7241 0.6426 4253 7 826 - -
02372 2795 2795 0.2559 3016 3016 0.2766 3260 3260 0.3032 3573 3573 - -




tions for a range of mortality levels. For each mortality
level », the projected population of each age group from
x to x + 5 in 1960, sNP, . 9, is obtained by applying the
survivorship ratio, oSy, x 14, to the initial population,
sN 1. Thus, for age group 15-19 and mortality level 16,
the initial population is 53,468, and the survivorship
probability is 0.9623, so

NP3 = (sN1;5X10S 15, 19)= (53,468)(0.9623)= 51,452,
whereas for the same age group but at mortality level 22,

sNP# = (53,468)0.9919)= 53,035.

The 1960 population of each five-year age group,
from 5-9 upward, has been projected forward using sur-
vivorship probabilities from each mortality level (note
that in practice it is sufficient to work with steps of two
levels, that is, to use levels 16, 18, 20 and 22, and not to
repeat the calculations for the intermediate levels), the
results being shown in columns (4), (7), (10) and (13) of
table 180. Each projected population can then be
cumulated from the oldest age group towards the young-
est to find the population over ages 55, 50, 45 and thus
down to the population over 15. The results for the
mortality levels being used are shown in columns (5),
(8), (11) and (14) of table 180. The reported populations
over each of these ages can then be compared with the
projected populations, and linear interpolation can be
used to estimate the mortality level implied by each.
Thus, for instance, the reported population over age 20
in 1970 is 324,738; the projected population over age 20
for mortality level 16 (column (5) of table 180) is
320,549, whereas for mortality level 18 it is 325,721
(column (8) of table 180). Therefore, the mortality level
implied by the observed population is obtained as

#20+)= 16.0+(2.0)(324,738 —320,549)/
(325,721 —320,549) = 17.62

where 16 is the level associated with the smaller pro-
jected population; and the interpolation factor has to be
multiplied by two because the levels used, 16 and 18, are
two units apart. Column (15) of table 180 shows the
cumulated populations observed in 1970, and column
" (16) shows the mortality levels yielding projected popu-
lations over each age consistent with the observed.

The mortality levels shown in column (16) are cer-
tainly less variable than those obtained for individual
age groups in table 174. However, after four rather con-
sistent estimates of levels in the range from 16.8 to 17.8
associated with the populations over 15, 20, 25 and 30 in
1970, the estimates show a steady tendency to rise as the
lower age boundary increases. One possible cause of
this outcome is that the West mortality pattern is not a
good representation of adult mortality in Panama, but it
seems more likely that systematic age-reporting errors
may be distorting the second age distribution (and prob-
ably the first as well, though the method provides infor-
mation only about relative differences). In the cis-

cumstances, the best estimate of mortality level that one.
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can obtain from these data is the average of the first four
values, 17.4, rather than the median of all the values,
which is more likely to be affected by the apparent ten-
dency towards age exaggeration. Note that this value of
17.4 is substantially higher than the final estimate based
on individual age groups, 16.1. The level based on
cumulated data is probably the better of the two esti-
mates, although it should be remembered that the
cumulation procedure is really only applied to the
second age distribution, not to the first, so the results are
still dependent upon the age detail of the initial age dis-
tribution. The greater consistency of the results
obtained from cumulated data should not be interpreted
as necessarily indicating greater accuracy.

C. INTERCENSAL SURVIVAL WITH ADDITIONAL
INFORMATION ON THE AGE PATTERN OF MORTALITY

1. Basis of method and its rationale

The two most serious problems affecting intercensal-
survival techniques are age-misreporting and different
levels of census coverage. A procedure often used to
reduce the effects of age-misreporting is cumulation; the
population over age x is affected only by erroneous
transfers of people across the boundary x and not by
errors over or under x. The second problem, that of
coverage changes between the first and second censuses,
can play havoc with mortality estimates derived from
intercensal survival, since the coverage change will
appear either as excess deaths (when the second census
is the less complete) or as a deficiency of deaths (when
the second census in the more complete). However, a
change in coverage that is more or less constant by age
will inflate or deflate intercensal deaths by amounts pro-
portional to the population at each age, rather than by
amounts proportional to the number of deaths at each
age. A change in coverage will therefore have much
more effect on deaths at younger ages, where there are
in reality few deaths but large numbers of people, than
at older ages, where there are many more deaths but
small numbers of people.

A technique that is simple to understand but rather
laborious to apply makes it possible to use what is essen-
tially an intercensal-survival procedure while employing
cumulated data and also making allowance for
differential census coverage’ The method is based on
the simple idea that, in a closed population, the number
of people in a particular age group at a first census
should be equal to the number of survivors of the same
cohort at the second census plus the deaths of cohort
members during the intercensal period. It can be simply
shown that if the coverages of the first and second cen-
suses and of intercensal deaths are invariant with age
and are denoted by C,, C; and k, respectively, then

alN 1l /aN2y 4 =C/Cy+(Ci/k)a Dy /N2y 4,
.1

3'S. Preston and K. Hill, “Estimatir;? the completeness of death
reéistration". Population Studies, vol. XXXIV, No. 2 (July 1980), pp.
349-366.



where n is the cohort width in years; ¢ is the length of
the intercensal period; ,N1; and ,N2,. are the
enumerated cohort populations at the first and second
censuses, respectively; and , D, is the registered number
of intercensal deaths to the cohort aged from x to x +n
at the first census. Equation (C.1) defines a straight line
with slope C/k and intercept C,/C3; that is, its slope is
the completeness of the first census in relation to the
completeness of death registration and the intercept is
the completeness of the first census in relation to that of
the second. The fitting of a straight line to points
[»N1x/aN2; 41y nD /aN2, ;] for different cohorts
should therefore provide estimates of the relative com-
pleteness of the two censuses and of the completeness of
death registration in relation to that of the first census.

Equation (C.1) is valid for any cohort, be it an initial
five-year age group, the initial population over some age
x, or even the population between two ages, x and y, at
the first census. All that is required is that the range of
the ratios ,N1,/,N2,,, and ,D,/,N2,,, be wide
enough for the robust estimation of the parameters
(mainly the slope) of the straight line to be possible.
Cumulation can therefore be used to reduce the effects
of some age errors, though the procedure remains sensi-
tive to systematic age exaggeration on the part of the
elderly.

2. Data required

The data listed below are required for this method:

(@) Two census enumerations with populations
classified by age (and sex) for two points in time not
more that 15 years apart. (It may be necessary that the
age classification be by single year for at least one census
if the intercensal interval is not a multiple of five years);

(b) Information on deaths by age (and sex) for the
intercensal period; registered deaths for each intercensal
year can be used but the calculations are lengthy, and
deaths for every fifth year are adequate. If no informa-
tion on deaths is available, a model life table can be
used to supply the deficiency.

3. Computational procedure
The steps of the computational procedure are
described below.

Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. See step 1 in subsection B.2(b). Note,
however, that before applying this method, intercensal
deaths should also be adjusted for migration and cover-
age changes, though if the age pattern of deaths is not
much affected, the adjustment is not crucial to the final
mortality estimates.

Step 2: grouping of data from the two censuses by cohort.
See step 2 in subsection B.2(b).

Step 3: adjustment of intercensal interval that is not an
exact number of years. See step 3 in subsection B.2(b).

Step 4(a): cumulation of cohort deaths from registration
data. Registered deaths are normally tabulated by
calendar year, five-year age group and sex. Given that
the two censuses being used probably do not have refer-
ence dates at the beginning of a year and that a cohort
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will be continually moving across standard five-year age
groups as it moves through the intercensal period, the
task of cumulating intercensal cohort deaths is tedious
and imprecise. Since the value of the information on
intercensal deaths lies in their age pattern, not in their
precise overall level, a degree of simplification is in
order.

If the first census was held in year @ and initial
cohorts are defined by standard five-year age group,
deaths to the cohort aged from x to x + 4 in year a over
the first five years of the intercensal period (that is,
between a and a + 5) can be approximated by summing
the deaths in year a to persons aged from x to x + 4 and
the deaths in year a + 5 to persons aged from x + 5 to
x + 9, and multiplying the sum by 2.5. Thus, if D] , ;4
denotes, in general, the number of deaths to the cohort
aged from x to x + 4 at the beginning of the period (that
is, in year @) and recorded during year j, and sD{
denotes the number of deaths to persons aged from x to
x +4in year j, then

a+s
> Di x44a=25[sDf+sD¢ i)
j=a

(C2)

Similar approximations can be applied for a second
five-year period between a +5 and a + 10:

a+l0 5 |
> Dlc+a=25[sDiE3 +sDf1i0)
f=a+5

(C3)

Cohort deaths for intercensal periods that are multiples
of five can therefore be approximated rather simply
from registered deaths for calendar years five years
apart.

The case of an intercensal interval that is not a multi-
ple of five years is slightly more complicated, but ade-
quate approximations can be arrived at by suitable
weighting of registered deaths. If the interval is between
five and 10 years, cohort deaths for the first five years
can be approximated as described above using the
deaths registered in years a and a + 5. Cohort deaths
over the period from a + 5 to a + ¢, where ¢ is the length
of the intercensal interval, are approximated by averag-
ing the number of deaths recorded in years @ + 5 and
a + ¢ belonging to the appropriate age groups and then
weighting the averages according to the number of years
between a + 5 and a + ¢. Thus, letting

sD, +s=0.5[sD?}5 +sD? 1), (C4)

a+t X — —
> Dixia=w(t—5)sD; s+ ~5—w(t —5))sD; 410
j=a+5

(C.5)

Values of w(¢ —S5) are shown in table 181.

If the intercensal interval is between 10 and 15 years,
cohort deaths for the first 10 years can be obtained from
equations (C.2) and (C.3). Cohort deaths for the extra
period can then be obtained by using equations (C.4)



and (C.5) with a+5 substituted by a+10,7 -5 by
t—10; and x +5 and x 410 replaced by x +10 and
x +15, respectively. The necessary weights can still be
calculated from table 181 using as point of entry (1 —10)
years.

TABLE 18]. WEIGHTING FACTORS FOR APPROXIMATION OF
COHORT DEATHS FOR INTERVALS THAT ARE NOT MULTIPLES OF FIVE
Interval
(years) Weighting foctors
-$ wi~5) (1=5-w(t—5))

() ) (3)
1 0.9 0.1
2 1.6 04
3 2.1 0.9
4 24 1.6

Step 4(b): approximation of cohort deaths from a model
life table. If no information is available about the age
distribution of deaths over the intercensal period, model
life tables can be used to fill the gap. The exact level of
mortality is not critical, since the method will estimate
the “completeness” of death registration; but because
the age pattern of mortality is important, a model that
adequately represents the pattern of mortality experi-
enced by the population being studied and that roughly
approximates its level should be chosen.

What is required as input is an estimate of the number
of deaths occurring to an initial cohort during the inter-
censal period. The life-table sL, function can con-
veniently be used to synthesize the required number. If
the intercensal period is five years in length, the number
of deaths occurring to the cohort aged from x to x + 4
at the time of the first census is given by sL, —sL, ,s; the
proportion of the initial cohort dying during the period
is given by (sLy —sL, ,s)/sL,. In general, for any inter-
censal interval ¢, the number of deaths occurring during
the intercensal interval to the cohort aged from x to
x + 4 at the first census can be estimated as

a+t

2 D){,x +4 = (SN 1, )(SLx "SLx +t)/5Lx

j=a

(C.6)

where ;N 1, is the population aged from x to x + 4 at
the time of the first census (year a). If ¢ is not a multiple
of five, sL, ,, values cannot be read directly from the
Coale-Demeny model life tables, though they can be.
estimated from the tabulated values of /(x) for adjacent
ages that are multiples of five, as described in step 5 of
subsection B.2(b), using the coefficients and equation
given in table 172.

Step 5(a): calculation and plotting of population and
death ratios for five-year cohorts. Working with five-year
age groups, ong can calculate the ratios of the cohort
aged from x to x + 4 at the first census to its survivors ¢
years later, sN'1, /sN2, ,,, and of the intercensal deaths

of its members to its survivors ¢ years later,

a+t

2 D,{.x+4 /5N21+1-

j=a
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These points can then be plotted. Typically, they will be
very erratic, often to the extent that no linear trend can
be plausibly associated with them. If an examination of
their plot suggests that they do represent a line, its
parameters may be estimated by using group means (see
chapter V, subsection C.4). The slope can then serve as
an adjustment factor for the recorded number of deaths,
adjustment that will make them consistent with the cov-
erage of the first census, while the intercept is an esti-
mate of the coverage of the first census in relation to that
of the second.

Step 5(b): calculation and plotting of population and
death ratios for open-ended cohorts. Cohorts can also be
defined in terms of open-ended age intervals, that is, as
all those of aged x and over at the time of the first
census; and the ratios N1l(x +)/N2((x +¢)+) and

3 D ,/N2((x + t)+) can be calculated for values of

=a

]x of 5, 10, 15 and so on. Many of the irregularities
observed in the five-year ratios will be smoothed out by
this cumulation, and a group mean procedure (see
chapter V, subsection C.4) can be used to fit a straight
line to these points.

Step S(c): calculation and plotting of population and
death ratios for truncated cohorts. It is often useful to
exploit the advantages of cumulation without using
information for the elderly, whose age-misreporting may
be substantial. Therefore, initial cohorts aged between
x and 60, or x and 65, can be used for values of x that
are multiples of five. The use of truncated cumulation
will have a substantial smoothing effect, but the slope of
the resulting line may be highly sensitive to the upper
age-limit chosen.

Step 6: interpretation of results. Often, selective migra-
tion, age exaggeration and other reporting problems
may distort the slope of the fitted line. In such cases, this
method may not be very useful for mortality estimation
purposes. The estimate of the intercept, on the other
hand, appears to be more robust, so that the main value
of this method lies in the assessment it provides of the
relative coverage of successive censuses.

4. A detailed example
The method is applied to the case of Panama, 1960-
1970, since some of the necessary calculations have
already been made. The steps of the procedure are
given below.

Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. As no basis exists for making the neces-
sary adjustments, the basic population data used are
those presented in table 173. Deaths do not require any
adjustment either.

Step 2: grouping of data from the two censuses by cohort.
This step has been fully described in subsection B.2(c);
standard five-year age groups in both 1960 and 1970 are
used to define cohorts, since the intercensal interval is
approximately 10 years.

Step 3: adjustment for length of the intercensal interval.
As described in subsection B.2(c), the 1960 female popu-



TABLE 182. FEMALE POPULATION, 1960 AND 1970; AND REGISTERED DEATHS OF FEMALES,
1960, 1965 AND 1970; BY AGE GROUP, PANAMA

[Female population Registered deaths

- 1960* 1970 1960 1965 1970

Q) 3 4 ) ()
88 477 114 017 1670 1497 1 608
75 242 106 944 138 122 167
62 509 85253 63 64 71
53 468 73 381 76 84 95
44 826 63 010 106 102 9
37 149 50924 103 79 104
31609 40 885 87 91 94
28 216 36 115 98 12 116
23 550 29 409 99 111 110
20253 25 360 123 119 137
14 801 21775 111 141 161
11787 17 632 132 1S 186
10 101 13 004 147 188 233
10061 152 174 268
} 18 403 { 6 690 184 239 270
9873 513 742 913

2 Adjusted to approximate an intercensal interval of 10 years.

lation was moved back from the actual census date, 11
December 1960, to a date exactly 10 years before the
1970 census, 10 May 1960. Results are shown in column
(2) of table 182.

Step 4(a): cumulation of cohort deaths from registration
data. Registered deaths by age and sex are available for
Panama for 1960, 1965 and 1970; and these data can be
used to estimate intercensal deaths for each cohort. The
numbers of female deaths for each year and age group
are shown in table 182.

The approximate procedure for estimating cohort
deaths is too crude to give reasonable results for the
cohort aged 0-4 in 1960, so the cohort aged 5-9 is the
starting-point. Deaths occurring over the first five years,
from mid-1960 to mid-1965, to this cohort are estimated
as

1965
S Dh g =2.5[sDP® +5D (3% ]=2.5 (138 +64) = 505.
j= 1960

Deaths for the cohort aged 5-9 in 1960 over the second
five years, from mid-1965 to mid-1970, are estimated as

1970
S Di g =25(D5% +sD "=
j: 1965

2.5(64 +95)=397.5.

Cohort deaths for the 10-year period are then obtained
by summing the deaths during the two five-year periods:

1970 1965 970
S Dio= 3 Dso+ X Dsg=

j= 1960 j=1960 j= 1965
505 4-397.5=902.5.

The results for each cohort are shown in table 183. The
only age group that requires special treatment is the
open-ended interval 65 and over. For the period 1960-
1965, all the annual deaths of persons over 70 belong to
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this cohort, as do some of the deaths of persons aged
65-69. The total number of deaths of persons over 70
during the period 1960-1965 can be estimated by sum-
ming the deaths over age 70 in 1960 and 1965 and multi-
plying the sum by 2.5:

1965 .
S - 70Dh =2.5(,-10D %% +42-120D%%)
j = 1960

=2.5(184 +513 4239 4+-742)
=2.5(1,678)=4,195

where, as usual, ,_7D%, denotes the number of deaths
occurring during year j to persons aged 70 and over.

For age group 65-69, the average number of deaths
per annum between 1960 and 1965 is estimated: as
0.5(152+174), or 163; and since the cohort aged 65-69
in 1960 averaged 2.5 years of exposure to the risk of
dying during the period 1960-1965, the deaths of persons
aged 65-69 belonging to that cohort are estimated as
2.5(163)=407.5 during that period. Hence, the total

TABLE 183, ESTIMATED COHORT DEATHS, FEMALE POPULATION.
PANAMA, 1960-1970

Cobort age growp Number of cohort deaths
1960 1960-1965 1965-1970 1960-1970
) 2) (3) “
L JN 505.0 397.5 902.5
10-14........... 367.5 4575 825.0
15-19........... 4450 5150 960.0
20-24........... 462.5 432.5 895.0
25-29........... 485.0 5175 999.5
30-4.......... 497.5 555.0 1052.5
35-39...ceeen 522.5 620.0 11425
4044........... 545.0 700.0 12450
45-49........... 660.0 817.5 14775
50-54........... 565.0 870.0 14350
55-59..cccenen. 800.0 1 140.0 1940.0
60-64........... 802.5 1110.0 19125
65+ .oeenn. 4602.5 47738 9376.3




number of deaths during the period 1960-1965 for the
cohort aged 65 and over in 1960 is

1963 1965

S Dls+ S Dby =4,195+407.5= 4,602.5.

J=1960 J= 1960

Between 1965 and 1970, all the deaths at age 75 and
over belong to the initial 65+ cohort, as do a proportion
of the deaths of persons aged 70-74. Deaths at age 75
and over are estimated as

1970
sto-'rsbtls =2.5(,-1sD# +,_2sDR™)
j =

=2.5(7424913)= 4,137.5.

Deaths occurring to the cohort during the period 1965-
1970 at ages 70-74 can be estimated from the average
annual number of deaths at these ages, 0.5(239+270),
and the average exposure to risk, 2.5 years, giving
(2.5X0.5(239+270)=636.25. Hence, the deaths occur-
ring during the intercensal period to the cohort aged 65
and over at the beginning of it (1960) are

1970
S Dis, =4,137.5+636.25+4,602.5
j= 1960

=9,376.25

Step 5(a): calculation and plotting of population and
death ratios for five-year cohorts. Ratios of the initial to
the final cohort size, N1/N2, and of cohort deaths to
final cohort size, D /N2, are calculated for each cohort.

Figwre 23. Plots of cobort population ratios, N 1/N2, against ratios of cohort deaths
over population, D /N2, for various types of cohorts

(a) Cohorts aged from Xto X + 4
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Thus, for the cohort aged 5-9 in 1960,
sN1s/sN2ys=75,242/73,381 = 1.0254

1970
2 D5 9 /sN2is=902.5/73,381 = 0.0123.
Jj = 1960

Values for all cohorts are shown in columns (2) and
(3) of table 184 and are plotted in panel (a) of figure 23.
The points show a fair amount of variability; and the
straight line, fitted by group means, is heavily influenced
by the last three points and does not approximate the
others very well. The intercept, which estimates tiie cov-
erage of the first census in relation to that of the second,
is 1.0278, suggesting that the 1960 census was some 3 per

cent more complete than the 1970 census. The slope,
which estimates the coverage of the first census in rela-
tion to the completeness of death registration, is 1.0623,
suggesting that death registration was some 6 per cent
less complete than the enumeration of the 1960 popula-
tion. These estimates are by no means unreasonable,
but the estimate of the slope is sensitive to the fitting
procedure used; for instance, if the line is fitted by using
least squares (see chapter V, subsection C.4) the value of
the-intercept becomes 1.046, not very different from that
obtained by group means; but the slope is 0.914, a value
totally different from that associated with the line fitted
by using group means. Furthermore, the former value is
rather implausible, because it implies that the coverage
of deaths is more complete than that of the population.

TABLE 184. COHORT POPULATION RATIOS, N 1 /N 2, AND RATIOS OF COHORT DEATHS OVER POPULATION, D /N 2,
FOR DIFFERENT TYPES OF COHORTS, PANAMA, 1960-1970

Retios for cohorts aped from x o x +4 Ratios for cohorts aged x and over Ratios for.cohorts aged from x 10 64 .

Agex . :

i 1960 VLA Lo B L a/sN2 0 NIEHVNAG+10+) B NUG+10)+)  NUx,SO/NAx 41074 D) ((/NUx +10,74)

) 2 (L] ) ) ) )

L I 1.0254 0.01230 1.0849 0.06069 1.0651 0.03525

{1 JO— 0.9920 0.01309 1.0983 0.07163 1.0743 0.04060

1 JO—" 1.0500 0.01885 1.1239 0.08572 1.0949 0.04749
20, 1.0964 0.02189 1.1418 0.10188 1.1063 0.05474
. SO 1.0286 0.02768 1.1527 0.12112 1.1088 0.06313
30 1.0748 0.03579 1.1862 0.14634 1.1322 0.07347
kL SO 1.1126 0.04505 1.2176 0.17749 L1501 0.08519
L T 1.0815 0.05718 1.2513 0.21998 1.1638 0.09991
45 i 1.1487 0.08380 13158 0.28189 1.2016 0.14276
L) JE—— 1.1382 0.11035 1.3902 0.37004 1.2330 0.17770
L) U 1.1716 0.19282 1.5133 0.49687 1.3067 0.22999
1 T 1.5099 0.28587 1.7209 0.68156 1.5099 0.28587
[ 2 J— 1.8640 0.94969 1.8640 0.94969 - -

Parameters of straight lines fitted by group means to all points:

Intercept.....nrnicnrrieninnnne 1.0278 1.0409 1.0239
Slope 1.0623 0.9399 1.3916

Step 5(b): calculation and plotting of population and
death ratios for open-ended cohorts. The most convenient
way to cumulate is to begin with the higher ages and
work towards younger ones, beginning with the cohort
aged 65 and over in 1960. In this case, the values of
N1, N2 and D are exactly the same as those obtained in
step 4(a):

N1(65+)/N2(75+)= 18,403/9,873 = 1.8640

970
> Dis ,/N2(75+)=9,376.25/9,873 = 0.94969.
Jj=1960
For the initial cohort aged 60 and over,

N1(60+4)/N2(70+)= (18,403 +10,101)/(9,873 +

6,690)= 1.7209

1970

S Di, . /N2(70+)=(9,376.25+1,912.5)/
§=1960

(9,873 +6,690)= 0.68156.

The calculations continue in the same way, adding a
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new age group to the previous sums at each step, until
the youngest cohort, aged 5-9 in 1960, has been .added
in. Columns (4) and (5) of table 184 show the ratios
obtained, which are plotted in panel (b) of figure 23.

The linearity of the points has been greatly improved
by the cumulation, and the straight line fits the observa-
tions quite closely. However, the parameters of the
line—an intercept of 1.0409 and a slope of 0.9399—
imply a similar enumeration coverage differential
between the 1960 and 1970 censuses as that obtained in
step 5(a), but a quite different coverage of death regis-
tration, which is now estimated to overrecord deaths, in
relation to the 1960 census, by some 6 per cent.

Step 5(c): calculation and plotting of population and
death ratios for truncated cohorts. Cumulations similar to
those carried out in step 5(b) can also be made so that
the age groups considered are not entirely open-ended,
but rather exclude the last one or two age groups. Such
truncated cumulation can be useful if there is reason to
suppose that special types of errors affect the oldest age
groups. Estimates of completeness of death registration
will then refer to registered adult deaths excluding both
those at young ages and those at old ages. - '



The cumulations are carried out as before. However,
they begin not with the last, open-ended cohort, but with
the oldest cohort that one intends to include in the cal-
culations. In this case, the cohort aged 60-64 in 1960
was chosen as the upper limit. For this cohort, the ratios
required are the same as those calculated in step 5(a), in
which ratios were calculated for individual five-year age
cohorts. Thus,

N1(60, 64)/N2(70, 74)=

1970
S Dl s4 /N2(70, 74)= 1,912.5/6,690 = 0.28587.
Jj= 1960

For the cohort aged 55-64 in 1960,

10,101/6,690 = 1.5099

N1(55, 64)/N 2(65, 74)= (10,101 +11,787)/
(6,690+10,061)= 1.3067

1970
>\ Dis ¢ /N2(65, 14)= (1,912.5+
j:lm

1,940.0)/(6,690 +10,061) = 0.22999.

The cumulations continue downward with age, adding
the next younger age group each time, until age group
5-9, the youngest to be used, has been included. The
resulting ratios are shown in columns (6) and (7) of table
184 and are plotted in panel (c) of figure 23.

The plot shows that the degree of linearity of the

points is somewhere between that in the fully camulated
case and that in which no cumulation was used. The
intercept of the fitted line is similar to those obtained
carlier; but the slope is once more quite different, indi-
cating that registered deaths in the approximate age
range from 10 to 70 are only about 72 per cent complete
with respect to the 1960 census coverage.

D. ESTIMATION OF A POST-CHILDHOOD LIFE TABLE
FROM AN AGE DISTRIBUTION AND INTERCENSAL
GROWTH RATES

1. Basis of method and its rationale

Traditional intercensal survival techniques are greatly
complicated by intercensal intervals that are not exact
numbers of years in length or are not multiples of five.
Furthermore, the application of the method described in
subsection B.4, which uses cumulation to reduce the
impact of age-reporting errors, is very time-consuming
since it involves the projection of an initial population
using different mortality levels.

Preston and Bennett! propose a different method to
estimate adult mortality during the intercensal period
from the age distributions produced by two consecutive
censuses. The application of the method proposed is
simple whatever the length of the intercensal period, and

4 Samuel H. Preston and Neil G. Bennett, “A census-based method
for estimating adult mortality”. Population Studies, vol. 37, No. 1
(March 1983), pp. 91-104.
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it is not very senmsitive to certain types of age-
misreporting, particularly heaping. It is also innovative,
because it uses the two census age distributions to esti-
mate age-specific growth rates (rather than cohort sur-
vivorship probabilities) and then uses these growth rates
to transform the observed population age structure into
the equivalent of a stationary-population (life-table) sL,
function.

Bennett and Horiuchi® show that in any closed popu-
lation, at a particular time ¢, the number of persons aged
y,N(y), is equal to the number of persons aged
x, N(x), multiplied by the probability of surviving from
age x to age y, I(y)/I(x) measured at time ¢, and by an
exponential factor involving the integral of the popula-
tion growth rates also at time ¢ between ages x and y.
Thus,

NO)= N exp(— § raoda), (D)

which can be regarded as being equivalent to a stable
population relationship, except for the replacement of
the exponential of the stable growth rate times the
number of years between x and y, exp[ —(y —x)r], by
the exponential of the integral of the variable growth

rates between x and y, exp| — f;yr(u Mdu].

If N(x), N(y) and the set of r (u) values for u between
x and y are all known, then the period survivorship
probability, I(y)/I(x), can be estimated from equation
(D.1). However, in order to introduce a certain amount
of smoothing, Preston and Bennett propose the estima-
tion of the expectation of life at each age x, using exten-
sive cumulation both of the reported population and of
the observed age-specific growth rates.

In discrete terms, using five-year age groups, the basic
equation proposed by Preston and Bennett is

) y=5
2 5Ny CXP[S.O 2 Ty +2.55r),]

y=x u=x

N(x)

&=

(D2)

where N(x), the number of people aged x, is estimated
as
sNy _s exp[ —2.5sr, _s]+3sN, exp{2.5sr,]

Nex)= 10

(D.3)

The advantages of this method are: (a) its application
is relatively simple even in cases where the intercensal
period does not have a convenient length; (b) it makes
no assumptions concerning stability; (c) it introduces an
clement of cumulation, thus limiting the effects of age
errors, and (d) the use of growth rates climinates the
effects of age errors for which the pattern is the same at

SNeil G. Bennett and Shiro Horiuchi, “Estimating the completeness
of death re tion in a closed gopulauon Populaaon Index, vol. 47,
No. 2 (Summer 1981), pp. 207-2



both censuses. The estimates yielded by this procedure
are probably as reliable as those obtained from any of
the intercensal techniques available, and its simplicity of
application makes it extremely attractive.

2. Data required
The data required for this method are listed below:

(@) Two census enumerations with populations
classified by the same age groups (and sex), separated by
an intercensal interval which should not exceed 20
years;

(b) Sufficient information to adjust one census or the
other for net intercensal migration and territorial cover-
age, if necessary.

3. Computational procedure
The steps of the computational procedure are
described below. :
Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. See step 1 in subsection B.2(b).

Step 2: calculation of age-specific intercensal growth
rates. The rate of growth of the population in each five-
year age group from the first to the second census is cal-
culated as

st = [IN(sN2,)—InGN 1, )/t (D.4)
where s, denotes the intercensal growth rate of the
population of the age group from x to x + 4; sN2, is
the population aged from x to x +4 at the second
census; sN 1, is the population aged from x to x + 4 at
the first census; and ¢ is the length of the intercensal
interval in years (with a decimal portion if necessary).
Both age distributions must share the same open inter-
val, A +. The value of A should be set as high as the
two age distributions permit, since age exaggeration is a
less severe problem with this method than with the death
distribution methods described in chapter V.

Step 3: calculation of average intercensal age distribu-
tion. Equation (D.2) requires the use of an average
intercensal age distribution, sN,. An adequate approxi-
mation to this age distribution can be obtained by sim-
ply averaging the initial and final populations of each
age group. Thus,

sNy=0.5 N1, +sN2,). (D.5)

Step 4: cumulation of age-specific growth rates from age
5 upward. The calculation of the growth rate “inflator”
appearing in equation (D.2) requires the summation of
the age-specific growth rates, sr,, calculated in step 2. It
is normally convenient to begin the cumulation process
with age 5 and continue upward.

The only difficuity involved in the cumulation is the
treatment of the inflation factor associated with the open
age interval, 4 +. Although the relative importance of
the open interval is much less in this case than in the
conceptually similar death distribution techniques dis-
cussed in chapter V, because in the calculation of expec-
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tations of life the open interval is always present, it is
sound practice to minimize the influence of biases due
entirely to the weight it may be assigned in the inflation
factor. For this reason, a special procedure is suggested
to deal with the open interval.

If R(x) is used to denote the inflation factor for the
age group from x to x + 4, then, according to equation
(D.2),

x-$
R(x)=255,+50 3 o,
y=3

for x =10, 15, ..., A —5. In the case of x =5, (D.6)
becomes

(D.6)

R(5)=2.5srs (D.7)
-5

and forx =A, R(A)=p(A )+5.0A2 sty (D.8)
y=35

where p(4) is calculated by using an equation derived
from simulated stable populations and whose form is

p(A)=a(A)+b(A) r(10+)+c(4) In(N(@5+)/
N(10+)) (D.9)

where r(10+) is the growth rate of the population over

age 10, that is,
r(10+)=In[N2(10+)/N1(10+)})/t; (D.10)

N(104+) and N(45+) are the mid-period populations

aged 10 and over, and 45 and over, respectively, and
estimated as

N(10+)=0.5(N 1(10+)+N2(10+))
and -

N@5+)=05(N1(45+)+N2(45+)); (D.11)
and a(4), b(A) and c(A) are constant coefficients
depending upon the actual value of 4. Their values are
shown in table 185.

TasLe 185. COEFFICIENTS FOR ESTIMATION OF THE EQUIVALENT
GROWTH RATE OVER AGE A, p(A ). FROM THE GROWTH RATE OVER AGE
10 AND THE RATIO OF THE POPULATION OVER AGE 45 TO THE POPULA-
TION OVER AGE 10"

Coefficients
A,

W W W
0.229 2043 0.258
0.205 18.28 0.235
0.179 16.02 0.207.
0.150 13.66 0.176
0.119 11.22 0.141
0.086 8.77 0.102
0.053 6.40 0.063
0.025 4.30 0.029
0.006 2.68 0.006

Estimation equation:
pA)=a(A)+b(A)r(10+)+c(A)In(N{454+)/N(10+))




Step 5: reduction of age distribution to a stationary form.
The average intercensal age distribution obtained in step
3 is converted into a stationary population by multiply-.
ing each value sN, by the exponential of R(x). The
results can be regarded as “pseudo”sL, * values, analo-
gous to the values of sL, in the usual life table. How-
ever, the life-table radix corresponding to the pseudo
sL.* values is not known. Therefore, in general, the
pseudo 5L, * values cannot be manipulated as can nor-
mal s, values.

Recapitulating, the estimation of the sL,* values is
carried out according to the following equations:

sLy*= 5N, exp(R(x)) (D.12)

and

w-aLla*=u_41 Ny exp(R(4)). (D.13)
It should be noted that the sequence of sL,* values
obtained in this way is likely to be more erratic than one
derived from a set of sq, values calculated on the basis
of observed central mortality rates. In some instances,
the estimated 5L, * values may even increase with age.
Errors in the age distributions used as input are usually
the cause of this erratic behaviour. It is in order to
minimize the effects of such errors and also to generate a
measure that is comparable with those usually found in
other sources that the pseudo sL, * values are converted
into expectation of life in the manner described below.

Step 6: calculation of expectation of life. The expecta-
tion of life at age x, e,, is calculated by cumulating the
pseudo sL,* values obtained in the previous step and
dividing the sum by an estimate of /(x ), the number of
survivors to exact age x in the life table. An adequate
estimate of /(x) can be obtained as

I*(x)=(sLx* -5 —sLx*)/10.0

where the * has been added to remind the reader that
these are also pseudo /*(x) values with unknown radix.
Then, letting T, * be the number of person-years lived
‘above age x, its value is calculated as

(D.14)

A=5
To= sk *+u-aly*,
y=x

(D.15)

so by combining equations (D.14) and (D.15), e, can be
estimated as

€ = 10.0(T, *)/(sLy —s* —sLy *).

Once the life expectancy figures have been calculated,
usually for x ranging from 10 to 50, the levels they
imply in a model life-table system can be found, and a
final estimate of mortality can be obtained by averaging
the most reliable estimates of mortality level (those left
after discarding any clearly unsuitable values). In prac-
tice, the mortality estimates for values of x up to age 30
or so are reasonably consistent, but after age 30 or 35

(D.16)
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they often show progressively lower mortality as age x
increases. The best estimate of overall mortality may
therefore be an average of the levels associated with e,
for x ranging from 10 to 30, though this conclusion
implies that the results will not be a useful basis for the
selection of an age pattern of mortality, nor will they be
good indicators of the necessity of adjustment when
errors in the growth rates arise because of changes in
enumeration completeness.

4. A detailed example: Panama, 1960-1970

The case of Panama between 1960 and 1970 is used to
illustrate ‘the application of this method, so it will be
possible to compare its results with those obtained above
through the application of the intercensal-survival tech-
niques.

The basic data are shown in columns (2) and (4) of
table 173, but for the sake of completeness, they are
reproduced in columns (2) and (3) of table 186. Note
that when using this method there is no need to adjust
for intercensal intervals that are not round numbers of
years; therefore, the populations just as enumerated in
1960 and 1970 can be used.

The computational procedure for this example is
given below.

Step 1: adjustment for net intercensal migration and ter-
ritorial coverage. As described in step 1 of subsection
B.2(c), no adjustments are carried out in this case.

Step 2: calculation of age-specific intercensal growth
rates. The interval between the 1960 and 1970 censuses
was 9.41 years (see subsection B.2(c)). The growth rate
for each age group is therefore calculated by dividing
the difference between the natural logarithms of the final
and initial populations of each age group by 9.41. Thus,
for the population of age group 5-9,

srs= [ln(5N25) —-ln(;N 15)] /9.41

= (11.5801 —11.2463)/9.41 = 0.03547.

Results are shown in column (4) of table 186.

Step 3: calculation of average intercensal age distribu-
tion. An average age distribution for the intercensal
period is obtained simply by calculating the arithmetic
means of the initial and final populations of each age
group. Thus for age group 5-9,

sNs=05(N 15+5N25)=0.5(76,598 +
106,944)= 91,771.

Full results are shown in column (5) of table 186.

Step 4: cumulation of age-specific growth rates from age
5 upward. Cumulated age-specific growth rates are
required to estimate sL, for all values of x from §
upward. The average population aged 5-9 years, sNs,
needs to be inflated by 2.5 years of growth at the age-
specific growth rate for the 5-9 age group, namely, srs.
The average population aged 10-14 years, sN o, needs to
be inflated by five years of growth at the age-specific rate
for the 5-9 age group, srs, plus 2.5 years of growth at the



TABLE 186. [ESTIMATION OF INTERCENSAL MORTALITY FOR FEMALES, USING INTERCENSAL GROWTH RATES, PANAMA, 1960-1970 -

Stationary popwlation
Intercensal A Cumlated In five-; Al exact Ower Expeciation West
A -l groweh e i yor iy ol s Wife  menalty

X, x +4 1960 1970 'y 1960-1970 R(x) ,l. i 1%(x) T* e level
) 2) {3) [/ ) © l’) 8 15) {19 1)

0 90071 114017 0.02505 102 044 - - - - - -

b} 76 598 106 944 0.03547 91771 0.08868 100 281 - - - -
10ecereevesessecsermrsssssssesresns 63 635 85253 0.03108 74444 0.25505 96 072 19 635 1123232 57.21 16.9
15 54 431 73381  0.03175 63906 041213 96 500 19 257 1027 160 53.34 174
20 45634 63010  0.03429 54322 057723 96 753 19 325 930 660 48.16 16.8
P TS, 37818 50924 0.03162 44371 0.74200 93 185 18 994 833 907 43.90 16.7
30 32179 40885  0.02545 36532  0.88468 88 488 18 167 740 722 40.77 17.8
28724 36115 0.02433 32420 1.00913 88 935 17 742 652 234 36.76 18.1
23974 29 409 0.02171 26 692 1.12423 82 154 17 109 563 299 32.92 18.6
20618 25 360 0.02200 22989 1.23350 78 926 16 108 481 145 29.87 203
15 068 21775 0.03913 18 422 1.38633 73 691 15262 402 219 26.35 213

11999 17632 0.04090 14816 1.58640 72393 14 608 328 528 - -

10 283 13004 0.02495 11644 1.75103 67076 13947 256 135 - -

6737 10061 0.04262 8399 1.91995 57 286 12436 189 059 - -

5242 6 690 0.02592 5 966 209130 48 297 10 558 1317713 - -

6756 9873 - 8315 2.30650 83476 - 83476 - -

rate for the 10-14 group, sryo. Values of R(x) are there-
fore found by successive cumulation of the age-specific
rates following equations (D.6) and (D.7). For age
group 5-9,

R(5)= 2.5(sr5)= 0.08868.
For age group 10-14,
R(10)=2.5(sr10)+5.0(s7s)= 0.25505.
For age group 20-24,
R(20)= 2.5(s720) +5.0(sr5s +5r 19 +5r15)= 0.57723.

To calculate R(4 ), the inflation factor corresponding
to the open-ended interval, equation (D.8) is used in
conjunction with equation (D.9) to estimate p(4). The
latter uses as inputs the values of 7(10+), N(10+) and
N(@45+). The symbol r(10+) is the growth rate of the
population 10 and over during the intercensal period,
and it is calculated as any other growth rate, as is illus-
trated below:

r(10+)=In(N2(10+4)/N1(10+))/t

=1n(483,372/363,098)/9.41

=0.2861/9.41

=0.0304.
The values of N(10+) and N (45 +) are found by cumu-
lating the necessary entries in column (5) of table 186. In
the case of N(45+), one begins with ;N4 and continues
until N(75+). For N(10+), the starting-point is sNq.
The resulting values are N(10+)=423,238 and
N(454)=90,551. Hence,

o(715)= a(75)+b(15) (10 +)+c (75)In(N (45 +)/N(10+))
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= 0.053 +6.40(0.0304) +-0.063 In(90,551/423,238)
= 0.1504

and

70
R(15)=p(75)+5.0 3 s,

y=5

=0.1504+2.1561
= 2.3065.

The complete set of R(x) values is shown in column (6)
of table 186.

Step 5: reduction of age distribution to a stationary form.
Values of sL,* are now obtained for each x by multi-
plying the average population of the age group, sN,, by
exp[R(x)]. Thus, for age group 5-9, ’

sLs* = (91,771) exp(0.08868) = 100,281
and for age group 45-49,
sLas* = (22,989) exp(1.23350)= 78,926.

The open interval is treated in just the same way,
remembering that the result is an estimate of ,_4 L4 *, or
T4 *. Full results are shown in column (7) of table 186.

Step 6: calculation of expectation of life. The expecta-
tion of life at age x, e, , is equal to the person-years lived
from age x onward, T, *, divided by the number of sur-
vivors to age x, I/*(x). The value of /*(x) can be
estimated with sufficient accuracy by averaging adjacent
values of person-years lived, that is, sL, _s* and sL_*.
Thus, for age 10,

1%(10)= GLs* +sL10*)/10.0
= (100,281 +96,072)/10.0= 19,635.



Note that because 5 is the lowest value of x used in the
calculations and no valu:h:f sLo® bi: mobume:.d I‘I(IO) is
the tion that can t may
he wyonngz e that no value of sLo* is obtained
mfonp 0-4 is generally severely distorted by
age-misreporting.  Similarly, the highest
age for wlnch an /*(x) value can be estimated is age
A =8$, since no value is available for sL,*. Column (8)
of table 186 shows the range of / ‘(x)values.

The 1, * column is calculated by cumulating from age

A downward the successive sL, * values. Thus, for 75,

Trs* = o-15L15* = 83,476
and for 50,
Tsp*=Tss*+sLls*=

Full results are shown in column (9) of table 186.

The ex tion of life at each age x from 10 to 50 is
then calculated by dividing each T * by the correspond-
ing I*(x). Thus, for x = 10,

eo= Tp*/1*(10)= 1,123,232/19,635 = 57.21,

328,528 473,691 = 402,219.

whereas for x = 50,
eso= T'sp*/1*(50)= 402,219/15,262 = 26.35.

The figures for expectation of life shown in column
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(10) of table 186 can be compared with those of a model
life-table system. Given the assumption made earlier
that the West family provides the best fit to the age pat-
tern of mortality in Panama, the West mortality level
implied by each female e, in column (10) has been
found by interpolation, the results being shown in
column (11).

It will be noticed that the first five values, for the age
range from 10 to 30, are more or less consistent, the
average level being 17.1. Above age 25, however, the
mortality levels rise steadily with age, no doubt as a
result of age exaggeration. It is interesting to compare
the results obtained by this method with those obtained
by the projection technique using cumulated values and
described in subsection B.4(d). The similarities between
the mortality estimates given in column (11) of table 186
and those in column (16) of table 180 are striking. In the
latter case, as in the former, a series of five approxi-
mately consistent estimates of mortality level, averaging
a level of 17.4 instead of 17.1, is followed by a pro-
nounced upward trend in level with age. The present
technique may be preferred on two grounds, the first
being its simplicity of application and the second that it
does not have the drawback of giving different results
according to the direction, forward or backward, in
which the projection is performed. It must be pointed
out, however, that the estimated adult mortality level of
17.1, which is the best available from table 186, is to
some extent distorted by the age exaggeration detected,
since it inflates the 7, values at all ages.





