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Overview

I The work I have been primarily involved with is subnational estimation of
health and demographic indicators in low and middle income countries –
currently working on producing Admin2 estimates of U5MR, as the official
UN IGME estimates.

I In general, most of input data is from household surveys and censuses.

I I will briefly discuss: the modeling framework, aggregation, computing,
visualization.

I In general, the data are available at different temporal and spatial scales,
and (if relevant) for different age groupings.

I If we model at the lowest resolution, we can aggregate consistently to
inform on the common linking parameters θLINK.

I Smoothing over space, time and age is feasible, but care required for
identifiability, and to prevent computation blowing up.
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Data Aggregation

I In (mostly) older surveys, GPS locations not available – to combine data
we need to integrate over areas – Marquez and Wakefield (2020) develop a
method to do this, based on a space-time Gaussian process (GP).

I Show the superiority over previous approaches used by IHME (Burstein
et al., 2019) or WorldPop (Utazi et al., 2018).
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Figure 1: Application: Dominican Republic U5MR estimation (Marquez and
Wakefield, 2020). The points represent the cluster locations for 2007 and 2013 DHS.
Labeled counts are number of masked clusters in each region for the 2014 MICS.
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Comparison of Temporal Models: Survey Weighted

Figure 2: National 5-year periods (left) and yearly U5MR estimates for Ecuador – in
both cases the data are available as 5-year averages, but for the estimates on the right
we have an underlying 1-year time series model (a RW2 model). Methods described in
Mercer et al. (2015) and Li et al. (2019).
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Computing

There is computationally machinery to analyze complex stochastic systems:

I MCMC: Avoid if you can as harder to automate and for dependent data
can be very computationally expensive.

I Integrated Nested Laplace Approximations (INLA) (Fong et al., 2010).

I Template Model Builder (TMB) (Osgood-Zimmerman and Wakefield,
2020) – extensive simulations to examine accuracy of TMB and INLA.

I Provide code that allows results to be reproduced — we use the SUMMER

package.

5 / 24



Modeling

I The majority of household surveys use a stratified, two-stage cluster
design.

I The stratification is usually based on the cross of administrative areas and
urban/rural.

I The clusters are households within enumeration areas.

I Paige et al. (2020) show that ignoring the stratification leads to bias, and
ignoring the clustering, inappropriate uncertainty measures.

I Also show that a discrete spatial model was superior to a continuous
spatial model, both described in Wakefield et al. (2019), when the target
of inference was Administrative areas – complex is not always best!

I Generative models (full probability models that could simulate the raw
data we see), are preferable as they offer a common framework for
aggregate data and allowing modeling of biases.

I Are the biases associated with a particular data source constant over space
or time?
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Bias Modeling
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Figure 3: “Bias” in SBH data, as compared to FBH data, in Kenya, from Godwin and
Wakefield (2020).
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Modeling Strategy for U5MR: Incorporating Different Data Types

I To leverage information in countries without full VR systems – use data on
full birth history (FBH), summary birth history (SBH), incomplete VR
(IVR) systems.

I Have a coherent framework for all of the data sources, for example,

p(YFBH,YSBH,YIVR | θFBH, θSBH, θIVR︸ ︷︷ ︸
Data-Type Specific Parameters

, θLINK)︸ ︷︷ ︸
Common Parameters

= p(YFBH|θFBH, θLINK)p(YSBH|θSBH, θLINK)p(YIVR|θIVR, θLINK)

I The common link parameters θLINK are the skeleton that holds everything
together.

I We may approximate each of the constituent models, but make an effort
to get the framework right – not all approaches do this...
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Example: Modernizing the Brass Method

Auxiliary Data Approach (Wilson and Wakefield, 2020a):

Pr(Dm|Bm, cm, q) =
∑
Bm

∑
Dm

Pr(Dm|Bm, q)︸ ︷︷ ︸
Product of Binomials

×Pr(Bm|Bm, cm)︸ ︷︷ ︸
Births Distribution

.

Requires MCMC and relatively slow.

Poisson Approximation (Wilson and Wakefield, 2020b):

Dm|Bm, cm, q ∼ Poisson

(
Bm

Am∑
a=1

cm(a)q(a)

)
.

Computation (with TMB) went from > 7 days to 10 minutes.
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Figure 4: Fertility probabilities (left), and U5MR, q(5), over time (right) used in a
simulation.
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Subnational U5MR Model

Sampling model:

Ya,c,k(t)︸ ︷︷ ︸
Deaths in age group a

| hm,c,k(t) ∼ BetaBinomial︸ ︷︷ ︸
Overdispersed binomial

( nm,c,k(t)︸ ︷︷ ︸
At risk months

, hm,c,k(t)︸ ︷︷ ︸
Monthly hazard

, d︸︷︷︸
Scale

)

with
Hazard Model:

logit[ hm,c,k(t) ]︸ ︷︷ ︸
Year t, month m,
cluster c, survey k

Hazard at start of month m

= log BIASHIV
c,k(t) Adjustment for HIV

+ αa[m] Age specific intercepts: Fixed effects

+ βk Survey fixed effects: With sum-to-zero constraint

+ ε(t) IID shocks, random effects in year t : N(0, σ2
YEAR,IID)

+ γa?[m](t) Yearly smooth, age band a[m]: RW2(σ2
YEAR,RW2)

+ Si [c] Spatial term for area i containing cluster c: BYM2(σ2
AREA, φAREA)

+ δi [c](t) Interaction for year t, area i : ICAR-AR1(σ2
INTER, ρYEAR)
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Subnational U5MR estimates for Malawi, based on DHS data.
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Subnational U5MR estimates
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Figure 5: Subnational U5MR estimates for Blantyre, Malawi, based on DHS data, with
comparison to IHME Local Burden of Disease estimates.
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Comparison of Temporal Models, Fraction of under-5 Urban Population
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Figure 6: Posterior median fits from 6 models, on the original scale, with estimated
common variance.
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Comparison of Temporal Models: Survey Weighted
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Figure 7: Posterior median fits from 6 models, on the original scale, with known
variances.
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Visualizing Uncertainty (Dong and Wakefield, 2020): Continuous Color
Scale Maps

Figure 8: Posterior median MCV1 coverage at state, LGA and pixel level. .
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Visualizing Uncertainty: Continuous Color Scale Maps with Uncertainty

Figure 9: Top row: posterior median MCV1 coverage at state, LGA and pixel level.
Bottom row: width of 90% credible interval at state, LGA and pixel level.

16 / 24



Hatching for Uncertainty

Figure 10: Denser hatching implies more uncertainty.
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Ridgeplots for States

Figure 11: .
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Rankings for States

Figure 12: .
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Posterior Probability of Achieving a Threshold

Figure 13: Posterior probability of MCV1 being at least 50% across Nigerian LGAs.
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Discrete Color Scale Maps

Figure 14: If we want a 70% chance that the probability of a randomly selected area
bing of the right color, how many colors are we allowed? The ATCP is the Average
True Classification Probability.
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Discussion

I A statistical modeling framework is important – methods are published in
statistical journals. Reproducible methods need more than a flowchart.

I Covariate modeling can be beneficial but covariates are often modeled
themselves.

I Flexible machine learning techniques are appealing, but accounting for
uncertainty is tricky.

I Model assessment is tricky, because one has to respect the dependencies
in the data and the design (e.g., stratification).

I Short courses materials, papers, teaching videos, SUMMER package details,
Shiny app here:

http://faculty.washington.edu/jonno/space-station.html
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Fixing up Zero Counts

cluster random spatial

0.3
0.5

0.7

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

Ignore

Resample

Ecological

Mixture

Unmasked

Ignore

Resample

Ecological

Mixture

Unmasked

Ignore

Resample

Ecological

Mixture

Unmasked

Bias

M
od

el

Figure 15: Comparison of mixture model based on a GP, with ecological and
resampling methods, from Marquez and Wakefield (2020). 24 / 24
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