The population of South-East Asia (including Ceylon and China: Taiwan) 1950-1980.

United Nations.
New York, United Nations, Dept. of Economic and Social Affairs, 1958.
http://hdl.handle.net/2027/mdp. 39015025348981

Public Domain, Google-digitized

http://www.hathitrust.org/access_use\#pd-google

We have determined this work to be in the public domain, meaning that it is not subject to copyright. Users are free to copy, use, and redistribute the work in part or in whole. It is possible that current copyright holders, heirs or the estate of the authors of individual portions of the work, such as illustrations or photographs, assert copyrights over these portions. Depending on the nature of subsequent use that is made, additional rights may need to be obtained independently of anything we can address. The digital images and OCR of this work were produced by Google, Inc. (indicated by a watermark on each page in the PageTurner). Google requests that the images and OCR not be re-hosted, redistributed or used commercially. The images are provided for educational, scholarly, non-commercial purposes.

Future Population Estimates by Sex and Age

REPORT III

THE POPULATION OF SOUTH-EAST ASIA (INCLUDING CEYLON AND CHINA : TAIWAN) 1950-1980

UNITED NATIONS

The following studies have been prepared to date by the Population Branch of the Bureau of Social Affairs.

ST/SOA/SER.A. POPULATION STUDIES

Reports on interrelationships between population growth and economic and social changes
No, 17. Determinants and consequences of population trends.
No. 20. Population growth and the standard of living in under-developed countries.
No. 26. The aging of populations and its economic and social implications.
Reports on fertility and mortality
No. 13. Foetal, infant and early childhood mortality. Vol. 1. The statistics.
No. 13/Add.1. Vol. 2. Biological, social and economic factors.
No. 22. Age and sex patterns of mortality.
No. 27. Recent trends in fertility in industrialized countries.

Reports on migration

No. 5. Problems of migration statistics.
No. 11. Sex and age of international migrants : statistics for 1918-1947.
No. 12. Economic characteristics of international migrants : statistics for selected countries, 1918-1954.
No. 24. Analytical bibliography of international migration statistics, 1925-1950.
Reports on population estimates
No, 3. World population trends, 1920-1947.
No. 10. Methods of estimating population.
No. 16. Future population estimates by sex and age.
Report I: The population of Central America (including Mexico), 1950-1980.
No. 21. Future population estimates by sex and age.
Report II: The population of South America, 1950-1980.
No. 23. Methods of estimating population.
Manual II : Methods of appraisal of quality of basic data for population estimates.
No. 25. Methods of estimating population.
Manual III : Methods for population projections by sex and age.
No. 28. The future growth of world population.
No. 30. Future population estimates by sex and age.
Report III: The population of South-East Asia (including Ceylon and China : Taiwan), 1950-1980.

Reports on methods of population statistics and analysis

No. 4. Population census methods.
No. 6. Fertility data in population censuses.
No. 7. Methods of using census statistics for the calculation of life tables and other demographic measures. With
application to the population of Brazil, by Giorgio Mortara.
No. 9. Application of international standards to census data on the economically active population.
No. 18. Training in techniques of demographic analysis.
Reports on the population of Trust Territories
No. 1. The population of Western Samoa.
No. 2. The population of Tanganyika.
No. 14. Additional information on the population of Tanganyika.
No. 15. The population of Ruanda-Urundi.
Demographic Dictionary
No. 19. Multilingual demographic dictionary-provisional edition (replaced by No. 29).
No. 29. Multilingual demographic dictionary.
(Three sections: English, French, Spanish. Fourth section, Russian, to be prepared.)

ST/SOA/SER.N. POPULATION BULLETIN

No. 1. December 1951.
No. 2. October 1952.
No. 3. October 1953.
No. 4. December 1954.
No. 5. July 1956.

MISCELLANEOUS

ST/SOA/18 International research on migration.
ST/SOA/19 Elements of immigration policy.
ST/SOA/29 Survey of legislation on marriage, divorce and related topics relevant to population (mineographed).

Future Population Estimates by Sex and Age

REPORT III

THE POPULATION OF SOUTH-EAST ASIA [NCLUDING CEYLON AND CHINA : TAIWAN) 1950-1980

UNITED NATIONS

Department of Economic and Social Affairs
New York, 1958

```
HE
    <0
.V52
    no.30
    cop.2
```


NOTE

Symbols of United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document.

UNITED NATIONS PUBLICATION
Sales No.: 59. XIII. 2

Price: \$U.S. 1.75; $12 / 6$ stg; Sw. fr. 7.50. or equivalent in other currencies)

FOREWORD

This is the third of a series of reports dealing with future population estimates by sex and age. These reports are being prepared in response to requests of the Population Commission, made at its seventh session and reiterated at its eighth and ninth sessions. Previous reports, on the populations of Central America and South America, were published in 1954 and 1955, and a recent publication presents rough estimates of the future population of the world and its major regions. ${ }^{1}$ Another report, dealing with future population estimates in other parts of Asia, is now in preparation.

For the purpose of preparing comparable estimates of future population for various areas, including those with defective demographic statistics, the Population Branch of the United Nations has elaborated certain methods presented in detail in Manual III. Methods for Population Projections by Sex and Age (ST/SOA/Series A, No. 25, United Nations, 1956). Since that report, more experience has been gained in estimating problems for populations with scant statistical documentation, leading to the development of additional methods, to be presented in a forthcoming manual. In the present report, the specific methods used are briefly indicated.

Results of computations are here presented and discussed for all countries and territories of South-East Asia, defined as that region of Asia which lies to the east of India and to the south of China. A problem common to all countries of this area is the unequal distribution of population in space. Since, in this context, consideration of the demographic effects of internal migration acquires an added significance, a special calculating model, permitting inferences on this subject, has also been developed.

Acknowledgement is made to Dr. W. F. Wertheim, Mr. A. van Marle and Mr. M. P. S. Tjondronegoro of the University of Amsterdam, to Mr. N. Hong of the Institut national d'études démographiques, Paris and to Dr. You Poh Seng of the University of Malaya, for advice and consultation relating to demographic trends and estimates in Indonesia, Viet-Nam, Malaya and Singapore. Not all the views of these consultants are necessarily reflected in the present text. The United Nations is also indebted to Dr. L. D. Stamp of the University of London and Professor E. H. G. Dobby of the University of Washington for kind permission to reproduce some of their maps.

[^0]
iv

CONTENTS

Page
FOREWORD iii
Introduction
General note 1
Subject and organization of this report 1
Section I. Future Population - Conservative assumption
The conservative assumption 3
\forall The results: total population 4

* Changes in population structure 6
- Estimated changes in crude birth rates and crude death rates 9
Section II. Future Population - Alternative assumption of low mortality
Reliable evidence of recent rapid mortality decline 12
Factors affecting mortality 13
Countries with deficient death registration 13
Hypothetical corrections of recorded death rates 14
Comparison of hypothetically corrected death rates with those implied in the conservative population projections, 1950-1955 16
The modified mortality assumption 17
Results of the modified projection 18
Section III. Speculative assumption of a fertility decline
Fertility and culture 20
Marriage 21
Sterility 22
Intervals between successive births 22
Rates of fertility decline observed in other areas 23
The particular assumption adopted 23
Application of the assumption 24
Total population 1960-1980 according to alternative projections 24
Changes in age structure resulting from declining fertility 27
Section IV. Other speculative projections: Burma, Viet-Nam, Singapore and Malaya

1. Burma 29
2. Viet-Nam 30
3. Singapore (fertility) 34
4. Malaya and Singapore (migration) 35
Section V. Some implications of South-East Asian population trends
Page
A. General considerations 38
5. Population density 38
6. Economically active population 39
7. Main branches of economic activity 40
8. Land use 40
9. Man : land ratios (tentative measure) 41
10. Rice production 43
11. Urban development 46
12. Foreign trade 47
13. Education 48
Summary 48
B. Geographic distribution of the population 49
Section VI. Demographic effects of migration for land settlement
14. Method of study 55
15. Basic model: the complete transfer of a community 56
16. Households 63
17. Effects of migratory streams variously recruited 63
18. Methods of calculation 64
19. Results: the extreme cases 64
20. Results for intermediate patterns of migration 71
Section VII. Effects of internal migration on population distribution and growth
The future population of Java and Sumatra, according to conservative assumptions 84
Possible alternative population trends in Java in the absence of migration 86
The type of migratory movement 87
The volume of the migratory movement 88
The question of the optimum rate of migration 89
Section VIII. South-East Asia's population in a historic perspective
21. A rising share in the world's population 92
22. Earlier centuries 94
23. The present century 94
24. Economic factors 95
25. The basically social nature of the problem 96

ANNEXES

I. Synoptic tables on data, methods and estimates used in the projection of the populations of South-East Asian countries99
II. Detailed results of conservative population projections for countries of South-East Asia 103
III. Detailed results of population projections in which low and rapidly declining mortality is assumed 131
IV. Detailed results of population projections in which a future decline of fertility is assumed 153

FIGURES
Page
I. South-East Asia, orientation map iv
II. Percentage sex-age composition of populations of selected South-East Asian countries, 1950-1980. 7
III. Asia. Distribution of population 39
IV. South-East Asia. Density of population 50
V. Ceylon, China (Taiwan), Malaya and Singapore. Density of population. 51
VI. South-East Asia. Distribution of rice cultivation 53
VII. Percentage of population assumed to remain at old settlement, by age, at time when migration begins 57
VIII. Projection by sex and age of population of a community of initially 10,000 inhabitants, being transferred from one settlement to another, in the course of 30 years 60
IX. Percentage sex-age composition of populations resulting from the migration of pioneers only, in com- parison with the stable population of origin 68
X. Percentage sex-age composition of populations resulting from migratory contingents recruited by varying criteria, compared with the stable population of origin (years 5,15 and 30 after beginning of migration) 76

INTRODUCTION

General note

The present report, dealing with the future population of South-East Asia, is addressed to various kinds of readers. Some, interested mainly in economic, social or other problems, require a simple set of recommended population estimates, trusting the good judgement of those by whom the estimates are recommended. To other readers, the detailed factors underlying population trends, or the quality of the statistics by which they are documented, are of central interest. To satisfy every possible user of this study, both a brief and a rather lengthy report would be needed. The solution adopted here is an intermediate one.
The reader who is least sophisticated in matters of population analysis may, if he wishes, concentrate his attention on the conservative population projections presented and discussed in Section I and in the tables of Annex II. Use of these projections is recommended since they have been prepared with an intention to avoid exaggeration, and with a certain reluctance to accept as evidence some recent observations which are as yet not well founded. The conservative projections are not necessarily the best which can be made in the present state of knowledge, but they are, comparatively, of a less speculative nature than the various alternatives which have also been considered.
Uncritical acceptance of the conservative projections, however, will not satisfy some other readers. In the conditions of South-East Asia, so far as they are known to us, many alternative projections merit equal consideration, although the use of these involves a choice based on a certain amount of reasoning. It is hoped that this report, in the form which has been adopted, most nearly satisfies the needs of the more critical readers.
Because of the inaccuracy and incompleteness of the population statistics of many South-East Asian countries, rather elaborate methods often had to be employed in order to establish the estimates on which the present projections are based. A detailed description of these methods, which would have added unduly to the length of the report, is furnished in a separate document. ${ }^{1}$

Subject and organization of this report

The future population estimates presented and discussed in this publication are for the areas of British Borneo, ${ }^{2}$ Burma, Cambodia, Indonesia, Laos, Malaya,

[^1]the Philippines, Portuguese Timor, Singapore, Thailand, and Viet-Nam ${ }^{3}$ which, taken together, constitute SouthEast Asia proper. In addition, the future populations of Ceylon ${ }^{4}$ and China (Taiwan) are likewise dealt with here, as conditions in these two islands bear some analogy with those elsewhere in South-East Asia.

Though fairly good for a few areas, the population statistics of most countries in the region are rather fragmentary and inaccurate. Many methodological problems had to be overcome in deriving basic estimates suitable for a projection. Some of the projections are rather tentative, as the basic estimates rest on a weak statistical documentation. Annex I of this report brings together some facts concerning the nature of the statistics used, and the basic estimates serving as background for projection into the future.

Carried to the year 1980, the projections begin with 1950 as the base year though, at the time of writing (1958) this date already lies eight years in the past. To adopt 1950 as the base date appeared necessary because, in several of the countries, more or less time has elapsed since a bench-mark was established by the last population census. ${ }^{5}$ Even for current dates, population estimates, if they were to be comparable, had to be made by means of projection. The situation in this respect is likely to improve a few years hence, when the detailed results of censuses planned to be taken around 1960 become available. ${ }^{6}$

Population changes occur as a result of births, deaths and migrations. International migration, though important in South-East Asia's past, is no longer likely to assume large proportions in the future; the projections, therefore, are carried out only on the basis of

[^2]estimated rates of fertility and mortality, and assumed future changes therein. ${ }^{7}$

Current rates of fertility and mortality have been estimated by various methods the detailed explanation of which would be too lengthy for this report. These rates, and future changes therein, are applied by the "component method" specifically to the several sex-age segments into which the population is divided. This method is more accurate in its results than the mere use of crude birth rates and death rates applied to the total population, and results are obtained directly for distinct sex-age segments of the future population. The results, therefore, are more informative than figures on total population only. ${ }^{8}$

The future estimates depend on some assumption of orderly future change in rates of fertility and mortality. In this context, two remarks are necessary. First, the projections are not applicable where unforeseen catastrophic events, such as war or severe political disturbance, provoke abrupt future changes in fertility and mortality trends. Secondly, estimating the particular future trend in fertility and mortality is a matter of choice and depends on an opinion concerning future social and economic change, and the manner in which such change is likely to affect population trends.
There is, of course, a recognized need for future estimates which, in the opinion of experts, are " most likely". But to exercise good judgement in this matter is far from easy. Neither the detailed economic and social prospects of South-East Asian countries, nor the relationship of these to human fertility and mortality, are well known. No strong opinion can be held in the present state of knowledge. As the " most likely" future course cannot be very well indicated, prudence requires that those future estimates be recommended for use in which, at least, exaggeration is avoided.

The conservative projections, presented and discussed in the first section of this report, should be interpreted with this latter understanding; here, the general assumption is one of constant fertility, and of such a rate of decline in mortality as, in view of world-wide observations for recent decades, now appears normal.

[^3]Some vital statistics for the most recent years provide, though unreliably, an indication that mortality in some countries is now declining with unprecedented speed. The evidence will remain controversial until verified with the detailed results of future censuses, but cannot be dismissed entirely. If an optimistic view is held concerning present and future conditions as they affect mortality, then the alternative or low mortality projections presented in Section II may be preferred, but caution is advised in their use.
There is as yet no indication of an eventual decline of South-East Asian birth rates, but this possibility, if only because of its theoretical interest, has not been disregarded. Future population estimates in which such a development is taken into account are presented and discussed in Section III, but are regarded as speculative only.

In the case of a few countries, special considerations have made it desirable to consider some additional alternative projections, discussed in Section IV.

The expected rapid population growth of South-East Asia will underscore a variety of social and economic problems meriting detailed study. The nature of some of these is briefly indicated in Section V, together with an examination of the existing wide disparities in regional population densities within each country.

One of the means of solving such problems is internal migration. In almost every country of South-East Asia, spontaneous and government-assisted movements occur and are being contemplated. The possible demographic effects of such movements have been sketchily calculated in Section IV, as additional background for a discussion of population problems which the projections seem to indicate.
Indonesia is the largest country of the area under study. It is also the one in which the unequal distribution of population comes most sharply into focus. This country, therefore, has been selected as an illustration of how the estimated effects of internal migration can be speculatively applied. The discussion is presented in Section VII; similar speculations might also be made in respect of parts of other countries.

Section VIII places the results of the projections in the perspective of a longer time-period and of the changing role of South-East Asia in the world.
In Annex I, the methods used in this report are described summarily. Detailed results of the "conservative ", the " low mortality" and the "declining fertility" assumptions are tabulated in Annexes II, III and IV.

Section I

FUTURE POPULATION - CONSERVATIVE ASSUMPTION

In a recent United Nations publication on future population trends throughout the world, it was estimated that the population of South-East Asia ${ }^{1}$ may increase from 171 million in 1950 to 316 million in 1980, it being admitted that mortality may have been assessed too high. ${ }^{2}$ The more detailed calculations of the present report show that, with a conservative assessment of the mortality trend, South-East Asia's population may rise, in these thirty years, from 171 million to 339 million or, if Ceylon and China (Taiwan) are included, from 186 million to 379 million. In short, a doubling of the regional population can reasonably be expected within the period reviewed.

The conservative assumption

Constant fertility and declining mortality characterize the present trend in a majority of the world's populations. A cursory study of South-East Asian demographic statistics shows that populations in this region fall into the same general category except for a disturbance during and after the Second World War, when population growth was temporarily slowed down. Few of the statistics on birth and death registration are trustworthy, and their accuracy may have varied with time; the record of available census statistics is more reliable.
Countries in which three or more successive censuses have been taken have shown the following inter-censal rates of growth (expressed in percentages per annum):

Country	Perlod	Rate
Burma $^{a} \ldots$. .	$1911-1921$
	$1921-1931$	0.87
		$1931-1941$
Ceylon \ldots	1.05	
	$1911-1921$	0.92
	$1921-1931$	1.67
	$1931-1946$	1.52
China (Taiwan).	$1946-1953$	2.62^{b}
	$1920-1930$	2.31
	$1940-1940$	2.49

[^4]| Country | Period | Rate |
| :---: | :---: | :---: |
| Malaya | 1911-1921 | 2.17 |
| | 1921-1931 | 2.70 |
| | 1931-1947 | 1.58 |
| | 1947-1957 | 2.49 |
| Philippines | 1903-1918 | 1.91 |
| | 1918-1939 | 2.11 |
| | 1939-1948 | 1.91 |
| Singapore | 1911-1921 | 3.26 |
| | 1921-1931 | 2.91 |
| | 1931-1947 | 3.20 |
| | 1947-1957 | 4.54 |
| Thailand | 1911-1919 | 1.36 |
| | 1929-1929 | 2.20 |
| | 1929-1937 | 2.96 |
| | 1937-1947 | 1.89 |

- Increase in enumerated population. Prior to 1941, enumeration was not carried out among small population groups inhabiting certain remote hill tracts.
${ }^{b}$ Censuses not corrected for under-enumeration
c Including armed forces in 1956.
The record is one of accelerating growth in all seven areas, except for slow-downs in Ceylon (1931-46) Malaya (1931-47), the Philippines (1939-48) and Thailand (193747) associated with the Second World War; in Singapore, the rapid increase of 1911-21, caused largely by immigration, was not matched in 1921-31, but has been exceeded more recently.
Ceylon, Malaya and Singapore and recently also China (Taiwan), have experienced considerable immigration, but in Burma, the Philippines and Thailand, migration was of secondary importance only. Thus, except for a temporary slow-down in the 1940's, acceleration of population growth must have occurred either because of a rise in birth rates or because of a fall in death rates.
A change in birth rates is readily observable in the age composition as recorded at a census. But age structure, in most of these countries, has been remarkably constant. In particular, the proportion of children has changed but little. Hence, falling death rates, rather than rising birth rates, have produced this increasing rate of growth.
The particular conditions governing changes in death rates and birth rates will be examined more closely in Sections II and III, where alternative assumptions for population projections are taken into consideration. The conservative assumption used in the present section implies:

1. Constant fertility, and
2. Mortality decline at a rate which, from average observations for the world as a whole, appears normal. In particular, it is assumed that expectation of life at
birth, for high and moderate levels of mortality, increases by two and one-half years every five years. ${ }^{5}$
It remains to be determined from which estimated past level of fertility and mortality the future levels are to be derived. The statistics available for these estimates are of varying kinds and varying recency, and different methods of estimating had to be used. Little reliance could be placed on estimates derived from the 1940-46 period, when both fertility and mortality levels, as affected by the war, may have been atypical, providing no sound basis for a future projection.

As verified by examination of available data for some countries, pre-war and post-war levels of fertility, in most instances, may have been very nearly the same. The fertility level has been estimated from vital statistics (adjusted for incomplete registration), data on age composition at the census, or a seemingly suitable population model, for a very recent period if possible, otherwise for periods preceding 1940. These estimates have then been retained for projection into the future. ${ }^{6}$

Care has likewise been taken to avoid basing a mortality estimate on the 1940-46 period, when conditions may have been abnormal. But estimates of the recent mortality level could be made directly only for those countries where tests have proved that death registration approaches completeness: Ceylon, China (Taiwan), Malaya and Singapore. Even for those four areas, some adjustment was needed to account for an estimated residue of unrecorded deaths.
For Burma, Indonesia, the Philippines, Thailand and Viet-Nam, valid estimates of the mortality level, by various methods, could be made directly only for periods preceding 1940. As suggested by data on the age composition of deaths recorded in the Philippines and Thailand, the 1940 mortality level, after some excess mortality during the war, was reached once more around the year 1950. Hence the general assumption was made that "normal" progress in mortality, ${ }^{7}$ interrupted by the war, was resumed from 1950 onward. Whether, in fact, mortality has declined at a different rate after 1950 has been left undetermined for the purpose of the conservative projection: available statistics are not reliable, and changes occurring in a short period only do not provide a very sound basis for projection into the distant future. It is, nevertheless, possible that mortality has been somewhat over-estimated in several instances. ${ }^{8}$

For British Borneo, Cambodia, Laos and Portuguese Timor, the level of mortality has been conjectured either by analogy or from a population model of apparently

[^5]good fit. ${ }^{9}$ In these instances, the errors in the assessment of mortality may be quite considerable, but cannot be evaluated.

Mortality in Burma may also have been considerably over-estimated, since the only basis for carrying the past population trend forward into the recent period conted in making a population balance which agrees with the official population estimate for 1950. It is possible, however, that recent official population figures for Burma fall short of the mark, though to an unknown extent. ${ }^{10}$

In summary then, it is probable that the recent or current level of fertility has been estimated with tolerable accuracy in every instance. ${ }^{11}$ The level of mortality, on the other hand, is more difficult to determine. Here, the conservative assumption may sometimes imply an over-estimate and hence a slower future growth of the population than the facts warrant. The conservative projection should nevertheless be preferred so long as more accurate assessment of the mortality trend in recent years is still a matter of wide interpretation. An exaggerated assessment of future population growth is thereby avoided.

The results: total population

Estimates of total population in 1950 and 1980, obtained in accordance with the conservative assumptions, are assembled in Table 1, below:

Table 1
Total population (in millions) estimated for 1950 and projected conservatively to 1980, and relative InCREASES IN POPULATION, 1950-1980

Country	Population (millions)		Population in 1980 per 100 of population in 1950 1980
	1950	1980	
British Borneo	1.0	1.8	192
Burma	18.5	32.3	175
Cambodia	3.9	8.7	223
Ceylon	7.5	18.3	243
China (Taiwan) ${ }^{a}$	7.5	21.3	284
Indonesia	75.0	138.5	185
Laos .	1.3	2.5	190
Malaya	5.2	14.0	269
Philippines	20.2	50.8	252
Portuguese Timor	0.4	0.8	180
Singapore	1.1	3.3	310
Thailand	18.6	41.6	223
Viet-Nam ${ }^{\text {b }}$	26.0	44.6	172

[^6] ern parts of the country.

[^7]

The conditional results indicate population increases, over a thirty-year period, by 72 per cent (Viet-Nam) to 210 per cent (Singapore) relative to the population in 1950. Of the thirteen areas, six will have an increase of at least two-thirds, though less than 100 per cent; in three areas, population will grow to between double and two and one-half times its 1950 size; and in four areas the increase will be even greater.
Some of these differences in expected growth are caused by recent or current trends of an unusual character. The populations of China (Taiwan) and Singapore have been boosted by recent immigration, those of Ceylon and Malaya by immigration in the less recent past. Population trends in Indonesia and Viet-Nam have been adversely affected by political disturbances following the end of the Second World War.
Other differences result from the different estimates of current fertility and mortality levels. Fertility was found to be particularly high in China (Taiwan), the Philippines and Singapore, and mortality particularly low in Ceylon, China (Taiwan), Malaya and Singapore. Estimates of relatively high mortality or relatively low fertility, or both, lead to an expectation of less rapid growth of the population of Burma, Indonesia and Viet-Nam.
Special circumstances in any one country, however, can affect the future trends of these conditional estimates. Notably in the case of Singapore, a growing metropolis whose future prosperity will depend largely
on regional and inter-regional trade, the prospects of future population growth will be considerably affected by the prospects of continued migration, not taken into account in the present projection. ${ }^{12}$

Since it is assumed that mortality will decline and fertility will remain constant, populations will grow, generally, at accelerating rates. This acceleration of growth, however, will not be uniform, owing to changes in population structure which have been caused either by migratory movements of the past or by unusual conditions during and after the Second World War. These structural effects can be noted in the population projections for all countries for which recent statistics on age composition could be used (Ceylon, China (Taiwan), Malaya, Philippines, Singapore and Thailand), or for which modifications of age structure have been conjectured (Indonesia and Viet-Nam). ${ }^{13}$ For some other countries, current age structure was estimated in more summary fashion, and the comparison of rates of growth for short time intervals has no significance (British Borneo, Burma, Laos, Portuguese Timor), while for Cambodia the same conditions were assumed as for Thailand. Estimated percentage increases in population for five-year periods are shown in Table 2.

[^8]Table 2
Estimated percentage increase in population by five-year periods, 1950-1980, ACCORDING TO CONSERVATIVE ASSUMPTION

Country	1950-1955	1955-1960	1960-1965	1965-1970	1970-1975	1975-1980
British Borneo ${ }^{\text {a }}$.	8.0	9.6	11.1	12.3	13.3	14.4
Burma ${ }^{\text {a }}$	7.3	8.5	9.4	10.3	11.2	12.1
Cambodia ${ }^{a}$	12.2	13.5	14.2	14.6	15.3	16.1
Ceylon	14.7	14.8	15.1	16.0	17.1	17.9
China (Taiwan) ${ }^{\text {b }}$	19.2	18.8	18.5	18.2	19.1	20.4
Indonesia	9.6	10.3	10.7	10.6	11.1	12.3
Laos ${ }^{\text {a }}$.	8.9	10.0	10.9	11.8	12.7	13.6
Malaya	$15.0{ }^{\text {c }}$	16.2	17.3	18.3	19.8	21.0
Philippines .	14.2	15.6	16.5	17.2	17.9	18.7
Portuguese Timor ${ }^{\text {a }}$	7.5	8.9	10.0	10.9	11.8	12.7
Singapore	$26.0{ }^{\text {c }}$	18.4	18.1	18.7	20.8	22.7
Thailand .	12.2	13.5	14.2	14.6	15.3	16.1
Viet-Nam	$1.2{ }^{\text {d }}$	11.4	11.6	11.3	10.6	11.0

- Age structure for these countries has been estimated summarily, or by analogy. The detailed changes in calculated future rates of growth, therefore, are not significant.
${ }^{\bullet}$ Clvilian population.
ε Rate affected by migratory balance estimated for this period.
${ }^{d}$ For this disturbed period some rather arbitrary assumptions had to be made.

It has become fashionable to draw up economic plans for periods of about five years. Assuming no migration or other major changes in trend, the population increases which would have to be accommodated in such plans, during 1955-1960, or during 1960-1965, range between 9 and 19 per cent. With declining mortality and constant
fertility, increases ranging from 11 to 23 per cent will have to be envisaged in plans for the 1975-1980 period. It is worth noting that, because of various past conditions affecting sex-age structure, population growth in Ceylon, China (Taiwan), Indonesia, Singapore and Viet-Nam will not be particularly accelerated during the 1960s,
but will undergo a renewed upsurge towards 1980,14 assuming that fertility remains constant while mortality continues to decline.

Changes in population structure

Past trends in fertility and, to a minor extent, mortality and migration, are the determinants of age structure.

[^9]Migration has been a significant component of past population changes in Ceylon, Malaya and Singapore. Changes in mortality affect the chances of survival at all ages and, therefore, modify the age structure of a population but slightly. A temporary change in fertility introduces an irregularity in the age pyramid which is passed on to higher ages as time proceeds.
The detailed future changes in age structure, implied in the population projections, can be inferred from the tables in Annex II. In Table 3, below, they are summarized for broad age groups only, for the years 1950 and 1980. Age pyramids in 1950 and 1980, for selected countries, are shown in Figure II.

Table 3
Percentage composition of population by sex and age, 1950 and 1980, as projected with conservative assumptions

Country	Year	Percentages by sex			Percentages by broad age groups		
		Males	Femates	Total	$0-14$	15-59	60 and over
British Borneo ${ }^{\text {a }}$	1950	52.4	47.6	100.0	40.8	55.0	4.2
	1980	51.0	49.0	100.0	44.0	50.8	5.2
Burma ${ }^{\text {a }}$.	1950	50.9	49.1	100.0	39.1	56.4	4.5
	1980	50.5	49.5	100.0	41.3	53.2	5.5
Cambodia	1950	50.2	49.8	100.0	42.9	53.1	4.0
	1980	50.1	49.9	100.0	44.3	51.2	4.5
Ceylon	1950	53.0	47.0	100.0	40.1	55.1	4.8
	1980	51.5	48.5	100.0	43.6	50.0	6.4
China (Taiwan) ${ }^{\text {b }}$.	1950	51.0	49.0	100.0	41.1	54.7	4.2
	1980	50.8	49.2	100.0	45.7	49.5	4.8
Indonesia	1950	50.6	49.4	100.0	36.8	58.2	5.0
	1980	50.5	49.5	100.0	39.8	54.1	6.1
Laos ${ }^{\text {a }}$.	1950	50.5	49.5	${ }^{\prime} 100.0$	40.8	54.9	4.3
	1980	50.4	49.6	100.0	42.8	52.2	5.0
Malaya	1950	52.4	47.6	100.0	42.2	53.0	4.8
	1980	50.5	49.5	100.0	48.1	46.6	5.3
Philippines	1950	50.3	49.7	100.0	45.3	49.7	5.0
	1980	50.4	49.6	100.0	46.8	48.9	4.3
Portuguese Timor ${ }^{\text {a }}$	1950	50.6	49.4	100.0	40.7	55.0	4.3
	1980	50.4	49.6	100.0	42.5	52.6	4.9
Singapore	1950	54.8	45.2	100.0	38.3	58.0	3.7
	1980	51.6	48.4	100.0	48.2	46.1	5.7
Thailand.	1950	50.2	49.8	100.0	42.9	53.1	4.0
	1980	50.1	49.9	100.0	44.3	51.2	4.5
Viet-Nam	1950	50.5	49.5	100.0	36.6	57.6	5.8
	1955	49.9	50.1	100.0	34.0	60.1	5.9
	1980	50.3	49.7	100.0	38.6	54.7	6.7

a Sex-age structure in 1950 for these countries has been estimated summarily, or by analogy. Not much significance should be attached to the comparison of results for 1950 and 1980.
${ }^{6}$ Civilian population.

Not much significance can be given to the detailed results for those countries where population age structure had to be estimated in summary fashion (British Borneo, Burma, Laos, and Portuguese Timor). Again, it is to be recalled that the estimates for Indonesia and Viet-Nam are quite speculative and that those for Cambodia have been based on the pattern of Thailand.
Males generally outnumber females, though only slightly, and in most instances the excess of males over
females will tend to diminish further. ${ }^{15}$ Because of pas immigration, males were still relatively numerous in 1950 in British Borneo, Ceylon, Malaya and Singapore; since

[^10]Figure II
Percentage sex-age composition of populations of selected South-East Asian countries, 1950-1980

no further migration is assumed in the projection after 1955 this excess of males will tend to pass away. In Viet-Nam, because of military events, it had to be assumed that there was a heavy excess of mortality of adult males from 1950 to 1955, possibly with results as they appear in Table 3.

In 1950 between 37 and 45 per cent of the several populations were estimated as aged less than 15 years. This percentage is generally a direct reflection of the level of fertility, but also partly affected by mortality and migration. The low percentages estimated for Indonesia, Singapore and Viet-Nam (particularly in 1955) imply estimates of the effects of war-time and post-war disturbances on the birth rate. In all instances, with constant fertility and declining mortality, the projection shows a slight future rise in the proportion of children; in Ceylon, China (Taiwan) and Malaya, where migration has been of some importance, this future rise is more significant, while in Singapore-assuming that migration will not continue in the future-the rise is very sharp. ${ }^{16}$

The percentages of persons aged 60 years and more are quite small and will remain small, though slight future rises are indicated in all the projections. ${ }^{17}$

The changes in age structure appear more significant when calculated in relation to one age segment of the population rather than to the total. One may regard persons aged $15-59$ years as, on the whole, capable of providing for their own support, whereas individuals aged less than 15 or more than 60 are usually (though not invariably) dependent on persons in the best working ages. The dependency burden of workers can then be

[^11]estimated very roughly by calculating the number of children (aged under 15) and aged persons (60 years and over) per 100 persons aged 15-59 years, as shown in Table 4. No precise meaning should be attached to this measure, which is intended chiefly to serve the purposes of comparison.
In comparing the figures of Table 4, it will be noted that Singapore presents a special case. Of all the South-East Asian populations, that of Singapore had the lowest dependency burden (72 per 100 aged 15-59) in 1950, and will have the highest (116) in 1980. The low figure in 1950 is largely a reflection of the effects of immigration and of war-time depression of the birth rate. The high figure in 1980 results if it is assumed that no further migration occurs after 1955.
For Viet-Nam, an estimate for 1955 is shown separately. It reflects an assumption of a considerable decline in birth rates during the years of severe disturbance prior to 1955; since a resumption of normal population trends has been assumed for the years after 1955, the effect of abnormal conditions during 1945-1955 gradually disappears with time. ${ }^{18}$
For the remaining countries, the following changes can be noted. In 1950, there were between 65 and 91 children per 100 young and middle-aged adults; in 1980 there will be between 74 and 103. In 1950 there were between 8 and 10 aged persons per 100 adults of less advanced age; in 1980 there will be between 9 and 13. In all instances, some future rise in dependency burdens is indicated, but this need not be a cause for concern: the assumption is one of declining mortality; with a corresponding improvement in health, the working capacity of persons aged $15-59$ years will be enhanced in at least a proportionate measure. More striking than

[^12]Table 4
NUMBERS OF PERSONS AGED UNDER 15, aND 60 and over, PER 100 PERSONS AGED 15-19 in 1950 and 1980, according to conservative assumptions

Country	1950			1980		
	Under 15	60 and over	Sum of the two	Under 15	60 and over	Sum of the two
Bristish Borneo	74	8	82	87	10	97
Burma .	69	8	77	78	10	88
Cambodia	81	8	89	86	9	95
Ceylon	73	9	82	87	13	100
China (Taiwan) ${ }^{\text {a }}$	75	8	83	92	10	102
Indonesia.	63	9	72	74	11	85
Laos.	74	8	82	82	10	92
Malaya	80	9	89	103	11	114
Philippines .	91	10	101	96	9	105
Portuguese Timor	74	8	82	81	10	91
Singapore . .	66	6	72	104	12	116
Thailand	81	8	89	86	9	95
Viet-Nam	63	10	73	71	12	83
(Viet-Nam 1955)	(57)	(10)	(67)			

a Civilian population.

the changes in time are the differences in age structure which already exist among the several populations, and which will persist in the future if the assumption of comparable future conditions is justified. The situation of Singapore is exceptional, but it is evident that future population changes in Singapore will be determined by other factors as well as the mere continuation of current fertility and mortality trends.

Estimated changes in crude birth rates and crude death rates

Fertility, on the present assumptions, is supposed to remain constant in terms of numbers of children born to women of certain ages. Changes in the composition of the population by sex and age, however, will bring about some modification in the crude birth rate, though the frequency of child-birth among women of given ages remains unaltered.

Mortality is assumed to decline in future in accordance with a progressive rise in expectation of life at birth. Here again, the nature of the age structure, and expected changes therein, will affect the rate at which crude death rates decline. A very rapid fall in the crude death rate is to be anticipated in populations having large proportions of children, because the mortality of infants
and small children is particularly susceptible to rapid decline. It is this rapid decrease in the crude death rate to which much of the anticipated acceleration of population growth must be attributed.

The future crude birth rates, death rates and rates of natural increase implied in the present assumptions, for successive five-year periods, are brought together in Table 5.
In summary, then, the two outstanding facts about South-East Asian populations are their youthful composition and their potential for rapid growth. Even on the conservative assumptions presented here, future growth is likely to be much more rapid than growth in the past. This is illustrated in Table 6, for those countries for which population estimates for the years since 1920 have become available.
According to the figures in table 6, a more rapid population increase is invariably indicated for the 19501980 period than the past increase from 1920 to 1950. Increases in 1920-1950 ranged from 41 per cent (Burma) to 161 per cent (Singapore); in 1950-1980 the increases may be from 75 per cent (Burma) to 210 per cent (Singapore), according to the conservative projections. As shown in the following section, however, future increases may be even more rapid.

Table 5
CRUDE BIRTH RATES, DEATH RATES AND RATES OF NATURAL INCREASE 1950-1980, IMPLIED IN THE CONSERVATIVE ASSUMPTIONS OF CONSTANT FUTURE FERTILITY AND NORMAL DECLINE IN MORTALITY

Country	1950-195s	1955-1960	1960-1965	1965-1970	1970-1975	1975-1980
British Borneo ${ }^{\text {a }}$						
Birth rate. .	46.2	46.2	46.3	45.7	45.1	44.9
Death rate	30.8	27.9	25.2	22.5	20.1	18.0
Natural increase	15.4	18.3	21.1	23.2	25.0	26.9
Burma ${ }^{\text {a }}$						
Birth rate	44.5	44.1	43.4	42.7	42.3	42.2
Death rate .	30.5	27.9	25.4	23.2	21.1	19.4
Natural increase. .	14.0	16.2	18.0	19.5	21.2	22.8
Cambodia ${ }^{\text {a }}$						
Birth rate .	47.1	47.2	46.2	44.8	44.1	44.1
Death rate	24.1	21.8	19.6	17.5	15.8	14.2
Natural increase	23.0	25.4	26.6	27.3	28.3	29.9
Ceylon						
Birth rate . .	41.8	40.5	39.7	40.1	40.7	41.0
Death rate	14.4	12.9	11.5	10.5	9.2	8.1
Natural increase	27.4	27.6	28.2	29.6	31.5	32.9
China (Taiwan)						
Birth rate	$46.1{ }^{\text {b }}$	44.3	42.2	40.4	40.8	42.1
Death rate	$9.6{ }^{\text {b }}$	10.3	8.3	7.0	6.0	5.2
Natural increase	$36.5{ }^{\text {b }}$	34.0	33.9	33.4	34.8	36.9
Indonesia						
Birth rate . .	43.8	43.1	41.4	39.1	38.3	39.1
Death rate	25.4	23.5	21.2	19.0	17.2	16.0
Natural increase	18.4	19.6	20.2	20.1	21.1	23.1
Laos ${ }^{\text {a }}$						
Birth rate .	46.2	45.7	45.0	44.5	44.1	43.9
Death rate . .	29.2	26.7	24.3	22.1	20.2	18.4
Natural increase	17.0	19.0	20.7	22.4	23.9	25.5
Malaya						
Birth rate . . .	$43.6{ }^{\text {b }}$	45.2	45.3	45.5	46.3	46.8
Death rate	$13.4{ }^{\text {b }}$ b	15.2	13.4	11.9	10.3	8.8
Natural increase.	$30.2{ }^{\text {b }}$	30.0	31.9	33.6	36.0	38.0
Philippines						
Birth rate	48.5	48.7	48.3	47.7	47.2	46.9
Death rate . .	21.9	19.8	17.9	16.0	14.3	12.7
Natural increase	26.6	28.9	30.4	31.7	32.9	34.2
Portuguese Timor ${ }^{\text {a }}$						
Birth rate . . .	46.5	46.2	45.7	45.0	44.5	44.1
Death rate . . .	32.0	29.2	26.7	24.3	22.1	20.2
Natural increase	14.5	17.0	19.0	20.7	22.4	23.9
Singapore						
Birth rate.	$47.6{ }^{\text {b }}$	43.6	41.6	41.6	44.1	46.4
Death rate.	$10.6{ }^{\text {b }}$	10.0	8.5	7.4	6.5	5.6
Natural increase.	$37.0{ }^{6}$	33.6	33.1	34.2	37.6	40.8
Thailand						
Birth rate. .	47.1	47.2	46.2	44.8	44.1	44.1
Death rate .	24.1	21.8	19.6	17.5	15.8	14.2
Natural increase	23.0	25.4	26.6	27.3	28.3	29.9
Viet-Nam						
Birth rate. .	$30.2{ }^{\text {c }}$	43.1	41.8	39.1	35.8	35.1
Death rate. .	$27.3{ }^{\text {c }}$	21.6	20.0	17.8	15.7	14.2
Natural increase .	$2.9{ }^{\text {c }}$	21.5	21.8	21.3	20.1	20.9

[^13]Table 6
Population estimates 1920-1950, conservative projection 1950-1980, and relative population increases in the two periods in countries of SouthEast Asia

Country and year		Population (thousands)	Population in glven year per 100 of population		
		1920	1950		
Burma					
$1920{ }^{\text {b }}$		13100	100	-
1930	14282	109	-	
1940	16119	123	-	
1950	18487	141	100	
1960	21505	-	116	
1970	25943	-	140	
1980	32332	-	175	
Ceylon					
1920	4486	100	-	
1930	5253	117	-	
1940	5972	133	-	
1950	7547	168	100	
1960	9940	-	132	
1970	13274	-	176	
1980	18327	-	243	
China (Taiwan)					
1920	3736	100	-	
1930	4614	124	-	
1940	5987	160	-	
1950	7478	200	100	
1960	- • •	10591	-	142	
1970	14838	-	198	
1980	21272	-	284	
Indonesia					
1920	-	52327	100	-	
1930	60727	116	-	
1940	70476	135	-	
1950	75002	143	100	
1960	90708	-	121	
1970	111012	-	148	
1980	138518	-	185	
Malaya ${ }^{\text {a }}$ (920 ${ }^{\circ}$					
1920	-	$2850{ }^{\text {b }}$	100	-	
1930	$3700{ }^{6}$	130	-	
1940	4475	157	-	
1950	5211	183	100	
1960	6965	-	134	
1970	9671	-	186	
1980	14008	-	269	
Philippines					
1920	$10600{ }^{\text {b }}$	100	-	
1930	13094	124	-	
1940	16459	155	-	
1950	20150	190	100	
1960	26605	-	132	
1970	36320	-	180	
1990	-	50840	-	252	
Singapore					
1920	391	100	-	
1930	-	596	152	-	
1940	751	192	-	
1950	1062	272	100	
1960	-	1585	-	149	
1970	2221	-	209	
1980	-	3295	-	310	
Thailand					
1920	9460	100	-	
1930	-	11838	125	-	
1940	.	15296	162	-	
1950	-	18629	197	100	
1960	-	23737	-	127	
1970	31088	-	167	
1980	41617	-	223	

- 1920-1940 according to Demographic Yearbook, 1956; 1950-1980 as projected.
${ }^{6}$ Estimated by interpolation of census data.

Section II

FUTURE POPULATION - ALTERNATIVE ASSUMPTION OF LOW MORTALITY

The projections presented in Section I are conservative in the sense that no unusual development is anticipated for which confirmation, so far, is lacking; hence, fertility has been assumed to remain constant, and mortality to decline from 1950 onward, at rates conforming to average world experience, unless there are clear indications to the contrary. ${ }^{1}$ Pending more reliable new information, use of the conservative projections is recommended. But it is useful to consider other alternatives, if only for the sake of determining the range within which future developments are most likely to occur.
Future trends can differ from the conservative assumptions in a great variety of ways. To mention only one possibility, international migration may conceivably attain a new importance. But it would be impractical to take every possible contingency into account, where the intention is to assemble at least some definite sets of estimates which can be readily utilized. With new information, all estimates will eventually have to be revised.
In the present section, the results of an alternative assumption of future mortality trends are presented, ${ }^{2}$ the possibility of different future trends in fertility is considered in the next. In both instances, discussion of the estimates is preceded by an examination of available evidence and of factors likely to affect future trends. ${ }^{3}$ Some special cases are examined further in Section IV.

Reliable evidence of recent rapid mortality decline

The official registration of deaths approaches completeness in only four areas of the region under study, namely: Ceylon, China (Taiwan), Malaya and Singapore. Though not quite accurate, the death rates recorded in these areas furnish conclusive evidence of an unusually rapid mortality decline in recent years. In 1935-39 the registered crude death rate averaged 24.5 per 1,000 in Ceylon, 20.2 in China (Taiwan), 20.9 in Malaya and 22.3 in Singapore; in 1950-54 average rates for the four areas were: $11.6,10.1,13.9$ and 11.0 respectively, i.e.,

[^14]roughly one-half of those recorded fifteen years previously. In the projections for these four areas, the rates recorded in 1950-54 have been taken into account, adjustments being made for apparent omissions in registration.

The record of Ceylon is the most instructive, there being no indication that the degree of completeness of death registrations has either improved or deteriorated in the period under review. In Malaya and Singapore, registration may have been more accurate in recent than in earlier years, while the opposite may have happened, at least temporarily, with vital statistics for China (Taiwan).

The drop in Ceylon was most sudden when the recorded death rate fell from 19.8 per 1,000 in 1946 to 14.0 in 1947, and lower rates in the years which followed. This sudden change, however, was caused by an unusual combination of circumstances. Financial stringency during the Second World War had prevented the adoption of new public health measures at a time when scientific methods of disease control were making rapid progress; the death rate in 1946, therefore, was higher than it would have been without material obstacle to the immediate application of new scientific knowledge. Then, almost at once, new measures could be put into effect under favourable administrative conditions and among a population largely concentrated within a small area. The 1946-1947 experience of Ceylon is unlikely to be repeated in a country of larger size.

Even when these special conditions are disregarded, progress from the pre-war to the post-war period has nevertheless been astounding. Allowance made for incomplete registration, the actual death rate of Ceylon may have been about 27 in 1935-1939, as against 13 in 1950-1954; it can be calculated that this drop corresponds to a rise of about 15 years in the expectation of life at birth. Since this was accomplished in a timeinterval of 15 years, the annual gain in expectation was by one year. This is twice the normal rate of progress observed in the world and assumed for the purpose of conservative population projections. The facts prove that such rapid progress is possible, though under admittedly favourable conditions.

In the most recent years, progress in Ceylon has slowed down somewhat. Recorded death rates averaged 12.5 in 1949-1951 and 10.3 in 1954-1956; actual rates may have been about 15 and 12.5 respectively. This recent rate of progress, while still considerable, is more nearly in line with the normal rate of the conservative assumptions.

In years preceding 1953, rapid decreases in death rates have also been noted in China (Taiwan), Malaya, and Singapore, followed by somewhat slower decreases since 1953. When allowance is made for estimated omissions of death registers, it appears that mortality in China (Taiwan) and Singapore is now lower than in Ceylon, while in Malaya it is still somewhat higher. If one can now assume that the future decrease in death rates in Ceylon will be at the normal rate, a similar assumption would seem equally valid in the cases of China (Taiwan) and Singapore. In Malaya, whose death rate lags behind that of Ceylon, there is still scope for very rapid progress, at least until that lag is made up.
For other areas of South-East Asia the evidence is more dubious and will presently be examined. At this point, there is no need to assume that mortality elsewhere has declined or will decline as rapidly as in the abovementioned four areas of relatively accurate death registration. Thus, accurate registration is an indication that the organs of local administration function well in at least this one respect. The same administrative apparatus, in another sphere, contributes to the efficacy of public health campaigns. Marked sanitary progress can, of course, also be made in areas where the registration of births and deaths happens to be less well organized. Nevertheless, it may not be a sheer accident that areas of relatively efficient death registration are also the ones in which death rates have declined most.

Factors affecting mortality

It is now technically feasible to deal cheaply and yet decisively with some of the chief debilitating and deathdealing diseases of the tropics. But technical feasibility is not the only criterion in this connexion. For numerous reasons, practical achievement almost invariably falls short of the technical ideal. Some of the following considerations should be borne in mind.

1. There are practical obstacles to the application of modern sanitary measures stemming from: cultural barriers, difficult administrative access, political disturbances, traditional living habits, a fatalistic outlook, or the concentration on economic and social objectives felt to be of even greater urgency. On the other hand, education and the spreading knowledge of success attained elsewhere inevitably raise a demand for and result in some adoption of various health-protection measures and practices. Obstacles to their propagation may retard, but will not prevent, the decline of mortality.
2. When mortality reaches moderate levels-as it very probably will soon in most of South-East Asia-further progress depends on increased expenditures. Some causes of death, by then, will have been reduced to negligible proportions. Other causes will remain which can be tackled only by a large skilled medical personnel and expensively equipped hospitals. In the past, moderate death risks have been further reduced in countries which enjoyed much higher incomes than most SouthEast Asian countries do today. Material progress in South-East Asia, and the increasing stock of medical knowledge, may permit further mortality decline to the low levels of wealthier countries. Under less favour-
able conditions, however, the further decrease of mortality may encounter increasing material obstacles.
3. Heavy pressure on local resources of food, together with unfavourable terms of trade, can become a cause of chronic malnutrition. Under adverse conditions, the quantitative or qualitative deterioration of the diet results in deaths of a kind which the most vigorous sanitary programmes are unable to prevent. If the food shortage becomes critical, as in a famine, international relief measures are likely to be forthcoming. ${ }^{4}$ Certainly, the size of the population is never strictly dependent on locally produced food. Nevertheless, continuing failure of the local food supply can defeat many of the gains in human lives resulting from progress in medicine and sanitation.

Countries with deficient death registration

In the conservative population projections, the detailed mortality assumption, for countries with unreliable vital statistics, has generally been arrived at as follows: First, the level of mortality was determined for some intercensal, or pre-war period, by means of suitable calculations. Secondly, it was supposed that the mortality level which could have normally been expected towards 1940 was attained once more towards 1950 . Finally, beginning with 1950, normal progress was supposed to be resumed. ${ }^{5}$
It is possible, but not certain, that two errors have resulted from this method of estimating: the current level of mortality may have been over-estimated, and the rate of further decline under-estimated. Since, in the conservative projections, it was intended to avoid an exaggerated picture of future population growth, it was felt preferable to over-estimate mortality rather than to under-estimate it.
In the alternative projections discussed here, a different point of view is taken. Assumptions are sought in which mortality levels and trends are estimated near their reasonable lower limits, as far as can be inferred from the evidence of admittedly incomplete death statistics. This evidence is now examined. Death rates which have been officially recorded for South-East Asian countries in years since 1930 are brought together in Table 7. ${ }^{6}$

The rates for Burma and Indonesia refer to variable registration areas, but never to the entire country. Death registration in China (Taiwan), probably quite accurate until $1943,{ }^{7}$ has recently been affected at least by an

[^15]incomplete registration of infant deaths. In Malaya, the Philippines, Singapore and Thailand, the registers have been deficient to a variable, and unknown, extent. Only in Ceylon has the percentage of omissions from registers been objectively ascertained. ${ }^{8}$ Apart from errors in completeness and coverage, the rates presented in Table 7 are also affected by faulty estimates of the population to which the registered deaths are referred.

Hypothetical corrections of recorded death rates

The defects in recorded death rates are not precisely known. With hypothetical assumptions concerning the possible nature of errors, hypothetical corrections can be carried out. But, so long as these assumptions are unverified, the death rates so corrected can hardly be cited as conclusive evidence.

On one hypothesis, it will be assumed that death registration, though incomplete, is of a constant degree of completeness, the same percentage of all deaths being registered in any one year. With this hypothesis, corrections of recently recorded rates are effected as follows:

[^16](1) an estimate of the death rate in an earlier period is made by an independent method; ${ }^{9}$ (2) comparison of that estimate with the average of rates actually recorded in that period provides a measure of the completeness of registration; and (3) application of this measure to death rates recorded more recently results in hypothetically corrected estimates of the recent death rates. This method will be referred to as Method I.
Method II starts from an assumption that births and deaths, though both incompletely recorded, are registered with equal completeness in any one year, a further assumption being that the birth rate has remained constant. From these assumptions, hypothetical corrections result as follows: (1) an independent estimate of the birth rate, assumed constant, is made; (2) the degree of completeness of birth registration in any one year is taken to be the ratio of registered births to estimated births; and (3) the recorded death rate is then corrected

[^17]Table 7
Deaths per 1,000 inhabitants as recorded in South-East Asian countries, 1930-1956 ${ }^{a}$

Year	Burma ${ }^{\text {b }}$	Ceylon	China Taiwan)	Indonesia c	Malaya d	Philippines ${ }^{\text {c }}$	Singapore	Thailand
1930-34.	18.3	22.4	20.6	17.4	$21.5{ }^{\prime}$	16.6	23.8	16.3
1935-39	22.0	$24.5{ }^{g}$	20.2	18.4	20.9	16.5	22.3	16.4
1940	.	20.6	19.7	20.3	20.1	16.6	20.9	17.3
1941	...	18.3	16.5	20.8	17.0
1942	. .	18.1	18.0	\ldots	16.2
1943	. .	20.8	19.0	$19.7{ }^{h}$	18.4
1944	. .	20.8	. .	$29.4{ }^{h}$...	\ldots	\cdots	17.6
1945	.	21.5	16.5
1946	. .	19.8	20.0	15.1	...	15.2
1947	...	14.0	19.4	12.7	13.3	13.4
1948	. \cdot	12.9	14.3	. .	16.3	12.7	12.4	10.7
1949	.	12.3	13.1	.	14.2	11.9	11.8	10.5
1950	. .	12.4	11.5	. .	15.8	11.4	12.1	10.0
1951	. \cdot	12.7	11.6	.	15.3	11.8	11.9	10.3
1952	.	11.8	9.9	14.6	13.6	11.8	11.2	9.9
1953.	21.6	10.7	9.4	13.5	12.4	11.5	10.3	9.4
1954	19.9	10.2	8.2	12.9	12.2	10.3	9.3	9.7
1955.	21.1	10.8	8.6	12.7	11.5	9.9	8.7	9.2
1956 .	21.8	9.8	8.0	$13.2{ }^{i}$	11.3	. .	8.1	-••

a Source, unless indicated otherwise, United Nations Demographic Yearbook, 1957.
${ }^{\text {b }}$ 1930-1939: registration area, representing 82.5 per cent of Burma's population; 1953-1956: certain towns only, with a combined population of about 2 million.
c 1930-1940: United Nations Demographic Yearbook, 1951. Prior to 1940, rates refer to the Indonesian population of Java, and Madura.
d 1932-1940: United Nations Demographic Yearbook, 1951.
e Philippines Department of Health, Annual Vital Statistics Report, 1955.
f 1932-1934.
s Rate affected by malaria epidemic in 1935.
${ }^{h}$ De Vries, " Geboorte en sterfte onder de Japansche bezetting ", Economicsh Weekblad voor Nederlandsch-Indie, 1946, pp. 60-61.
${ }^{i}$ Provisional figure.

by dividing it by the ratio obtained in the preceding step. ${ }^{10}$

The following independent estimates of birth rates and death rates, admittedly quite rough, were used in this connexion:

[^18]| Country | | Death rate
 (earlier period) | Perlod in which
 applicable |
| :--- | :---: | :---: | :---: | | Blrth rate |
| :---: |
| (assumed constant) |

The hypothetically corrected death rates resulting from the above assumptions and estimates are presented in Table 8. Some of the recorded series have been interrupted during the Second World War and the years

Table 8
Hypothetical crude death rates in South-East Asian countries FOR RECENT YEARS, ESTIMATED ACCORDING TO TWO METHODS

Year	Burma	Ceylon	China (Tatwan)	Indonesia	Malaya	Phillp- pines	Singapore	Thatland

Method I ${ }^{\text {a }}$
(Assumed pre-war death rate)

	(31)	(26)	(21)	(28)	(24)	(26)	(26)	(28)
1945		26.1	\ldots	\ldots	\ldots	\ldots		28.0
1946		24.0			24.7	24.2		25.8
1947	\ldots	17.0	\ldots	\ldots	24.0	20.4	15.6	22.8
1948	\cdots	15.7	14.9	\ldots	20.1	20.4	14.5	18.2
1949	\ldots	14.9	13.7	\ldots	17.5	19.1	13.8	17.8
1950	\ldots	15.1	12.0	\ldots	19.5	18.3	14.2	17.0
1951		15.4	12.1	\ldots	18.9	18.9	13.9	17.5
1952		14.3	10.3	22.8	16.8	18.9	13.1	16.8
1953	$42.4{ }^{\text {b }}$	13.0	9.8	21.1	15.3	18.5	12.1	16.0
1954	$29.9{ }^{\text {b }}$	12.4	8.6	20.2	15.1	16.5	10.9	16.5
1955	$31.7{ }^{\text {b }}$	13.1	9.0	19.8	14.2	15.9	10.2	15.6
1956	$32.7{ }^{\text {b }}$	11.9	8.4	20.6	14.0	...	9.5	

Method II ${ }^{\text {c }}$								
1930-34.	29.8	24.9	20.7	$27.2{ }^{\text {d }}$	$26.7{ }^{\text {d }}$	25.9	28.4	22.1
1935-39.	30.8	29.2	20.7	28.2	23.9	25.3	22.3	22.1
1940-44		22.7	20.0°	$30.6{ }^{\prime}$	$22.7{ }^{\prime \prime}$	25.0 '	$21.4{ }^{\text {g }}$	23.1
1945		24.6	29.9
1946	...	21.7	\ldots	\ldots	26.3	25.6	\ldots	29.5
1947	\ldots	14.9	\cdots	...	20.8	20.4	13.3	26.6
1948	...	13.6	16.2	...	18.6	19.8	12.3	21.0
1949	\cdots	13.2	13.9	\cdots	14.9	18.6	11.5	17.8
1950	\ldots	13.1	12.0	\ldots	17.3	17.3	12.2	16.5
1951	...	13.4	10.4	...	16.1	18.3	11.8	16.5
1952	\ldots	12.8	9.6	23.7	14.1	18.2	10.8	15.6
1953	$30.7{ }^{\text {b }}$	11.6	9.4	19.5	13.1	17.8	9.7	14.3
1954	$26.7{ }^{\text {b }}$	12.0	8.3	17.4	12.8	15.2	8.7	13.3
1955	$25.6{ }^{\text {b }}$	12.2	8.5	17.8	12.3	14.2	8.4	12.6
1956 . . .	$27.3{ }^{\text {b }}$	11.3	8.0	20.2	11.4	...	7.7	...

- Method depends on an independent estimate of the death rate in an earlier period and an assumption that deaths have been registered with a constant degree of completeness.
${ }^{b}$ These estimates are most unreliable: the conditions of vital registration in Burmese towns may differ very greatly from hose in the pre-war registration area.
c Method depends on an independent estimate of the birth rate, assumed to be constant, and the assumption that births and deaths are being registered with the same degree of completeness.

1932-1934 only. f 1940 only.
1940-1943 only. \quad 1940-1941 only
\qquad
following its end, because difficulties with registration were then encountered; this makes it probable that, in several instances, completeness of registration has varied with time. In other instances, recent census data on age composition furnish evidence, though imprecise, that birth rates have fluctuated under war-time and post-war conditions. No precision, therefore, can be attached to the hypothetical corrections. In the case of Burma particularly, whose vital statistics in recent years are confined to certain urban areas only, it is most doubtful whether the corrections made have any value.

Comparison of hypothetical corrected death rates with those implied in the conservative popalation projections, 1950-1955

The registered death rates, the hypothetically corrected rates and the rates implied in the population projections presented in Section I of this report, for the 1950-1955 period, are brought together in Table 9. The reservations regarding registered and corrected rates have been stated. In the conservative projections, as has been said, one of two positions has been taken, depending on the reliability of available statistics. In the cases of Burma, Indonesia, the Philippines and Thailand, it was assumed that mortality conditions, such as can be estimated for a period preceding 1940, were once more reached shortly before 1950; beginning with 1950, the normal assumption of a two and one-half year gain in expectation of life every five years was applied. In the cases of Ceylon, China (Taiwan), Malaya and Singapore the recorded vital statistics of the 1950-1955 period ${ }^{11}$ were taken into account, to be followed by normal mortality decline after 1955.

Some results compared in Table 9 bring out the following points. In Ceylon, China (Taiwan), Malaya and Singapore, the hypothetically corrected rates are very near the levels of the more carefully corrected rates used in the conservative population projections; ${ }^{12}$ in these instances, at least, the hypothetical corrections are not very wide of the mark. This observation leads to a presumption that, at least in the Philippines and Thailand, the death rates implied in the conservative projections may be too high. The same may be true of Indonesia if the registration areas for which the death rates have been ascertained in recent years are representative enough of the country. ${ }^{13}$ In the case of Burma, the evidence is quite ambiguous: if the results of recent registration in Burmese towns are comparable with those of pre-war registration over a much wider area, the death rate has not been over-estimated in the conservative projection; on the other hand, it is not improbable that registration in the towns, though not representative of conditions throughout the country, is more accurate and that, accordingly, the death rate implied in the projection is too high.

[^19]Table 9
COMPARISON OF RECORDED DEATH RATES, HYPOTHETICALLY CORRECTED DEATH RATES and death rates implied in the conservative population projections 19501955 in eight areas of South-East Asia

Country	Average death rates, 1950-1955 a			1950-1955 6 rates implied in conservative populationprotections projections
	As recorded	Hypothetically corrected		
		Method $1{ }^{\text {c }}$	Method II ${ }^{\text {d }}$	
Burma	$20.9{ }^{\circ}$	$31.3{ }^{\circ}$	$27.7{ }^{\text {e }}$	30.5
Ceylon	11.4	13.9	12.5	14.4
China (Taiwan)	9.9	10.3	9.7	$11.3{ }^{\prime}$
Indonesia	$13.4{ }^{\text {g }}$	$21.0{ }^{\text {g }}$	$19.6{ }^{9}$	25.4
Malaya	13.5	16.6	14.3	$16.0{ }^{\prime}$
Philippines	11.1	17.8	16.8	21.9
Singapore	10.6	12.4	10.3	$11.4{ }^{\prime}$
Thailand	9.8	16.6	14.8	24.1

[^20]The conservative projections for some other countries (British Borneo, Cambodia, Laos, Portuguese Timor, and Viet-Nam) likewise rest on an assumption that, beginning with 1950^{14} normal progress is resumed from a mortality level attained prior to the outbreak of the Second World War. If it is true that current mortality has been over-estimated in the conservative projections for Burma, Indonesia, the Philippines and Thailand, it is possible that mortality has been similarly over-estimated for British Borneo, Cambodia, Laos, Portuguese Timor and Viet-Nam, though there is no evidence to demonstrate this as a fact.

Not only the current level, but also the rate of decline in death rates, may have been wrongly assessed in the conservative projections. Here, the comparison of hypothetical estimates with estimates implied in the conservative projection can be made for six countries only, ${ }^{15}$ and not for the same time period. Relevant statistics are brought together in Table 10, where also an arithmetic average is used for all six areas. According to Method I, declines in death rates from around 1950 to around 1955 were by 10 to 31 per cent, with 20 per cent as the average decline; according to Method II, death rates declined in five years by 11 to 31 per cent, with 24 per cent the average decline; in the conservative projections, declines from the 1950-1955 period to the 1955-1960 period are, on an average, 9 per cent only. The evidence suggests, but does not demonstrate, that mortality may have been declining twice as rapidly in recent years as the normal rate conservatively assumed. ${ }^{16}$ That this

[^21]is possible, under favourable conditions, has been demonstrated by the statistics for Ceylon for 1935-39 and 1950-54 respectively. ${ }^{17}$

The modified mortality assumption

These considerations suggest that the conservative projections may err (1) by over-statement of the mortality level in 1950-1955 and (2) by under-statement of the rate of mortality decline. These conclusions are not firm, the statistics examined may still prove to be deceptive, and the future is of course unknown. If, however, the still unreliable evidence is accepted, a more optimistic view would seem to be justified. A phase of unusually rapid mortality decline may now be in progress, which already began in the 1945-1950 period.
In particular, there are grounds for an assumption that, in the present phase, mortality is declining with twice the speed that otherwise would be normal.
On the other hand, the recent statistics for Ceylon indicate that, once a rather low level of mortality is attained, further decline is likely to be less rapid, possibly near the normal rate. In Ceylon, the phase of unusually rapid progress can now be regarded as terminated, the rate of further decline having reverted to normal. Relatively reliable statistics show that mortality in China (Taiwan) and in Singapore is already lower than in Ceylon, whereas in Malaya it is still slightly higher. There seems to be no need to make alternative mortality assumptions for Ceylon, China (Taiwan) and Singapore other than those already made in the conservative projections.
An assumption of very rapid mortality decline, however, presents much interest for all the remaining areas

[^22]Table 10
Death rates hypothbtically bstimated and conservatively projected and percentage decline therein for six areas of South-East Asia in recent fiveyEAR PERIODS

Country	Hypothetical estimates from vital statistics						Estimates implled in conservative population projections		
	Method 1 -			Method II ${ }^{\text {b }}$					
	1949-51	1954-56	Per cent decline	1949-51	1954-56	Per cent decline	1950-55	1955-60	Per cent decline
Ceylon.	15.1	12.5	-17	132	11.8	-11	14.4	12.9	-10
China (Taiwan).	12.6	8.7	-31	12.1	8.3	-31	11.3	10.3	-9
Malaya	18.6	14.4	-23	16.1	12.2	-24	16.0	15.2	-5
Philippines	18.8	$15.9{ }^{\text {c }}$	-15	18.1	$14.2{ }^{\text {c }}$	-22	21.9	19.8	-10
Singapore	14.0	10.2	-27	11.8	8.3	-30	11.4	10.0	-12
Thailand	17.4	$15.6{ }^{\text {c }}$	-10	16.9	$12.6{ }^{\text {c }}$	-25	24.1	21.8	-10
Average ${ }^{\text {d }}$	16.1	12.9	-20	14.7	11.2	-24	16.5	15.0	-9

- Method depends on an independent estimate of death rate in an earlier period, and an assumption that deaths have been registered with a constant degree of completeness.
${ }^{b}$ Method depends on an independent estimate of birth rate, assumed to be constant, and the assumption that births and deaths are being registered with the same degree of completeness.
- Year 1955 only.
${ }^{d}$ Arithmetic mean of rates for the six areas.
of South-East Asia. For all these areas, it will be supposed that, already prior to $1950,{ }^{18}$ mortality was declining with twice the speed of the conservative assumption, and that this phase will continue until the lag behind Ceylon has been overcome; thereupon further decline will be at the normal rate. Since mortality in Ceylon also is supposed to continue to decline at the normal rate, equality with Ceylon will be attained by various countries at different dates in the future. ${ }^{19}$
In all instances but that of Burma, the modified projections begin with the same population figures estimated for mid-year 1950 that have already been used in the conservative projections. A departure from this rule had to be made for Burma because a firm estimate of that country's current population size was not available. In the conservative assumptions, use was made of the official estimate of Burma's population in 1950, mortality being estimated in such a manner that this population total was obtained in a projection carried forward from Burma's 1941 census. The result is a rather high estimate of Burmese mortality. On the modified assumptions, it was supposed that Burmese mortality might equal that of neighbouring Thailand; ${ }^{20}$ on this supposition,

[^23]the population of Burma should have been considerably larger in 1950 than officially estimated. Hence the modified projection for Burma begins with a larger 1950 population. ${ }^{21}$

Results of the modified projection

The results of modified projections for ten areas of South-East Asia are tabulated in Annex III and can be used as reasonable alternatives to the conservative results tabulated in Annex II. For the reasons stated, modified projections have not been carried out for Ceylon, China (Taiwan) and Singapore.

In Table 11 a comparison is made of population estimates for 1980 obtained on the conservative and the modified assumptions respectively. The relative addition to population through rapid mortality decline is the greater, the higher the initial level of mortality. Thus, relatively large additions to the population result for British Borneo, Laos and Portuguese Timor, but only a relatively small addition for Malaya, whose mortality level lags but slightly behind that of Ceylon. For Burma, the difference in the two projected figures is especially large because not only different rates of mortality but also different population totals have already been estimated for 1950.

As compared with the conservative projections, the assumption of lower mortality results also in some further modifications of future age structure. The comparison of results, by broad age groups, is made in Table 12. It will be noted that with low mortality, the relative sizes of the child population (aged under 15) and of the aged segment (aged 60 and over) are slightly increased. But differences in structure resulting from lower mortality are in no case very large, except perhaps in Burma, where the two alternative projections diverge rather widely.

[^24]Table 11
Total population 1950 and 1980 according to conservative and modified projections in ten areas of South-East Asia

Country	Population (millions)			Population in 1980 per 100 of Dopulation in 1950	
	1950	1980			
		Conservative projection	Modified projection	Conservative prolection	Modified projection
British Borneo	1.0	1.8	2.1	192	210
Burma	$18.5{ }^{\text {a }}$	32.3	45.3	175	$231{ }^{\text {a }}$
Cambodia	3.9	8.7	9.9	223	254
Indonesia .	75.0	138.5	160.1	185	213
Laos .	1.3	2.5	2.9	190	223
Malaya .	5.2	14.0	14.4	269	277
Philippines	20.2	50.8	57.0	252	283
Portuguese Timor	0.4	0.8	0.9	180	225
Thailand . .	18.6	41.6	47.5	223	255
Viet-Nam ${ }^{6}$	26.0	44.6	49.1	172	189

a For the modifled projection, a population of 19.6 million has been estimated for 1950.
${ }^{b}$ In this report Viet-Nam is understood to comprise both the northern and southern parts of the country.

Table 12
Percentage composition of the population by broad age groups in 1980, according to conservative and modified projections of population of ten areas of South-East Asia

Country	Conservative projection			Modified prolection		
	0-14	15-59	60 and over	0-14	15-59	60 and over
British Borneo	44.0	50.8	5.2	45.0	49.4	5.6
Burma	41.3	53.2	5.5	44.4	49.9	5.7
Cambodia	44.3	51.2	4.5	45.9	49.3	4.8
Indonesia.	39.8	54.1	6.1	41.4	52.1	6.5
Laos .	42.8	52.2	5.0	44.5	50.1	5.4
Malaya	48.1	46.6	5.3	48.4	46.3	5.3
Philippines	46.8	48.9	4.3	48.2	47.4	4.4
Portuguese Timor	42.5	52.6	4.9	43.9	50.8	5.3
Thailand.	44.3	51.2	4.5	45.8	49.4	4.8
Viet-Nam	38.6	54.7	6.7	39.9	53.1	7.0

The most important effect of low mortality, however, is the acceleration of population growth. Percentage increases in population by five-year periods, obtained on the conservative and on the modified assumptions respectively, are being compared in Table 13. For the ten areas considered, development plans
in the 1975-80 period would have to take into consideration population increases of 11 to 21 per cent, if the conservative assumptions are retained, or 14 to 22 per cent on the modified assumptions. Again, the differences are particularly great in the case of Burma.

Table 13
Estimated percentage population increases in ten areas of South-East Asia, according to conservative and modified assumptions, by five-year periods, 1950-1980

C-conservative assumption					M - modified assumption					
Period	Brtish Borneo		Burma		Cambodia		Indonesia		Laos	
	c	M	c	M	c	M	c	M	c	M
1950-1955.	8.0	9.1	7.3	11.1	12.2	13.3	9.6	10.8	8.9	9.8
1955-1960 .	9.6	11.7	8.5	13.1	13.5	15.5	10.3	12.3	10.0	12.0
1960-1965.	11.1	13.4	9.4	14.7	14.2	16.7	10.7	13.2	10.9	13.4
1965-1970 .	12.3	15.1	10.3	16.1	14.1	17.6	10.6	13.5	11.8	14.9
1970-1975.	13.3	16.5	11.2	17.3	15.3	18.7	11.1	14.5	12.7	16.3
1975-1980 . . .	14.4	17.5	12.1	17.9	16.1	19.4	12.3	16.3	13.6	17.9
.	Malaya		Phillpplnes		Portuguese Timor		Thailand		Viet-Nam	
	c	M	c	M	c	M	c	M	c	M
1950-1955.	15.0	14.9	14.2	15.3	7.5	7.7	12.2	13.4	1.2	1.2
1955-1960 .	16.2	17.1	15.6	17.4	8.9	11.2	13.5	15.5	11.4	12.3
1960-1965.	17.3	18.1	16.5	18.9	10.0	12.7	14.2	16.8	11.6	13.3
1965-1970.	18.3	19.0	17.2	20.2	10.9	13.9	14.6	17.6	11.3	13.5
1970-1975.	19.8	20.4	17.9	20.7	11.8	15.3	15.3	18.8	10.6	13.2
1975-1980 . .	21.0	21.6	18.7	21.3	12.7	16.8	16.1	19.5	11.0	14.1

Section III

SPECULATIVE ASSUMPTION OF A FERTILITY DECLINE

Like the death rates, the birth rates recorded in SouthEast Asia are also incomplete to a varying extent. The data which are shown in Table 14 suggest that hardly any change in birth rates has occurred in recent times. Such minor changes as appear in the recorded rates might reflect little else than slight improvement or slight deterioration in the completeness of registration.

It is uncertain whether births have been registered with a constant amount of completeness. The compilation of vital statistics was temporarily suspended in several areas during the 1940's owing to the disorganizing effects of the war period; where continued, it may have produced less complete results than in other years. The 1940-44 and 1945-49 averages shown in Table 14, therefore, can be quite misleading. Detailed census statistics, on the other hand, in fact indicate temporary declines in birth rates during those periods. But since 1950 nearly the same birth rates have been recorded as prior to 1940, and there is no obvious reason why the accuracy of recording after 1950 should have differed from that before 1940. Quite probably, birth rates have reverted to very near their pre-war levels. The highest rates are those recently reported for Singapore, but actual rates may have been equally high in some other areas with less accurate registration.
This apparent constancy in the past makes it seem plausible that birth rates may remain nearly constant
also in the future, but this expectation is not certain. A detailed study of population age structure, according to censuses, reveals that birth rates are apt to fluctuate though, so far, only within rather narrow limits. ${ }^{1}$ No sign of a change has been detected like the undeniable downward trend in the case of mortality.

Fertility and culture

The desire to postpone death where possible is common to all mankind. Death risks, therefore, will always tend towards the minimum possible under any given conditions. No such universal principle governs the trend in birth rates. There is a positive desire for offpring, but it is coupled with a desire that this offspring should not become unduly numerous. There are wide variations in the most desired number of children in the willingness to act deliberately with this end in view, and in the knowledge of means by which it can be attained.

[^25]Table 14
Registered crude birth rates in six areas of South-East Asia, 1930-1954, by 5 -year periods ${ }^{a}$

Country			$1930-1934$	$1935-1939$	$1940-1944$	$1945-1949$	$1950-1954$
					Percentage change from 1935-1939 to		
1950-1954							

- Source: United Nations Demographic Yearbook, 1953, and ibld, 1957 unless otherwise indicated.
b 1940-1943.
- 1948-1949.
${ }^{4}$ 1932-1934.
e 1940 only.
f 1946-1949.
s Philippines, Department of Health, Annual Vital Statistics Report, 1955.
${ }^{4}$ 1940-1941.
i 1947-1949.
i Arithmetic average for six areas.

The level of fertility actually prevailing in a population, therefore, tends neither towards a maximum nor towards a minimum, but is the net result of mutually offsetting tendencies. Most observations confirm that the attitudes and conditions which underlie human reproductive performance are deeply rooted in culture and are apt to change only slowly, if at all. ${ }^{2}$

There are two important reasons for the constant high birth rates of South-East Asia, as well as of many other parts of the world. First, mortality in earlier times was so high that no society could have endured without a correspondingly high fertility. Second, despite mortality decline, the mores affecting fertility continue to depend on firmly ingrained social traditions and norms which, so far, have not changed much.

Notable declines in fertility, to one-half or less of previously high levels, have occurred in populations of European descent, and in Japan. These declines have been associated with industrialization and urbanization of the modern type. Yet it is not clear what causal nexus has been at work. No area in South-East Asia is more urban nor more industrial than Singapore, but the Singapore birth rate-reported as 48.2 for 1956 -is the highest recorded in this region and has shown no tendency towards a decline.

By the evidence of Singapore, therefore, urban industrial development does not, of itself, necessarily provoke a fall in birth rates. Other conditions, such as the structure of families and kinship groups, and the strength of social traditions which govern intra-family and interfamily relations, are of at least equal importance in this connexion. The latter may undergo various changes under the influence of changes in habitat and economic activity, but the effects of change may not appear as rapidly in some societies as they may in others. Anthropological study has not been carried nearly far enough to provide any clues in this matter. ${ }^{3}$

That different South-East Asian populations may respond differently to a given amount of social and economic change is suggested by the fact that birth rates, though nearly constant in the past, have not everywhere been the same. For the present projections, a crude rate as low as 39 per 1,000 has been estimated for VietNam, while for the Philippines the estimated rate is as high as 49. Both estimates may be inaccurate, but some variation in past and current birth rates is definitely indicated. With this as a premise, one may also expect some future variation of response to changing social and economic conditions. The latter conditions are certainly bound to change.

[^26]Population growth itself is a powerful factor of economic and social change. As argued in Section IV, growth inevitably leads to changes of structure both in the social and economic sphere. As mortality decreases, more children, on an average, survive in each family. As the numbers of survivors are increased, the social and economic accommodation of adolescents within the traditional kinship and village organization may become increasingly difficult. Changes of occupation and migration to other localities may be necessitated by population growth alone, if not also by the new government plans and programmes designed to stimulate economic development. As a result, the conditions under which young persons marry and married persons form families cannot remain the same. Whether, or how soon, an anticipated change of conditions will be reflected in a change in the frequency of child-birth cannot easily be predicted.
From a statistical point of view, three factors of fertility can be distinguished. But the discussion of them below reveals a large area of uncertainty and provides hardly any reliable basis for prediction. Few investigations, so far, have been carried out with the purpose of throwing more light on these questions.
The three factors considered here are the incidence of marriage, the incidence of sterility and the average intervals between births of successive children. ${ }^{4}$

Marriage

The incidence of marriage among women of reproductive age can vary in several ways. Varying numbers of women may remain unmarried. Some women, though married, lose their spouse through death, divorce or separation. The age at which women commonly marry is subject to variation.

Marriage rates are affected by short-term fluctuations provoked by conditions of stress. Thus, in the 1940's because of the war, many marriages had probably to be postponed, but the statistical evidence is quite inconclusive; ${ }^{5}$ with peace re-established, for a time marriages may have been more numerous than usual. A fluctuation in the marriage rate is likely to be followed by a fluctuation in the birth rate, but the long-run effect on the numbers of births need not be great. ${ }^{6}$

[^27]Nearly all South-East Asian women, so far, have been married before reaching the peak of the reproductive period. Permanent celibacy probably finds little social acceptance. Whether a change in this direction may occur in the future can hardly be predicted. With declining mortality, the marriages of women aged less than, say, 45 years are less frequently terminated by the death of their spouse; on the other hand, commercialization and a weakening of kinship and village ties might lead to more frequent divorce or separation. Probably no appreciable net changes in the fertility of marriages are likely to result from such causes.

A more important factor, then, is the mean age at which women marry. In South-East Asia, this age is generally higher than in India, but lower then in Western countries or Japan. A lowering of the mean age is not likely as it might involve child-marriages. With the increased value placed on education, the decreasing influence of traditional moral standards and greater mobility, there is a possibility that the mean age at marriage may rise.

A tendency for average ages at marriage to rise has been noted in Ceylon, ${ }^{7}$ India, ${ }^{8}$ and Japan. ${ }^{9}$ A comparison of the percentages of women married at particular ages leads to the view that a rather sharp change in marriage habits would be involved if by the end of a 30 -year period, the percentage of married women in South-East Asia were as small as that of married Japanese women in 1940. The assumption of such a future change, while conceivable, appears quite drastic.

An experimental calculation was carried out to determine by how much, under South-East Asian conditions, birth rates would be reduced should such a change in marriage habits occur, while rates of marital fertility remained unchanged. ${ }^{10}$ The effect would, at first, be quite slight; at the end of twenty years, however, the birth rate would be reduced by 5 per cent and at the end of thirty years by 9 per cent. As there are hardly any indications that such a change is already in progress, a substantial reduction of South-East Asian birth rates, on this basis, is not to be expected within the near future.

Sterility

Sterility, in a narrow sense, is the physical incapacity to bear children. In a wider sense, it can mean that no

[^28]children are born in a marriage, whether for physiological or any other reasons. Sterility can be either temporary or permanent.
While there are some individual variations, women are ordinarily capable of bearing children from near the age of 15 to near the age of 45 . Some women gain, or lose, this capacity at an earlier or a later age than others, and a few women never attain it. It is possible that differences in climate, diet, or the amount of physical exercise have some effect in this connexion, and that the effect may vary in tune with changes in living habits. However, not much is known on this subject.
Physiological sterility can also be incurred in the course of the reproductive period because of ill-health, a conception at too early an age, or physiological damage suffered in the process of child-bearing. The marriage of girls who are too young, the effects of venereal diseases and, in the view of some, the regular use of quinine as a protection against malaria, can reduce fertility. Progress in education and disease control are, then, likely to lessen this aspect of infertility.

The fact needs emphasis, on the other hand, that some married women bear no children though, physiologically, they may well be capable of doing so. Economic hardship, moral pressures or a displacement of motivating interests can have the result that, past a certain age, or once the desired family size is attained, they avoid the risk of further child-birth. In some societies it is considered indecent for parents to have an additional child once the oldest child has attained marriageable age. In others, people past certain ages commonly are absorbed in extra-familial interests and activities; as a result sexual relations lose their central motivating force. Effective fertility controls exist among populations which have no resort to the contraceptive devices most commonly used in the West, but the motivations involved, and the manner in which motivation may change, have hitherto been little explored.

Intervals between successive births

Children are commonly born to married women at intervals averaging from 24 to 36 months. A ninemonth period of pregnancy is usually followed by a brief period of relative sterility, and a more or less extended period of nursing the infant when women also rarely conceive. A lowering of the age at which infants are weaned might thus increase fertility, and a decrease in infant mortality might lower it, as part of the interval between successive births appears to depend on the period during which infants are nursed.

By and large, South-East Asian married women give birth to an average of six to eight children each. This is far from the possible maximum. Thus, supposing 18 years to be the mean age at marriage, and births to follow at intervals of 30 months, those six to eight children would be borne by women having attained ages ranging from 33 to 38 years, i.e., well before the onset of menopause. Perhaps, for some reason or other, average birth intervals are even longer. Perhaps, also, additional child-birth is effectively avoided past a certain age, or past a certain number of children already born.

With the very limited knowledge now available on these matters, it is evident that predictions cannot be made. Each of a number of variable factors, under changing circumstances, can cause either a rise or a fall in fertility.

It is only in the very long run that an eventual decline in fertility would seem to be inevitable: human society will resist a renewed rise in mortality and therefore be forced to accommodate fertility levels to the future low levels of mortality since an indefinite continuance of very rapid population growth is patently impossible. But in the shorter run, such as the period for which the present projections are made, there is no such necessity in any absolute sense.

Rates of fertility decline observed in other areas

The available information gives no indication that South-East Asian birth rates, now generally of the order of 45 per 1,000 , are about to decline. There are, in fact, few areas in the world where a significant decline from equally high birth rates has, so far, been observed.

Accurate records of past declines of birth rates are available for countries of western Europe and for Japan; in these areas, however, birth rates were only of the order of about 35 per 1,000 before the decline began. Data can also be found for some countries where birth rates have fallen off from an initially higher level.

Among western European countries, the birth rate of Germany had declined particularly rapidly, and that of the Netherlands particularly slowly. German birth rates averaged 32.9 per 1,000 in 1901-1910 and 20.3 per 1,000 in 1921-1930, a fall of 38 per cent in 30 years, or 1.9 per cent of the initial level per year. The Netherlands birth rate has declined continuously from 35.0 in 1880-1884 to 20.3 in 1935-1939; relative to the initial level, the average annual decline was 0.8 per cent. In Japan, an unusual combination of circumstances ${ }^{11}$ has brought the birth rate from 34.3 in 1947 to 17.2 in 1957, a 50 per cent decline in 10 years or 5.0 per cent per year.
In the Soviet Union a birth rate as high as 49.2 per 1,000 was recorded in 1891-1900, and 43.5 births per 1,000 were registered in 1926; in 1950-1955 the rate averaged 26.2 per 1,000, a decline of 1.5 per cent per year from the level of $1926 .{ }^{12}$ In Bulgaria, the birth rate declined from 42.1 in 1906-1910 to 21.6 in 1950-1954; in Romania, from 42.0 in 1911-1915 to 24.5 in 1952-1954; relative to the initial level, the declines were 1.1 per cent and 1.0 per cent each year. A rapid decline, on the other hand, has been registered in Puerto Rico, from 42.2 in 1947 to

[^29]32.4 in 1957, i.e., by 2.3 per cent of the initial level per year. ${ }^{13}$
It can be concluded that birth rate declines, where they did occur, proceeded at annual rates of between 1 and 2 per cent of the initial level, unless the decline was attended by some rather extraordinary circumstances. In most parts of the world, however, birth rates in excess of 40 per 1,000 have not yet shown any tendency to decrease.

The particular assumption adopted

Since there are still no indications as to the manner and speed with which South-East Asian fertility may decline in the future, if at all, no elaborate calculation of the effects has been attempted. The subject, nevertheless, is of considerable speculative interest. A simple assumption, therefore, has been worked out which can be easily varied in accordance with any given requirements. In particular, it has been assumed that fertility will: (1) remain constant until 1960 and (2) decline continuously thereafter by an annual amount equal to one per cent of its initial (pre-1960) level. Mortality, in this connexion, has been assumed to be in conformity with the conservative population projections. On this assumption, the total reduction in fertility by 1980 will be by 20 per cent. If twice as rapid a fertility decline were to be assumed, twice as large an effect should be expected, with a reduction in fertility amounting to 40 per cent by 1980.
Vital statistics available up to the year 1956 and part of 1957 indicate no definite trend of change in birth rates. ${ }^{14}$ Hence, there is hardly the need to assume a significant fertility decline prior to 1960.

To confine the calculation to a 20 -year period (19601980) has a considerable practical advantage. By 1980, none of the individuals born after 1960 will be more than 20 years old. For all age groups not affected by future numbers of births, the expected numbers of survivors have already been calculated in the projections presented in Sections I and II. The numbers of births themselves are calculated from the estimated numbers of women of child-bearing ages, but the latter remain practically unaffected until 1980. ${ }^{15}$ Relative to a constant-fertility projection, therefore, future births and survivors from future births will be reduced almost strictly ${ }^{16}$ in pro-

[^30]portion to the assumed reduction of fertility rates. A simple multiplication table, therefore, suffices to derive the modified estimates of numbers aged 0-4 in 1965, $0-9$ in 1970, $0-14$ in 1975 and $0-19$ in 1980, directly from the estimates in the constant-fertility projection. Should future fertility be assumed to change in some different manner, another multiplication table can readily be substituted.

On that assumption, the multiplication table required to modify the results of a constant-fertility projection is shown below. An annual decline in fertility by one per cent of the initial level produces an average decline by 2.5 per cent over the first five-year period, by 7.5 per cent in the next five-year period and so forth. These are the percentages of births calculated in the constantfertility projection which, because of the fertility decline, will not after all take place. Numbers of future survivors in particular age groups will be similarly reduced, relative to the constant-fertility projection. (See Table 15.)

Table 15

Percentage of persons calculated as survivors on A CONSTANT-FERTILITY ASSUMPTION WHO wILL NOT have been born, according to stated assumption of future fertility decline

Ase group	1965	1970	1975	1980
0-4.	2.5	7.5	12.5	$17.5{ }^{\text {a }}$
5-9	...	2.5	7.5	12.5
10-14	\cdots	...	2.5	7.5
15-19	2.5
Other ages	\ldots	\cdots	\ldots	...

[^31]The percentages in Table 15 are valid for persons of either sex. They can be used either in conjunction with the conservative projections, or with the projections in which low mortality was assumed. For present purposes, results will be presented which are derived from the conservative projections. In this manner, three sets of estimates with high, medium and low population figures respectively, as required by many users of population projec-
tions, are obtained. The medium figures are those obtained in the conservative projections (constant fertility, normal decline in mortality); the high figures are those of the low-mortality assumption, fertility being assumed to remain constant; and the low figures, finally, differ from the medium ones in respect to the assumed decline in fertility.
The declining fertility projection is obtained by subtracting future numbers of survivors from births not taking place according to Table 15, from the numbers calculated in the constant-fertility projection. It is obvious that, should fertility decline at twice the assumed speed, twice as many individuals "not born" will have to be subtracted. A future rise in fertility, or any other future trend in fertility, can likewise be taken into account by substitution of some other multiplication table for the one used here.

Application of the assumption

As an example of the application of Table 15, calculations referring to the population of the Philippines are shown in some detail below. The numbers in age groups under 20 years, and totals according to the conservative projections, are shown in Table 16; the numbers not born, assuming a one per cent annual fertility decline after 1960, in Table 17 and the expected future population on the latter assumption, after deduction of numbers not born, in Table 18.

The population of the Philippines has been conservatively projected to a figure of $26,605,000$ for the year 1960 , and $50,840,000$ for 1980 ; with fertility declining as assumed, the population in 1980 would amount to $47,571,000$, i.e., $3,269,000$ less than if fertility were to remain constant.

Total population 1960-1980 according to alternative projections

Using the same methods with respect to the population projections for other countries, estimates of future population on the assumption of declining fertility are obtained for all areas of South-East Asia. Results for age groups under 20 years are tabulated in Annex IV. Because of the interest there is in comparing future high, medium and low estimates of total population,

Table 16
Population of the Philippines, 1965-1980, according to conservative assumptions (detailed age groups of either sex up to 20 years of age; numbers in thousands)

Ages	Males				Females			
	1965	1970	1975	1980	1965	1970	1975	1980
0-4.	2938	3453	4092	4893	2862	3362	3980	4756
5-9.	2349	2775	3286	3.922	2292	2708	3206	3824
10-14	1943	2310	2735	3245	1894	2252	2668	3166
15-19	1745	1909	2275	2699	1586	1859	2217	2632
Other ages	6634	7648	9190	10858	6746	7844	9183	10845
Total	15609	18295	18578	25617	15380	18025	21254	25223

Table 17

Persons calculated on constant-fertility assumption for the philippines who will not have been born, ACCORDING TO ASSUMPTION OF FERTILITY DECLINE, 1965-1980 (NUMBERS IN THOUSANDS)

Ages	Males				Femates			
	1965	1970	1975	1980	1965	1970	1975	1980
0-4	73	259	512	856	72	252	498	832
5-9	\ldots	69	246	490	...	68	240	478
10-14.	68	243	\ldots	...	67	237
15-19	\ldots	\ldots	\ldots	67	\cdots	\cdots	...	66
Other ages	\ldots	\ldots	.	\ldots	\ldots	.	\ldots	.
Total .	73	328	826	1656	72	320	805	1613

the totals obtained in the several projections are brought together in Table 19. The high series is that obtained on the modified low-mortality assumption, fertility remaining constant. The medium series corresponds to the conservative assumptions of normal mortality decline and constant fertility. The low series also represents normal mortality decline, with the additional assumption of an annual one per cent decline in fertility beginning in 1960. In addition, a very low series is shown, in which the assumption has been made that fertility declines twice as rapidly, i.e., by an annual two per cent of its initial level, after 1960.

It will be noted that in every instance a fairly rapid population increase is to be expected even on the very low assumption of a rapid (2 per cent) decline in fertility, combined with a normal decline in mortality. In several instances (British Borneo, Burma, Cambodia, Indonesia, Laos, Portuguese Timor, Thailand and Viet-Nam) the high estimates, assuming sharp declines in mortality, exceed the medium estimates by a wider margin than that by which the very low estimates fall below the medium. Only in periods after 1980 can a substantial reduction of population growth be expected to result from the cumulated effects of fertility decline beginning in 1960.

By and large, the effect of a moderate future decline in fertility (by one per cent a year, of the initial level) will be to offset the effect of future mortality decline. As a result, the rate of population growth will then remain
fairly constant. With a rapid future decline of fertility, on the other hand, the rate of population growth will be slowed down somewhat.
As an example, we may observe the percentage population increases, in successive five-year periods, indicated by the figures in Table 19 for the Philippines. The high estimates (very rapid mortality decline, constant fertility) show an increase of 18.9 per cent for 1960-65, of 20.2 per cent for 1965-70, of 20.7 per cent for 1970-75 and of 21.3 per cent for 1975-80. The medium estimates (normal mortality decline, constant fertility) show these successive percentages: $16.5,17.2,17.9$ and 18.7. On the assumption of a moderate (1 per cent) fertility decline, the percentages become: $15.9,15.7,15.5$ and 15.5 . With rapid (2 per cent) fertility decline population growth slows down, the successive percentage increases in five-year periods being 15.4, 14.1, 13.0 and 12.0. Similar observations can be made with figures calculated for other countries.
On the same four assumptions for which results are tabulated in Table 19, percentage increases in total population over the twenty years from 1960 to 1980 will be as shown in Table 20 below. Even with a rapid decline in fertility, and a conservative assumption for mortality, the increases will still, in all cases, be quite considerable. In fact, they will continue to be more rapid, despite fertility decline, than population increases wese in the period from 1920 to 1940. (See Section I, Table 19.)

Table 18
Population of the Philippines, 1965-1980, according to assumption of fertility decline (detailed age groups up to 20 years of age; numbers in thousands)

Ages	Males				Females			
	1965	1970	1975	-1980	1965	1970	a975	1980
0-4.	2865	3194	3580	4037	2790	3110	3482	3924
5-9.	2349	2706	3040	3432	2292	2640	2966	3346
10-14.	1943	2310	2667	3002	1894	2252	2601	2922
15-19. .	1745	1909	2275	2632	1586	1859	2217	2566
Other ages	6634	7648	9190	10858	6746	7844	9183	10845
Total	15536	17967	20752	23961	15308	17705	20449	23610

Table 19
Four alternative series of future population estimates in areas of South-East Asia, 1960-1980 (in thousands)

Country and year	Hish series (rapld mortallty decline, constant fertility)	Medium series (normal mortaltiy decline, constant fertilty)	Low serles (normal mortallty decline. moderate fertility decline)	Very low series (normal mortality decline. rapid fertility decline)
British Borneo				
1960	1168	1130	1130	1130
1965	1325	1256	1250	1244
1970	1525	1410	1388	1366
1975	1776	1598	1542	1486
1980	2087	1829	1719	1609
Burma				
1960	24607	21505	21505	21505
1965	28232	23529	23435	23341
1970	32767	25943	25546	25149
1975	38447	28837	27884	26931
1980	45319	32333	30503	28673
Cambodia				
1960	5087	4952	4952	4952
1965	5939	5662	5637	5612
1970	6984	6480	6371	6262
1975	8293	7470	7199	6928
1980	9905	8672	8145	7618
Ceylon				
1960	...	9940	9940	9940
1965	...	11445	11398	11351
1970	...	13774	13063	12852
1975	...	15543	15001	14459
1980	...	18327	17227	16127
China (Taiwan)				
1960	\cdots	10591	10591	10591
1965	\cdots	12552	12495	12438
1970	...	14838	14586	14334
1975	...	17670	17023	16376
1980	...	21272	19931	18590
Indonesia				
1960	93344	90708	90708	90708
1965 . . .	105656	100370	99973	99576
1970 .	119933	111012	109372	107732
1975	137376	123364	119465	115566
1980	159728	138518	130970	123422
Laos				
1960	1610	1566	1566	1566
1965	1826	1736	1728	1720
1970	2098	1945	1915	1885
1975	2440	2190	2115	2040
1980	2876	2488	2342	2196
Malaya				
1960	7017	6964	6964	6964
1965	8286	8169	8131	8093
1970	9858	9670	9498	9326
1975	11870	11575	11126	10677
1980	14428	14008	13078	12148
Philippines				
1960	27280	26605	26605	26605
1965	32422	30989	30844	30699
1970	38957	36320	35672	35024
1975	47009	42832	41201	39570
1980	57032	50840	47569	44298

Table 19 (continued)

Country and year	High series (rapid mortallty decline, constant fertillty) *	Medium serles (normal mortaltty decline, constant fertllity)	Low series (normal mortaltty decline, moderate fertiltty decline)	Very low series (normal mortaltiy decline. rapid fertillty decline)
Portuguese Timor				
1960	528	514	514	514
1965	595	561	559	557
1970	678	624	614	604
1975	782	704	680	656
1980	913	793	746	699
Singapore				
1960	\ldots	1585	1585	1585
1965	\ldots	1873	1865	1857
1970	2221	2183	2145
1975	.	2688	2585	2482
1980	\cdots	3295	3074	2853
Thailand				
1960	24396	23737	23737	23737
1965	28487	27120	27000	26880
1970	33492	31088	30566	30044
1975	39781	35834	34553	33272
1980	47523	41617	39089	36561
Viet-Nam				
1960	29545	29286	29286	29286
1965	33483	32668	32536	32404
1970	38015	26351	35805	35259
1975	43050	40197	38948	37699
1980	49131	44626	42293	39960

- Not applicable to Ceylon, China (Taiwan) and Singapore.

Table 20

Population in 1980 PER 100 POPULATION IN 1960, ACCORDING TO FOUR ALTERNATIVE SERIES OF FUTURE POPULATION ESTIMATES FOR AREAS OF SOUTH-EAST ASIA

Country	High series (rapid mortallty decline. constant fertility) a	Medium serles (normal mortallty decline. constant ferstlity)	Low series (normal mortality moderate fertiltty decline)	Very low (normal mortalty declline, rapld fertllyt deccline)
British Borneo .	179	162	152	142
Burma	184	150	142	133
Cambodia .	195	175	164	154
Ceylon	184	173	162
China (Taiwan)	...	201	188	176
Indonesia . .	171	153	144	136
Laos	179	159	150	140
Malaya . .	206	201	188	174
Philippines	209	191	179	167
Portuguese Timor	173	154	145	136
Singapore .	.	208	194	180
Thailand	195	175	165	154
Viet-Nam	166	152	144	136

- Not applicable to Ceylon, China (Taiwan) and Singapore.

Changes in age structure resulting from declining fertility

Even with declining fertility, population growth in South-East Asia will continue to be rapid, but considerable changes in the age composition of the population are to be expected under this assumption. In the more remote future, these changes in age structure will contribute to a further slowing down of population growth: as the number of individuals in reproductive ages ceases to grow rapidly, the number of births can fall off more significantly. In the present study, however, attention is confined to periods up to the year 1980.

Taking once more the example of the Philippines, changes in age composition can be calculated on various assumptions which are brought together in Table 21 below. When fertility remains constant, normal mortality decline results in a slight relative increase of the child population. With a moderate (one per cent per year) decline in fertility, this tendency is counteracted, resulting in a slight relative decrease of the child population, and a slight relative increase in the proportion of adults. With a rapid decline in fertility, the latter effect assumes greater importance. More profound changes in age structure, however, would follow after the year 1980.

The importance of these changes, within the period under study, becomes apparent as we examine the ratios of persons in dependent ages (i.e., aged under 15, and 60 and over) to persons of working ages (aged 15-59 years), shown in Table 22.
Because of declining mortality, there is a tendency for the dependency ratio (i.e., the number of persons
aged under 15 , and 60 and over, per 100 persons aged 15-59) to rise somewhat; with a moderate decline in fertility, the ratio tends to fall off; with a rapid decline in fertility, it falls off considerably. Essentially the same conclusions follow when the several alternative population projections for South-East Asian countries other than the Philippines are examined.

Table 21
Percentages of the population of the Philippines in broad age groups, 19601980, aCCORDING TO VARIOUS ASSUMPTIONS OF FUTURE FERTILITY, MORTALITY being assumed to decline at normal rates

Ages	Constant fertlity			Moderate decline in fertllity			Rapld decline in fertilty		
	1960	1970	1980	1960	1970	1980	1960	1970	1980
0-14	46.1	46.4	46.8	46.1	45.4	43.4	46.1	44.4	39.6
15-29	26.4	26.4	26.2	26.4	26.9	27.7	26.4	27.4	29.5
30-44	14.7	14.9	14.9	14.7	15.1	15.9	14.7	15.4	17.1
45-59	8.6	8.1	7.8	8.6	8.3	8.3	8.6	8.4	8.9
60-74	3.5	3.5	3.6	3.5	3.5	3.9	3.5	3.6	4.2
75 and over	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8
Total .	100.0	100.0	100.0	100.0	99.9	99.9	100.0	99.9	100.1

Table 22
Ratios of persons aged under 15, and 60 and over, to 100 Persons aged 15-59 in the Philippines, 1960-1980, according to varied assumptions regarding FUTURE FERTILITY

Ratio to those aged 15-19	Constant fertilly			Moderate decline in fertility			Rapld decllne in fertlity		
	1960	1970	1980	1960	1970	1980	1960	1970	1980
Under 15	93	94	96	93	90	84	93	87	71
60 and over	9	8	9	9	8	9	9	8	9
Sum of the two	102	102	105	102	98	93	102	95	80

Section IV

OTHER SPECULATIVE PROJECTIONS: BURMA, VIET-NAM, SINGAPORE AND MALAYA

The population projections discussed so far may be variously affected by errors of estimate and errors of judgement, but to improve them substantially would be difficult in the present state of knowledge. Pending new, more detailed, or more accurate information, they may be regarded as nearly the best assessment of future population trends in South-East Asia that can now be made.

However, a few instances of trends different from those assumed in the preceding sections merit further consideration. These are Burma, Viet-Nam, Singapore and Malaya.

In the case of Burma, the projections presented in Sections I and III are not comparable with that presented in Section II. In the first case a smaller population and a higher initial level of mortality have been assumed than in the other. Yet another set of conservative projections allowing for declines in fertility is needed for comparison with the one discussed in Section II.

In the case of Viet-Nam, ${ }^{1}$ estimated trends in mortality and fertility are based on certain fragmentary data relating to pre-war periods. Since then so much has happened in that country that the validity of pre-war observations in a projection into the future can be seriously questioned. Since a relatively low level of fertility has been estimated, it is at least of some interest, pending new information, to take the possibility of higher post-war fertility into account, as is done in this section.

Singapore, so far, shows no more inclination towards declining fertility than do other areas in the region. Yet, considering its high degree of urbanization, should a fertility decline occur, there is a distinct possibility that, in the case of Singapore, it might be especially rapid. A projection has been made accordingly, showing the effects of an extremely rapid fertility decline (Table 28).

According to available evidence, there has been some migration between Malaya and Singapore. For the 1950-1955 period, estimated migration has already been taken into account in the population estimates and projections for the two areas. Since migration at a similar rate may also continue in the future, projections are now presented in which the effects of continued migration on the growth of population in both Malaya and Singapore are taken into account for periods after 1955.

[^32]
1. Burma

The official 1950 population estimate for Burma has been adopted as a starting point for the conservative population projection in Section I. This figure could have resulted from the population as enumerated in 1941 only if mortality, prior to 1950, was rather high. In the conservative projection, mortality so estimated is assumed to decline at a normal rate after 1950.
There is no obvious reason why mortality in Burma should have been any higher than that estimated in the case of Thailand. In that event, however, population would have had to be larger than officially estimated already in 1950. Accordingly, in the low-mortality projection of Section II, mortality has been estimated lower, the population in 1950 has been estimated at a higher figure, and mortality has been assumed to decline very rapidly from 1950 onward.
The Burma projections of Section III (declining fertility) are comparable with that of Section I, i.e., the starting point is the official estimate for 1950, and a rather high level of mortality is assumed. It is evident that the projections of Sections I and III are not comparable with that of Section II. However, in view of the difficulty of determining the current level of mortality in Burma, such a wide range of estimates was considered necessary.
On the other hand, it may be useful for certain purposes to have a conservative population projection for Burma comparable with the low-mortality projection in Section II. But in comparable projections the population in 1950 and the initial level of mortality must be the same, with the only difference that after 1950 mortality declines at normal rates in the one instance, but very rapidly in the other. A projection, accordingly, has been prepared in which the population of Burma in 1950 is estimated at 19,577,000 (as in Section II), and expectation of life at birth in 1945-1950 at 37.5 years, and fertility as in the other projections for Burma (Sections I and II); but, whereas in Section II expectation of life rises by 5 years every 5 years, in the present instance it is assumed to rise by $2 \frac{1}{2}$ years every 5 years, i.e., at the normal rate. The results are shown in Table 23; these are comparable with the Burma projection of Section II tabulated in Annex III.

Comparable projections have also been made for the assumption of future fertility declines, as shown in Table 24. These projections, rather than the ones of Section III (and Annex IV), should be examined together with the projection of Section II (Annex III).

Table 23
Burma, conservative projection, assuming the same mortality as in Thailand, and constant fertility

	Both sexes						
	1950	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)							
0-4. .	3118	3475	3935	4475	5093	5823	6719
5-9. .	2572	2838	3198	3657	4196	4815	5548
10-14.	2279	2498	2767	3127	3586	4124	4744
15-19. .	2011	2215	2436	2703	3064	3522	4061
20-24.	1709	1931	2135	2356	2626	2986	3444
25-29.	1447	1618	1846	2052	2275	2544	2905
30-34.	1294	1363	1534	1770	1976	2200	2472
35-39	1055	1211	1285	1456	1699	1907	2133
40-44.	1020	979	1133	1211	1382	1632	1840
45-49	884	932	904	1055	1136	1306	1560
50-54	740	789	844	826	972	1057	1223
55-59	512	640	692	751	743	882	996
60-64	396	423	536	589	649	649	778
65-69	520	303	330	426	476	533	540
70-74.	165	172	212	235	311	354	404
75-79	82	95	102	129	147	198	232
80-84	35	36	44	49	64	75	104
85 and over	8	11	12	15	18	25	31
Total	19577	21529	23945	26882	30413	34632	39704
Broad age groups (in thousands)							
0-14	7969	8811	9900	11259	12875	14762	17011
15-29.	5167	5764	6417	7111	7965	9052	10410
30-44.	3369	3553	3952	4437	5057	5739	6445
45-59.	2136	2361	2440	2632	2851	3245	3749
60-74	811	898	1078	1250	1436	1536	1722
75 and over .	125	142	158	193	229	298	367
Total	19577	21529	23945	26882	30413	34632	39704
Per cent of total population							
0-14	40.7	40.9	41.3	41.9	42.3	42.6	42.8
15-29.	26.4	26.8	26.8	26.5	26.2	26.1	26.2
30-44	17.2	16.5	16.5	16.5	16.6	16.6	16.2
45-49.	10.9	11.0	10.2	9.8	9.4	9.4	9.4
60-74.	4.1	4.2	4.5	4.6	4.7	4.4	4.3
75 and over	0.6	0.7	0.7	0.7	0.8	0.9	0.9
Total .	99.9	100.1	100.0	100.0	100.0	100.0	99.8

2. Viet-Nam

The birth rate of Viet-Nam ${ }^{2}$, estimated from certain pre-war data, is the lowest of any country in South-East Asia. There is no reason why it should not be. Each country has its distinctive culture, and so birth rates are not everywhere the same. However, since the dates to which the estimate refers, the country has passed through

[^33]a long period of severe disturbances. This makes it doubtful whether a pre-war estimate still applies to current and future conditions.

The direct effects of the disturbances in the period from 1945 to 1955 have been taken into account in the population projections discussed in the preceding sections. In particular, it has been assumed that mortality was temporarily high and birth rates were temporarily low, with consequent effects on the age structure of the population. Because of the relative birth deficit in

Table 24
Burma, conservative projection, assuming the same mortality as in Thailand, and declining fertility

1945 to 1955, relatively reduced numbers of persons will enter the ages of potential parenthood in periods which follow 1960. The consequent effects on population growth have been calculated in the projections shown so far, it being assumed that the pre-war level of fertility was resumed immediately after 1955.
The latter assumption, however, may be incorrect. An alternative assumption, on the other hand, cannot be substantiated at the present time. Not enough time has passed since 1955, nor has enough detailed information become available, to test the validity of any new assumption. Consideration of some plausible alternative, nevertheless, is at least of speculative inter-
est, if only to provide a rough gauge of the extent to which the projections initially made may err. On hypothetical grounds, the errors in the assumed post-1955 level of fertility may be of two kinds:
(1) With the cessation of disturbances within the country, families temporarily separated have been reunited and persons temporarily prevented from marrying have done so. The result may very well be, in the years which follow 1955, a "post-war baby boom" not unlike those observed in many other countries.
(2) Living conditions in the country have been changed rather profoundly. Both the Governments have designed, and are executing, vigorous development pro-
grammes. The new processes may have considerable repercussions on the attitudes which govern marriage and the formation of families, though it cannot be said without more detailed knowledge of conditions whether birth rates tend to rise or fall as a result. The possibility of a fertility decline has already been envisaged in the projections presented in Section III. On the other hand, in the present state of ignorance of detailed conditions, the possibility of a lasting rise in fertility ought not to be discounted.
Both of these considerations have been combined in a new tentative assumption of possible future fertility trends. Thus, the effects have been calculated on an assumption that pre-war fertility will be exceeded by 15 per cent in the periods from 1955 to 1965, and by 10 per cent thereafter. This frankly arbitrary assumption is not altogether unreasonable, in so far as this trend bears some resemblance to the one observed in Ceylon during the 1930's, 1940's and 1950's.
The new projections are carried out by the modification of constant-fertility projections already made with the aid of a multiplication table, as explained in Section III. This device, however, did not suffice for a period longer than 20 years, i.e., from 1955 to 1975 in the present instance; a separate calculation was required to deter-
mine numbers of individuals aged 0-4 years in 1980. The multiplication table actually used is shown below (Table 25).

Table 25
Multiplication factors applied to constantfertility projections of Viet-Nam to obtain proJections in which a modified future trend of fertility is assumed (per cent of additional NUMBERS OF SURVIVORS)

Age group	1960	1965	1970	1975	1980
$0-4 \ldots$	\ldots	+15	+15	+10	+10
5-9.	\ldots	+15	+15	+10	+10
$10-14 . .$.	\ldots	\ldots	+15	+15	+10
$15-19 . .$.	\ldots	\ldots	\ldots	+15	+15
$20-24 . .$.	\ldots	\ldots	\ldots	\ldots	+15

- Determined in a separate calculation.

The procedure has been applied both to the conservative projection (assuming normal future decline in mortality), and to the low-mortality projection (assuming very rapid future decline in mortality). The results of these two modified projections are presented in Tables 26 and 27.

Table 26
Viet-Nam. Normal mortality decline and high fertility

	Both sexes					
	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)						
0-4	2968	5534	6102	6195	6404	7360
5-9	2820	2731	5142	5722	5858	6102
10-14	3154	2749	2670	5043	5624	5772
15-19	2950	3073	2687	2617	4953	5538
20-24	2589	2843	2974	2610	2550	4842
25-29	2255	2473	2732	2871	2529	2481
30-34	1952	2150	2370	2631	2777	2457
35-39	1677	1852	2053	2276	2540	2692
40-44	1426	1581	1759	1960	2185	2450
45-49	1196	1329	1485	1663	1865	2091
50-54	984	1094	1226	1381	1557	1758
55-59	787	876	984	1113	1264	1436
60-64	600	670	756	859	982	1125
65-69	436	477	542	621	714	826
70-74	282	312	348	402	468	547
75-79	149	171	194	222	262	312
80-84	60	71	83	99	117	141
85 and over	17	22	27	34	42	51
Total	26302	30008	34134	38319	42791	47981
Broad age groups (in thousands)						
0-14	8942	11014	13914	16960	17886	19234
15-29	7794	8389	8393	8098	10032	12861
30-44	5055	5583	6182	6876	7502	7599
45-59	2967	3299	3695	4157	4686	5285
60-74	1318	1459	1646	1882	2264	2498
75 and over	226	264	304	355	421	504
Total	26302	30008	34134	38319	42791	47981

Table 26 (continued)

	Both sexes					
	1955	1960	1965	1970	1975	1980
Per cent of total population						
0-14	34.0	36.7	40.8	44.3	41.8	40.1
15-29	29.6	28.0	24.6	21.1	23.4	26.8
30-44	19.2	18.6	18.1	17.9	17.5	15.8
45-59	11.3	11.0	10.8	10.8	11.0	11.0
60-74	5.0	4.9	4.8	4.9	5.3	5.2
75 and over	0.9	0.9	0.9	0.9	1.0	1.1
Total	100.0	100.1	100.0	99.9	100.0	100.0

Table 27
Viet-Nam. Low mortality and high fertility

	Both sexes					
	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)						
0-4	2968	5654	6387	6651	7105	8498
5-9	2820	2758	5345	6129	6464	6985
10-14	3154	2758	2711	5278	6074	6425
15-19	2950	3082	2709	2675	5227	6034
20-24	2589	2854	3003	2655	2637	5176
25-39	2255	2488	2766	2933	2610	2607
30-34	1952	2161	2407	2697	2878	2577
35-39	1677	1864	2086	2342	2644	2838
40-44	1426	1582	1789	2021	2287	2597
45-49	1196	1339	1505	1720	1959	2232
50-54	984	1104	1255	1427	1646	1889
55-59	787	885	1010	1165	1340	1562
60-64	600	679	781	907	1062	1237
65-69	436	486	564	664	787	936
70-74	282	318	366	440	531	643
75-79	149	176	208	249	309	385
80-84	60	73	92	114	144	186
85 and over	17	22	29	41	54	72
Total	26302	30283	35013	40108	45758	52879
Broad age groups (in thousands)						
0-14	8942	11170	14443	18058	19643	21908
15-29	7794	8424	8478	8263	10474	13817
30-44	5055	5607	6282	7060	7809	8012
45-59	2967	3328	3770	4312	4945	5683
60-74	1318	1483	1711	2011	2380	2816
75 and over	226	271	329	404	507	643
Total	26302	30283	35013	40108	45758	52879
Per cent of total population						
0-14	34.0	36.9	41.3	45.0	42.9	41.4
15-29	29.6	27.8	24.2	20.6	22.9	26.1
30-44	19.2	18.5	17.9	17.6	17.1	15.2
45-59	11.3	11.0	10.8	10.8	10.8	10.7
60-74	5.0	4.9	4.9	5.0	5.2	5.3
75 and over	0.9	0.9	0.9	1.0	1.1	1.2
Total	100.0	100.0	100.0	100.0	100.0	99.9

3. Singapore (fertility)

Most of the population of the small island of Singapore is confined to the city of Singapore. Because of widening contacts with almost every part of the world, the expansion of industrial and commercial activities, and the progress in health and literacy, rapid social changes in this area, even if not indicated at the moment, are possible. For these reasons, one may envisage the possibility of a particularly rapid fertility decline in this area.

A decline by 5 per cent annually of the initial level has occurred in Japan from 1947 to 1957. It is not altogether impossible that a similar phenomenon may also occur in Singapore. At this rate of decline, fertility will be reduced to 75 per cent of the initial (pre-1960) level by 1965, to 50 per cent by 1970, and to only 25 per cent by 1975. To assume a reduction to zero would be
absurd. Hence, in 1975-1980, fertility is here assumed to remain at a level equal to 25 per cent of the pre- 1960 level. The following multiplication table, therefore, was applied (Table 28).

Table 28
MULTIPLICATION FACTORS APPLIED TO CONSTANT-FERTILITY projection of Singapore to obtain a projection in which an extremely rapid decline of fertility IS ASSUMED (PERCENTAGE OF ESTIMATED FUTURE SURVIVORS WHO, ON THIS ASSUMPTION, WILL NOT BE BORN)

Age group		1965	1970	1975	1980
$0-4$.	.	.	.	-12.5	-37.5
$5-9$.	.	-62.5	-75		
$10-14$.	\ldots
$15-19$.	-12.5	-37.5	-62.5	

Table 29
Singapore. Assumption of extremely rapid fertility decline after 1960

	Both sexes							
	1950	1955	1960	1965	1970	1975	1980	

Detailed age groups (in thousands)

0-4	175	257	291	294	253	195	169
5-9	121	173	249	285	289	250	194
10-14.	112	123	172	249	284	288	250
15-19.	99	117	123	172	248	284	288
20-24.	89	107	115	122	170	247	282
25-29	84	100	107	115	121	170	246
30-34.	-	79	91	98	105	113	121	168
35-39	76	83	90	96	104	112	119
40-44	69	77	81	88	95	102	110
45-49	54	67	74	78	85	92	99
50-54	39	51	64	71	74	82	89
55-59	27	36	48	59	66	70	77
60-64 .	-	18	24	32	42	53	60	64
65-69	11	16	21	27	36	46	52
70-74	-	5	9	11	16	21	29	38
75-79		3	3	6	8	11	15	21
80-84		1	1	2	3	5	7	9
85 and over	0	1	1	1	1	3	3
	Total	1062	1336	1585	1831	2029	2173	2278

Broad age groups (in thousands)

0-14.		408	553	712	828	826	733	613
15-29	272	324	345	409	539	701	816
30-44	224	251	269	289	312	335	397
45-59	-	120	154	186	208	225	244	265
60-74	- . .	34	49	64	85	110	135	154
75 and over	4	5	9	12	17	25	33
	Total	1062	1336	1585	1831	2029	2173	2278

Per cent of total population

0-14		38.4	41.4	44.9	45.2	40.7	33.7	26.9
15-29	25.6	24.3	21.8	22.3	26.6	32.3	35.8
30-44	21.1	18.8	17.0	15.8	15.4	15.4	17.4
45-59	11.3	11.5	11.7	11.4	11.1	11.2	11.6
60-74		3.2	3.7	4.0	4.6	5.4	6.2	6.8
75 and over		0.4	0.4	0.6	0.7	0.8	1.2	1.4
	Total	100.0	100.1	100.0	100.0	100.0	100.0	99.9

The results of this assumption are presented in Table 29. It is noteworthy that, even on this extreme assumption, population will not cease to grow prior to 1980, when it will be more than double the 1950 population. However, the age structure of the population would then be considerably modified.

4. Malaya and Singapore (migration)

From available census data and statistics of births, deaths and international migration, it has been inferred that an unrecorded movement of migrants from Malaya to Singapore has occurred in recent years. On an

Table 30
SURVIVors and offspring of 12000 annual migrants, 1955-1980

	1955	1960	1965	1970	1975	1980
Males (detailed age groups, in thousands)						
0-4	0	2	6	13	20	26
5-9	0	2	4	7	14	21
10-14	0	2	4	5	9	16
15-19	0	5	7	9	10	14
20-24	0	8	13	15	17	18
25-29	0	9	17	22	24	25
30-34	0	7	16	24	28	30
35-39	0	4	10	19	27	31
40-44	0	2	6	12	21	28
45-49	0	1	3	7	13	21
50-54	0	0	2	4	7	13
55-59	0	0	0	1	3	6
60-64	0	0	0	0	1	3
65-69	0	0	0	0	0	1
70 and	0	0	0	0	0	0
	0	42	88	138	194	253

Females (detailed age groups, in thousands)

average, there appears to have been an annual balance of 12,000 immigrants in Singapore in excess of those migrants who returned to Malaya. This movement has been taken into account in the population estimates for 1950 and 1955, on which are based the population projections for the two areas presented so far. No migration assumptions, however, have been made in any of the projections for years later than 1955.

The future volume of migration into and out of Singapore may fluctuate widely, depending on the city's prosperity and economic growth, on economic and social conditions in areas whence migrants originate, and on unpredictable changes in legislation. One
simple assumption is that movements from Malaya to Singapore may continue to leave an annual net balance of 12,000 migrants in Singapore. The effects of such an assumption can be calculated, but can be used flexibly. Thus, should it be assumed that future migratory balances will tend to be twice as large, then twice the calculated effects may be applied to the projections in which migration had been left out of account.

As regards the migrant population itself, it has been simply assumed that it will be subject to a constant low level of mortality, and that its level of fertility will be the same as that of the population of Malaya. As migration continues at the given volume, while migrants

Table 31
Singapore. Conservative projection, ASSUMING CONTINUED ANNUAL IMMIGRATION OF 12000

advance in age, some die, and others bear offspring, the direct demographic effects of the migration will be those presented in Table 30. The effect in the course of time is larger than the sum of migratory balances. Thus, an annual balance of 12,000 results in a total balance of 300,000 at the end of 25 years; however, as a result of intervening births and deaths, a population of 394,000 will be alive at that time.

The effect of such continuing migration on the population of Singapore can be considerable. This is shown in Table 31 where the migration scheme of Table 30 is applied directly to the population projection of Singapore, made on conservative assumptions. Thus,
instead of $3,295,000$ the population of Singapore may attain, by 1980, a figure of $3,689,000$ or about 12 per cent more. In the space of 30 years, the 1950 population of Singapore may, conceivably, almost quadruple.
The effect of continuing emigration on the population of Malaya (according to the conservative projection) is relatively not so great (See Table 32.) Instead of $14,008,000$, the 1980 population of Malaya would then still amount to $13,614,000$, i.e., only about 3 per cent less. Population growth in Malaya will continue to be very rapid, even if Singapore grows at an extraordinary rate through migration from Malaya.

Table 32
Malaya. Conservative projection, assuming continued annual emigration of 12000

	Both sexes						
	1950	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)							
0-4	875	1137	1262	1496	1790	2209	2736
5-9	690	824	1079	1207	1441	1737	2157
10-14	635	671	808	1061	1192	1425	1720
15-19.	497	617	654	791	1043	1173	1406
20-24	383	468	592	631	768	1017	1148
25-29	342	349	444	565	606	741	992
30-34.	328	311	331	424	544	586	722
35-39	317	305	297	317	410	529	571
40-44	302	296	291	284	306	396	516
45-49.	251	283	282	278	271	293	385
50-54	199	232	267	266	264	259	282
55-59	138	181	213	247	250	249	246
60-64.	98	121	161	191	223	226	228
65-69	69	81	101	136	164	193	198
70-74	38	54	62	78	107	130	156
75-79.	35	32	35	42	54	74	92
80-84.	12	17	14	19	23	31	44
85 and over	12	17	11	8	10	11	15
Total	5211	5990	6904	8041	9466	11279	13614
Broad age groups (in thousands)							
0-14.	2200	2632	3149	3764	4423	5371	6613
15-29	1222	1434	1690	1987	2417	2931	3546
30-44.	947	912	919	1025	1260	1511	1809
45-59	588	696	762	791	785	801	913
60-74.	205	256	324	405	494	549	582
75 and over	49	60	60	69	87	116	151
Total	5210	5990	6904	8041	9466	11279	13614
Per cent of total population							
0-14.	42.2	43.9	45.6	46.8	46.7	47.6	48.6
15-29.	23.5	23.9	24.5	24.7	25.5	26.0	26.0
30-44.	18.2	15.2	13.3	12.7	13.3	13.4	13.3
45-59	11.3	11.6	11.0	9.8	8.3	7.1	6.7
60-74.	3.9	4.3	4.7	5.0	5.2	4.9	4.3
75 and over	0.9	1.0	0.9	0.9	0.9	1.0	1.1
Total	100.0	99.9	100.0	99.9	99.9	100.0	100.0

Section V

SOME IMPLICATIONS OF SOUTH-EAST ASIAN POPULATION TRENDS

A. General considerations

The two outstanding conclusions which emerge from the foregoing are these: the populations in South-East Asian countries are predominantly very young; and they tend to increase very rapidly.

These two findings are not new. Youthfulness and growth have characterized the same populations also in the past. And yet there is a difference in degree: the proportions of children and adolescents in the total population now tend to rise, though not by much; at the same time, the rate of population growth is greatly augmented, from between one and two per cent per annum in past decades to nearly 3 per cent per annum in the decades to come. The phenomenon of population growth, though not new, now acquires an unprecedented intensity.

Since growth has also occurred in the past, much is to be learned from a study of how the peoples of SouthEast Asia have managed to find sustenance for ever increasing numbers. Since at least the most essential adjustments could be made in the past, it is highly probable that this remains possible also in the future, unless a point is reached where every resource has been exhausted. But, if past adjustments have been difficult, adjustments of the same kind will run into increasing difficulties as the tempo of population growth is speeded up.

Sometimes population growth aids economic growth. In sparsely settled areas, e.g., in British Borneo, costs of transportation and various overheads are lowered, the division of labour increases, and markets are organized more efficiently as population becomes larger. Also, once a certain threshold of industrial development has been attained, further investments are stimulated by an expectation of increasing returns in a widening market. The structure of the economy then also undergoes a change. There is the need to orient economic and social development so that population growth, instead of being a drag, becomes a positive stimulus in bringing about a rising level of living while preserving the necessary social cohesion.
The circumstances under which an advantage is derived from population growth cannot be determined without very detailed study of each particular situation. That South-East Asian populations now tend to grow much faster than ever before is, for all practical purposes, fact. This makes it imperative to undertake all those efforts which help to harness progress to growth. The need for the requisite studies in a great variety of fields is evident. In the following paragraphs a few partinent
facts will be briefly examined, although many of the statistics that are now available are not comparable from one country to another, because of variations in their definitions. The few facts briefly considered merely emphasize the need for more detailed studies.

1. Population density

Wedged between the population giants of China and India, the South-East Asian region does not seem, at first glance, to be very heavily populated (see Figure III). Yet even at the level of national entities, a great variety of population densities appears within the region (see Table 33). The sharpest contrasts are between some of the smaller areas. Since rapid growth is to be expected in every area, the diversity will be no less in 1980 than it was in 1950. Apart from Singapore, there were in 1950 two countries with average densities of less than 10 , and two with average densities of more than 100 persons per square kilometre; in 1980 there will probably still be one area with a density smaller than 10 while in five areas the density will exceed 100 . As will be shown further on, even greater disparities are found in the population density of regions contained within particular countries.

Table 33
Area of South-East Asian countries in square kilometres and estimated population densities in 1920, 1950 AND 1980

Country		Inhabitants per square kllometre		
		1920	1950	1980
British Borneo	203791	$3{ }^{\text {a }}$	5	9
Burma	667950	20	27	48
Cambodia	175000	$13{ }^{a}$	22	50
Ceylon .	65610	68	115	279
China (Taiwan)	35961	104	208	592
Indonesia	1491562	35	50	94
Laos .	237000	$4^{\text {a }}$	5	11
Malaya	131287	22	40	107
Philippines	299404	36	67	170
Portuguese Timor	14925	30^{a}	29	53
Singapore	$581{ }^{\text {b }}$	673	1824	5663
Thailand . .	513000	18	36	81
Viet-Nam ${ }^{\text {c }}$	329600	47^{a}	79	137
Total	4165150	28	45	92

- Rough estimate.
${ }^{6}$ Rxcluding Christmas Island, whose population is very small.
${ }_{c}$ In this report Viet-Nam is understood to comprise both the northern and southern

Figure III
Asia. Distribution of population

2. Economically active population

The percentage of the population participating in economic activities varies with the customary age of entry into and withdrawal from the labour force, and with the age composition of the population. It is illuminating to examine available census statistics for the male population aged 10 years and over. ${ }^{1}$ The average of census results obtained prior to, and since, 1931 for six areas of South-East Asia and for India and Japan are brought together in Table 34, below.

One fact to be noted is that in all areas the percentage of economically active males has been declining. Both before and since 1931, the average level of male economic activity in areas of South-East Asia has been similar to that in India. In Japan, it has been lower, and has declined further.

The decline in the percentage is caused largely by an extension of formal school education beyond the age of 10 years, and to some extent by the earlier retirement from economic activity of persons of advanced ages in urban or industrial surroundings. Census criteria may also have varied with time, it being increasingly recog-

[^34]nized that the contribution of some of the children, or some of the old persons, to economic output is relatively slight. The relatively high percentages noted in Malaya have also been partly affected by immigration, most immigrants usually being young adults in the best working ages.

From an economic point of view, the lessened contribution of children and aged persons to the labour force entails a smaller loss of output than the numbers of individuals would seem to indicate. The change can be of great social significance, especially when an opportunity is given to youth to extend its education; its eventual participation in the productive process is then likely to be far more effective.

By and large, the level of 75 per cent now appears fairly typical for the extent to which males aged 10 years and over are economically active in South-East Asian countries. In technologically advanced countries, e.g., Japan, the percentage tends to be somewhat lower.

The populations of South-East Asia gain their livelihood partly in a subsistence economy and partly in a cash economy. The extent to which cash incomes have replaced incomes in kind is difficult to determine, but a rough indication is obtained by comparing numbers returned as "wage and salary earners" in the censuses with those reported as "employers and workers on own account"; the latter, for the most part, are peasants,

Table 34
Percentage of male population aged 10 years and over who are economically active (averages of census results), prior to, and since 1931 in areas of South-East Asia, India and Japan

Country	Censuses taken prior to 1931		Censuses taken since 1931	
	Dates of censuses	Average of results (Der cent)	, Dates of censuses	Average of results (per cent)
Burma	1901, 1911, 1921	78	1931	76
Ceylon .	1901, 1911, 1921	85	1946	76
China (Taiwan)	1905, 1915, 1920, 1930	85	1940	79
Malaya . .	1921	89	1931, 1947	81
Philippines		-	1939, 1948, $1956{ }^{\text {a }}$	74
Thailand		-	1937, 1947	74
India .	1901, 1911, 1921	84	1931, 1951	76
Japan	1920, 1930	80	1940, 1947, 1950, 1955	73

craftsmen, and their assistants ${ }^{2}$ who are not remunerated in the form of cash; agricultural day-labourers, on the other hand, are earners of wages. According to censuses taken in 1946 and 1948, the ratio of wage earners to workers on own account was $60: 40$ in Ceylon, $53: 47$ in the Philippines, and $51: 49$ in Malaya; a ratio possibly more typical for some of the larger countries was that noted in Thailand, namely $23: 77$. By contrast, in Singapore the ratio was $74: 26$, wages and salaries being the dominant form of income in that urban territory.

3. Main branches of economic activity

It has become customary to distinguish three main branches of economic activity, variously defined, comprising the following sectors:
I. Agriculture, forestry and fishing (primary activities);
II. Manufactures, building and handicrafts (secondary activities); and
III. Transport, communications, commerce and services (tertiary activities).
The proportions of economically active males (aged 10 and over) in these three branches of activity are summarized in Table 35 below.

Agriculture is the principal economic activity in SouthEast Asia. Secondary activities in all South-East Asian areas (other than Thailand) and India engage only about 10 per cent of the labour force. Manufactures are but feebly represented and have shown little change from earlier in this century until more recent dates. By contrast, the proportion in this category for Japan was recorded as 23 per cent in the year 1920, rising to a maximum of 33 per cent in 1940.

There are some variations, on the other hand, in the percentages engaged in the primary and tertiary sectors

[^35]respectively. The case of Thailand seems rather odd, but there are reasons to doubt whether comparable criteria have been employed here. At the other extreme, a much smaller and diminishing segment of the labour force of Ceylon has been classed under primary activities. There may be various occupations which tend to be classified as agricultural in the census of one country while another country regards them as services.

However that may be, time series for any one country are likely to be more comparable. A decline in the percentage of primary activities is to be noted in Ceylon, China (Taiwan), and Japan; except for Japan, this decline is associated with a commensurate increase in the percentage of tertiary activities. In Malaya, Thailand and India, the composition of the labour force seems hardly to have changed at all, so far as is indicated by the summary of available data. Nevertheless, significant changes may have recently begun with effects to be revealed in future census results.

By and large, primary activities typically engage about 70 per cent of the labour force in South-East Asian countries, ${ }^{3}$ about 10 per cent being in secondary and about 20 per cent in tertiary employments. The same situation is also found in India. By contrast, in Japan the proportions in the three sectors are now almost equal. While admitting that there are variations among the countries of South-East Asia, one may doubt whether census criteria have everywhere been the same. Thailand may not be so extremely agrarian as the data suggest; in Ceylon, part of the activities listed as tertiary may be in the nature of a disguised under-employment of rural workers. ${ }^{4}$ The fairly large sector of tertiary activities in Malaya indicated by the data may be more accurate because of the considerable role played by commerce and transportation.

[^36]Table 35
Percentage composition of male labour force by three main branches of economic activity, prior to and since 1931, in areas of South-East Asia, India and Japan (averages of census results)

Country	Dates of censuses	Per cent of labours force in economic sectors		
		Primary	Secondary	Tertary
Burma				
Prior to 1931	1901, 1911, 1921	68	7	25
Since 1931	1931	73	8	19
Ceylon				
Prior to 1931	1901, 1911, 1921	65	9	26
Since 1931	1946	51	10	39
China (Taiwan)				
Prior to 1931	1905, 1911, 1920, 1930	69	9	22
Since 1931	1940	63	12	25
Malaya				
Prior to 1931	1921	61	12	27
Since 1931	1931, 1947	60	11	29
Philippines				
Prior to 1931	-	-	-	-
Since 1931	1939, 1948, $1956{ }^{\text {a }}$	72	10	18
Thailand				
Prior to 1931		84	2	14
Since 1931.	1937, 1947	84	3	13
India				
Prior to 1931	1901, 1911, 1921	70	11	19
Since 1931	1931, 1951	70	11	19
Japan				
Prior to 1931	1920, 1930	45	24	31
Since 1931	1940, 1947, 1950, 1955	37	30	33

- Household survey, not a census.

4. Land use

Agriculture, in a wider sense, is a more dominant activity than most of the preceding figures indicate. Not only the peasants but many other persons depend for their living on the fruits of the land. Agrarian products furnish the livelihood of workers engaged in their transportation and marketing, the manufacture and upkeep of agricultural buildings and implements, the industrial processing of food, and foreign trade. Despite this heavy dependence on the produce of the soil, not all land in South-East Asia is being cultivated, and some of it only by the most extensive methods.

Estimates of land areas put to different uses are being compiled by the Food and Agriculture Organization. The attempt at obtaining comparable estimates is only partly successful, as witnessed by numerous footnotes and by frequent sharp revisions of some figures. The latest estimates, received in the years from 1952 to 1955, are presented in Table 36.

According to these, between one-quarter and onetwentieth of land areas are used for field crops and tree crops; high percentages of such land have been estimated
notably for Ceylon, China (Taiwan) and the Philippines, and low percentages for British Borneo and Laos. There are, of course, great variations in the intensity of land use, depending on whether irrigation or dry farming, double cropping, single cropping or shifting agriculture is being practised. Lands under pasture, though not reported for all countries, are generally not of great extent. In all countries of the region, between one-half and two-thirds of the land is forested, though only small parts of the forest reserves are actually exploited. For some countries, considerable areas of additional potentially productive land have been estimated, but there may be wide variations in the qualities of such land. Part of the forest cover might, under certain conditions, be cleared and provide additional sources for extended agricultural land use. It is known, however, that lands denuded of tropical forest are often poor in vegetable matter and, unless suitably irrigated and fertilized, yield rather meagre returns in field crops.

5. Man-land ratios (tentative measure)

Agriculture being the dominant occupation, it is of interest to observe how the increasing numbers of peas-

Table 36
Land use in South-East Asian countries (percentage of total area) ${ }^{a}$

Country	Arable land and land under tree crops	Permanent meadows and pastures	Forested land	Unused but potentially productive	Other land
British Borneo					
Brunei	7	-	67	1	25
North Borneo	3	2	80	1	14
Sarawak	28^{6}	-	71	-	1
Burma .	$13{ }^{\text {cd }}$	-	58	11	18
Cambodia	17	3	46	29	5
Ceylon .	23^{6}	-	54	18	5
China (Taiwan)	24	2	49	-	25
Indonesia .	12^{6}	-	61	-	27
Laos .	4	4	60	13	19
Malaya . .	17°	-	74	6	3
Philippines	20	4	53	19	4
Thailand	$15^{\text {b }}$	-	63	-	22
Viet-Nam .	$14^{\text {b }}$	-	41	5	40

- Source: FAO Yearbook of Food and Agricultural Statistics, 1956, vol. X, part 1, pp. 5-6.
${ }^{6}$ Total agricultural area (i.e., including meadows and pastures).
- Areas of Putao, Chin Hills, Maga Hjils, Shan States and Karenni are not included.
${ }^{d}$ Agricultural land used for more than one crop during the year has been counted twice.
e Including a provisional figure for rubber small-holdings.
ants ${ }^{5}$ have been accommodated on the available agricultural land. Land shortage and rural poverty have been noted for a long time; nevertheless, the problem raised by increasing rural populations has continuously been solved in various ways.

To examine this question, however tentatively, two series of estimates are required: a time-series of the numbers of males actively engaged in agriculture; and a corresponding series of the hectares of cropped land.

The first series has been calculated as follows: (a) for all countries, it has been assumed that roughly 75 per cent of the males aged 10 years and over, at any one time, are effectively in the labour force; and (b) for Burma, the Philippines, Thailand and India, it has been assumed that 70 per cent of the economically active males were engaged in agriculture; for Malaya, the proportion was assumed to be 60 per cent; for Ceylon, China (Taiwan) and Japan the percentages actually recorded in censuses were taken into consideration.

It was more difficult to establish the second series, relating to cultivated land areas. Time series of cultivated areas are rarely published for any one country, which necessitates a thorough search for isolated figures relating to different years. Furthermore, there are variations in definition, some data referring to areas actually cultivated, others to cultivable areas. Finally, the distinction between cultivated and harvested areas is a source of confusion, especially in South-East Asia, where interspersed cultivation and double cropping are not uncommon. To circumvent some of these complications, compilations were made of figures relating to cropped areas for each major agricultural product,

[^37]such as rice, maize, soya beans, coffee, tea, rubber, etc. ${ }^{6}$
Relating the two series, one on males active in agriculture, the other on cropped areas, one obtains the man-land ratios presented in Table 37.
The following observations can be made:
(1) Prior to 1940 , man-land ratios in each country have been nearly constant;?
(2) Nevertheless, there were sharp differences between one country and another;
(3) Significant changes have occurred since the 1940's.

The recent changes can best be summarized by comparing the averages of figures available for all periods up to 1940 with the averages for the two most recent periods (1946-1950 and 1951-1955), as is done in Table 38 below, the areas of South-East Asia being ranked in the order of their pre-1940 man-land ratios. Burma, formerly holding first place, has fallen behind Malaya and Thailand. In the Philippines the ratio has fallen, in Thailand it has risen, with consequent change in ranking. Similar changes arise in the relative positions of Indonesia (Java and Madura) and of Ceylon.

[^38]Table 37
Hectares of agricultural cropped areas per male actively engaged in agriculture, 1901-1955, in areas of South-East Asia, India and Japan

| Country | 1901-1905 | $1906-1910$ | $1911-1915$ | $1916-1920$ | $1921-1925$ | $1926-1930$ | $1931-1935$ | 1936-1940 | 1941-1945 | 1946-1950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | 1951-1955

The comparative stability of man-land ratios up to 1940 :flects largely a stability in techniques and in cus)mary property and work relations. Under a given set f conditions, peasants were able to earn a living from nits of land of a given size, there being no tendency ither to increase or to decrease the units. This set of onditions has differed greatly from one country to nother, in a manner which cannot be accounted for imply, because a great variety of cultural factors has etermined these several manners of living. Relative tability has been upset by the events of the Second Norld War, favourably in some instances and unfavourbly in others. If the statistics can be trusted, the way of life in these countries is now changing more substanially than it had in the past.

Table 38
'RE-WAR AND POST-WAR AVERAGES OF MAN-LAND RATIOS, and Comparison of the two, for areas in SouthEast Asia, India and Japan

Country	Pre-war averages (periods up to 1940)	Post-war averages (1946-1955)	Post-war. as percentage of pre-war
3urma .	2.12	1.36	64
Malaya	$1.97{ }^{\text {a }}$	1.89	96
${ }^{\text {Philippines }}$	1.52	1.21	80
[hailand	1.32	1.60	121
Zhina (Taiwan) . . ndonesia (Java and	1.20	1.04	87
Madura)	1.09	0.89	82
Jeylon	0.93	0.94	101
India	1.63	1.39	85
Japan	0.83	0.70	84

- 1931-1940 only.

But, as is suggested by the comparative figures for India and Japan, the man-land ratio provides no indication of the level of rural prosperity which can be attained. Though raising crops on only one-half the average size of plots, Japanese peasants are known to be more efficient and more prosperous than Indian peasants.

Problems of various kinds must be overcome to accommodate increasing numbers of peasants to the areas within which crops can be raised. Adaptive changes have occurred, and are occurring, which the man-land ratios do not reveal. Apart from changes of agricultural technique, the following accommodations are possible:
(a) An extension of cultivation to new lands;
(b) An extension of double-cropping within areas already cultivated;
(c) An extension of exportable cash crops, e.g., crops raised in plantations;
(d) A transfer of workers from agricultural to other activities.
In Burma until recently a continuous expansion of cultivated land had nearly kept pace with the increase in population. Double-cropping has been considerably extended in Java and Madura, and recently even more in China (Taiwan). Plantation crops have gained much importance in the economies of Ceylon, Malaya, and Indonesia, though in the latter the output of such crops has recently been much curtailed. In Japan, large segments of the rural population have moved into industrial and service occupations, mostly in the cities; a transfer from agricultural to service employments also seems indicated in the statistics for Ceylon.

6. Rice production

Generally between one-third and two-thirds of the arable land are cropped in rice, which is the staple food. Other food crops, including maize, soya beans and tuber roots have gained in importance in certain areas. Apart from food, large areas of Malaya and Ceylon are planted with rubber and considerable areas in Ceylon with tea; non-food crops including sugar cane and fibres are of some importance also in a few other countries. The ample fish resources of the seas are utilized only to a slight extent.

Statistics on the areas in which paddy rice was harvested (double-cropped areas being counted twice) and the yield per hectare are assembled in Table 39. Again, for a variety of reasons, the figures are not comparable, but a few conclusions can be made.

Table 39
Areas of rice harvested, production of rice and yield per hectare in the countries of South-East Asia, 1909-1955

Country	1909-1913 *	1922-1925 -	1934-1938 b	1948-1952 b	1954-1955 6
Area in rice (thousands of hectares)					
Burma	4000°	$4431{ }^{\text {c }}$	4931	3758	3950
Cambodia .	3460 *	4086 *	784	1127	1076
Ceylon	281	319	345	$411{ }^{\text {d }}$	503
China (Taiwan)	478	525	666°	762	764
Indonesia					
Java and Madura	2409 '	3334	3843	3762	4174
Other islands	-	-	-	2114	2408
Laos .	3460 *	4086 *	424	825	550
Malaya	56°	$257{ }^{\text {n }}$	298	343	450
Philippines	$1114^{\text {i }}$	1700	1990	2318	2699
Thailand .	1903 '	2707	3040	5211	4962
Viet-Nam .	$3460{ }^{\text {k }}$	4086 *	4382	-	$2150{ }^{\text {l }}$
Production of rice (Thousands of metric tons)					
Burma	-	-	6971	5309	5836
Cambodia	5388 *	5599 *	767	1372	975
Ceylon . .	226	239	300	$468{ }^{\text {d }}$	695
China (Taiwan)	813	1032	$1642{ }^{\circ}$	1682	2058
Indonesia					
Java and Madura	$4068{ }^{\prime}$	4957	5847	5894	7062
Other islands	-	-	-	3547	4370
Laos	$5388{ }^{\text {k }}$	5599 *	297	540	455
Malaya .	59°	$272{ }^{\text {h }}$	513	635	670
Philippines	820^{i}	1921	2179	2767	3081
Thailand	2850 '	4684	4357	6845	6710
Viet-Nam	5388 *	5599 *	5434	-	$2669{ }^{\text {l }}$
Rice yield (100 kg per hectare)					
Burma . .	-	-	14.1	14.1	14.8
Cambodia	15.6 *	13.7 *	13.1	12.2	9.4
Ceylon . . .	8.0	7.5	8.7	$11.4{ }^{\text {d }}$	13.8
China (Taiwan)	17.0	19.7	$24.6{ }^{\circ}$	22.1	27.0
Indonesia					
Java and Madura	$16.9{ }^{\text {f }}$	14.9	15.2	15.7	17.0
Other islands	-	-	-	16.8	18.2
Laos . .	$15.6{ }^{*}$	13.7 *	7.0	6.4	8.2
Malaya	$10.6{ }^{\circ}$	$10.6{ }^{\text {n }}$	17.2	18.5	19.2
Philippines	$7.3{ }^{i}$	11.3	10.9	11.9	12.0
Thailand	$15.0{ }^{\text {j }}$	17.3	14.3	13.1	13.4
Viet-Nam	$15.6{ }^{k}$	13.7 *	12.4	-	$12.4{ }^{t}$

[^39]Areas under rice have increased considerably in most countries, though in Burma they have declined since the Second World War; in some areas, part of the increase has been the result of an expanding practice of double-cropping within lands already cultivated. In
many countries, the ratio of harvested area to total land area is still very small, but in some it has become considerable: about one-third of the total area in Java and Madura, and about one-quarter in China (Taiwan) are cropped in rice. In the latter instance, further exten-
sions of rice areas depend, for the most part, on the use of double-cropping, there being very little additional land suitable for rice cultivation.

Again with the exception of Burma, the production of rice has also increased, despite a set-back caused by the Second World War. In China (Taiwan) output has doubled within the past thirty years.

The increases in output have resulted mostly from an extension of harvested areas rather than from increases in average yield. In China (Taiwan) and in Malaya, there has also been a definite rise in yields. For some other countries, the statistical evidence is partly inconsistent, and in some instances average yields may have actually declined. Declines in average yields may sometimes have been a result of extensions of cultivation to lands less suitable than those earlier cultivated.

Even in countries specializing in the export of rice (e.g., Burma, Thailand), yields range mostly from 12 to 18 quintals per hectare. This is not a high yield, though lower yields of rice cultivation have been observed in some parts of the world. ${ }^{8}$ Among countries of the region, only China (Taiwan) has achieved a comparatively high yield, followed by Malaya and Indonesia.

In the context of this discussion, the progressive rise of yield in Japanese rice cultivation is most noteworthy though, of course, one cannot conclude that similar achievements are possible in the different natural and social environments of South-East Asia. According to the FAO Yearbook, ${ }^{\circ}$ where the attempt is made to present internationally comparable statistics, Japan's yield of (paddy) rice per hectare of harvested area was 36.3 quintals in 1934-38, 40.0 in 1948-52, and 42.8 in

[^40]1954-55. This recent achievement follows upon a long history of increasing efficiency in Japanese rice production. Another set of statistics, not strictly comparable with those presented so far, shows the following rise of yield of "brown rice equivalent" per hectare in Japan: ${ }^{10}$

In Japan, however, the harvested area has changed very little: except for 1944 and 1945, the area under rice has fluctuated between 3 and 3.3 million hectares throughout the past 45 years. The rise of yields in China (Taiwan), less spectacular than that of Japan, is remarkable since it has occurred simultaneously with a rise in the proportion of areas harvested twice a year. Here the expansion of the cultivated area, rapid at first, has become very slow since the 1930s. But whereas previously the ratio of harvested to cultivated land area was of the order of 1.3 to 1 , it has recently attained the remarkable figure of 1.72 to $1 .{ }^{11}$

[^41]Table 40
Quintals of rice production per inhabitant in South-East Asian countries, 1909-1955

Country	1909-1913	1922-1925	1934-1938	1948-1952	1954-1955
Burma	-	-	4.5	2.9	2.9
Cambodia .	$3.4{ }^{\text {e }}$	$2.9{ }^{\circ}$	2.6	3.5	2.2
Ceylon	0.5	0.5	0.5	0.6	0.8
China (Taiwan)	2.6	2.6	$3.2{ }^{\text {a }}$	2.1	2.3
Indonesia					
Java and Madura	1.3	1.3	1.3	1.2	1.5
Other islands	-	-	-	1.4	1.6
Laos .	$3.4{ }^{\circ}$	$2.9{ }^{\circ}$	3.0	5.4	3.2
Malaya	-	$0.9{ }^{6}$	1.3	1.2	1.1
Philippines	$0.9{ }^{\text {c }}$	1.7	1.4	1.4	1.3
Thailand	$3.4{ }^{\text {d }}$	4.6	3.1	3.7	3.1
Viet-Nam	$3.4{ }^{\text {e }}$	$2.9{ }^{\text {e }}$	2.9	-	$2.0{ }^{\text {r }}$

- 1931-1937.	d $1911-1913$.
1933-1934.	C Cambodia, Laos and Viet-Nam.
c 1910-1913.	f The Republic of Viet-Nam.

By relating total outputs in rice to numbers of the population, per capita figures are obtained as shown in Table 40. People in South-East Asia do not, of course, subsist exclusively on rice, though rice is still their principal diet. A precise figure of per capita rice requirements, therefore, cannot be indicated. Nevertheless, it is evident that the several countries are unequally supplied with rice locally produced. An average of two quintals per inhabitant has not been attained in Ceylon, Indonesia, Malaya and the Philippines but has almost invariably been exceeded in Burma, Cambodia, China (Taiwan), Laos, Thailand and Viet-Nam. In the latter countries, however, and especially in Burma and China (Taiwan), there has been a tendency for per capita rice production to decrease; increases in the local population, post-war disturbances, and reductions in the volume of foreign trade have combined in curtailing the previously large exportable surpluses of several areas.

The needs of the rice importing countries, on the other hand, notably Ceylon, Indonesia and Malaya, also tend to rise with population increases. But there has recently been some substitution of other foods, such as maize in the Philippines, millet and sorghum in Burma, soya beans in Java, and cassava, sweet potatoes and citrus fruits in several areas. With an expected further acceleration of population growth, further changes in the volume of trade in rice, and in the production of alternative sources of food, are to be expected.

7. Urban development

With the exception of Singapore, the populations studied here are still predominantly rural, but the relative importance of their urban segments has been increasing. The statistical criteria by which urban populations are defined vary greatly, depriving international comparisons of much of their meaning. The figures presented in Table 41, nevertheless, are somewhat indicative of recent trends.
Though one may view the growth of urban populations as a concomitant of the transition from traditional agrarian to modern industrial forms of living, the development of cities in South-East Asia is greatly at variance with the pattern of city growth observed during earlier phases of industrialization in western countries, the Soviet Union or Japan.
Thus, "many of the countries in Asia are characterized by one great metropolis, 'the primate city', a great city which dominates the urban situation. The 'great city' tends to be from 5 to 10 times as large as the next largest city, and there is no system of cities in keeping with the pattern described in the more economically advanced countries." ${ }^{12}$ "In many cases, the cities in less developed areas were established in a colonial period as centres of administrative control and of export of raw materials; after independence, they have often continued to perform ${ }^{\text {Fen }}$ essentially the same func-

[^42]Table 41
Percentages of population of South-East Asian countries classified as urban residing in the largest city and residing in cities with 100000 or MORE INHABITANTS, AS ENUMERATED OR ESTIMATED FOR RECENT DATES

Country	Date a	Per cent of population living in:		
		$\begin{aligned} & \text { Urban } \\ & \text { places } \end{aligned}$	$\begin{aligned} & \text { The largest } \\ & \text { ctty } \end{aligned}$	Cittes of 100000 or more
Burma	1931 C	10.4	2.7	3.6
	1941 C	-	3.0	4.0
	1953 C ${ }^{\text {b }}$	15.4	3.7	5.2
Cambodia	1948 E	-	3.0	3.0
	1956 E	-	11.2	-
Ceylon	1931 C	13.9	5.4	5.4
	1946 C	15.4	5.4	5.4
	1953 C	15.3	5.2	5.2
	1956 E	17.6	-	-
China (Taiwan)	1946 E	-	3.8	18.8
	1950 E	-	6.7	18.1
	1956 E	-	8.1	24.2
Indonesia	1930 C	-	0.7	2.6
	1952 E	-	2.1	7.3
	1956 E	-	2.3	8.0
Laos	1948 E	-	0.8	0.0
	1956 E	-	6.9	6.9
Malaya	1931 C	22.1	3.9	6.9
	1947 C	26.5	3.8	7.4
	1957 C	-	5.0	10.8
Philippines	1939 C	23.3	-	-
	1948 C	24.1	5.2	9.7
	1956 E	35.3	-	-
Thailand	1947 C	9.9	3.6	13.3
Viet-Nam	1948 E	-	2.7	6.0
	1956 E	-	6.5	8.4

a " C" refers to data from census enumerations, " E " to estimates.
${ }^{b}$ Census of urban populations only; total population of the country as estimated.
tions, with the administrative control assumed by the national government. ${ }^{13}$
It is of more than historic interest that the great metropolitan centres of Burma, Thailand and Viet-Nam are at Rangoon, Bangkok and Saigon, i.e., at or near the points of trans-shipment where the river delta opens out to the sea; in earlier times, when international trade had a less dominant role, the capitals of these countries were more centrally situated, at Mandalay, Ayuthia and Hué, the ancient seats of the kings of Burma, Siam and Annam. Those former national centres have been pushed into the background with the growth of the super-cities at points of ready access by maritime trade. "These concentrations of people and resources in primate cities may serve to inhibit the growth of medium-sized cities

[^43]Table 42
Percentage composition of male labour force by branches of activity in selected cities of South-East Asia, Bombay, Tokyo and Sydney (recent census and survey results)

a Including forestry and fishing.
${ }^{b}$ Including mining, quarrying and building.
${ }^{\circ}$ Including banking and insurance.
${ }^{d}$ Including communications and public utilities.

- Not classifiable elsewhere.
f Household survey; classifications not necessarily comparable with those of census.

ह 1953 Census Stage, Advance Release No. 13. Data are provisional and subject to revision.
${ }^{h}$ Entire island.
i Census data summarized by G. W. Barclay in Colonial Development and PopuIation in Tatwan (Princeton, N. J., 1954), p. 128.
i Greater Bombay.
${ }^{k}$ Including liberal professions.
${ }^{t}$ Sydney metropolitan area.
more strategically placed for the development of various industries." ${ }^{14}$
Though large and rapidly growing, the " primate cities" of South-East Asia are not predominantly industrial. Branches of economic activity are not comparably defined in various censuses, yet the comparisons made in Table 43 are significant, at least in broad outline.
While industry engages the largest proportions of male workers in Bombay (India), Tokyo (Japan) and Sydney (Australia), services predominate in Colombo, Rangoon, Singapore and Taipei (though data for that city are pre-war), and also loom very large in Bangkok and Manila. It is to be pointed out that even much larger proportions of the female labour force are likewise engaged in services. The figures do not reveal the methods and organization of the work performed in the industrial, service, and other sectors; many "industrial" workers in some Asian cities are actually craftsmen, rather than factory workers.
The sharpest contrast is that between Colombo, on the one hand, and Sydney on the other: in Colombo, the ratio of industrial workers to service workers is one to three, while in Sydney it is three to one.

8. Foreign trade

In the countries of South-East Asia, foreign trade occupies a large share in the total volume of national economic transactions. In many of them economic output is not sufficiently varied to support a high degree of self-sufficiency. While an international division of labour tends to promote prosperity, the benefits accruing

[^44]to individual countries depend on the terms on which exported articles are exchanged for imports. In Table 43, statistics on foreign trade are brought into relation whith estimates of national income. Both sets of data are subject to qualifications. The monetary valuation of articles entering foreign trade is likely to be higher than that of articles produced for local consumption, since transport charges would not permit the long-distance movement of goods whose market value, per unit of weight, is small. The balance of trade also includes

Table 43

Value of imports and exports as percentage of national income in selected countries of SouthEast Asia, India and Japan, 1938 and 1950-1953 ${ }^{a}$

Country	Imports		Exports	
	1938	1950-1953	1938	1950-1953
Burma ${ }_{\text {a }}$	18	20	41	28
Ceylon ${ }^{\text {b }}$	40	35	38	39
Indonesia . .	$17^{\text {c }}$	$9{ }^{\text {d }}$	25°	$10^{\text {d }}$
Malaya and Singapore ${ }^{\prime}$.	-	66	-	76
Philippines .	-	13	-	12
Thailand.	15	17	23	18
India . .	-	7	-	6
Japan.	-	14	-	9

[^45]the trans-shipment at national ports of goods which are neither bought nor sold in the national market. The statistics, therefore, must be regarded with various reservations. It is nevertheless apparent that foreign trade plays a much larger role in the economies of South-East Asian countries than in the national economies of India or Japan. On the other hand, the relative importance of South-East Asian trade appears to have declined recently, notably in Indonesia and in Burma.

9. Education

Only a few measurable facts of the economy and physical environment have been reviewed so far. The more imponderable factors of attitudes, social structure and cultural values are no less determining for the ability of populations to adjust their activities and modes of living to changing conditions. It is impossible to summarize this latter set of conditions in any simple measurement. The criterion of literacy, nevertheless, is relevant since ability to read and write is the key to an acquisition of ideas and knowledge most easily transmitted by the written word. It contributes also directly to economic efficiency, since it facilitates communications and the recording of facts and obligations. The attempt has recently been made to estimate on a comparable basis the extent to which illiteracy still prevailed in the world in or around the year 1950. ${ }^{15}$ Estimates obtained for South-East Asian countries are brought together in Table 44.

Table 44
Estimated percentages of population aged 15 years and over illiterate in South-East Asian countries around 1950

Country	Per cent
British Borneo	
Brunei	70-75
North Borneo	80-85
Sarawak.	80-85
Burma	40-45
Cambodia .	80-85
Ceylon	35-40
Indonesia	80-85
Laos .	80-85
Malaya	60-65
Philippines	35-40
Singapore .	50-55
Thailand	45-50
Viet-Nam	80-85

There are considerable variations, more than half the population past primary-school age being literate in Burma, Ceylon, the Philippines and Thailand, while in some other countries only one-fifth or less of the adult population can read and write. Combining these estimates, one can assess literacy in 1950 for the region as a whole at near 35 per cent, almost two-thirds of the adult population still being illiterate.

[^46]Notable progress, nevertheless, has been made in several countries. Thus, of Burma's population aged 15 years and over, 70.1 per cent were found illiterate in 1901 and 57.6 per cent in 1931 (30.1 per cent in the urban census of 1953). In Ceylon, 73.6 per cent of individuals aged 15 years and over were illiterate in 1901 as against 42.2 per cent in 1946. In the Philippines, illiteracy of the population aged 10 years and over declined from 50.8 per cent in 1918 to 38.7 per cent in 1948. If progress at such rates continues, about onehalf of the entire adult South-East Asian population will be literate by 1980. More rapid progress is, of course, to be desired.

Summary

The indications furnished in the preceding pages do not nearly suffice for an adequate study of the demographic aspects of development problems in SouthEast Asian countries. Conditions vary greatly from one country to another, and it would be rash to make any generalized statement concerning the impact of population on economic conditions in the region.
There are great variations in average population densities, degrees of urbanization and the relative importance of the cash economy. Dependence on agriculture is high, but not uniformly so. Very unequal portions of national territories are used in agriculture, and varying proportions for the production of rice, the staple food. Rice output has roughly kept pace with population growth, in some instances through a rise in yields, most of them still low, in others through double-cropping or the cultivation of additional lands; but there is a tendency in rice exporting countries for the margin of exportable surplus to diminish. Foreign trade plays a major role in the national economies but its relative importance has declined recently, though here also conditions vary greatly from country to country. In some countries, a majority of the adult population are now literate, in others only a small minority. To these contrasts and differences, probably many others can be added, such as diversities in the distribution of incomes, land ownership and tenancy systems, the growth of cities, and the forms of village and family organization. In short, a study on a large scope is required before the varying situations in the several countries can be suitably compared and assessed.

But certain factors are common to all these countries: mortality is declining, fertility is high and the expectation is one of rapid and accelerating population growth. Levels of living are low, and it is assumed that concerted efforts are needed for systematic economic and social development. Several countries in the region have drawn up integrated development plans for purposes of practical implementation. In such plans and efforts, it is incumbent to take a great variety of factors into account, of which population growth is but one.

Many experts working singly or in teams are bent on solving particular problems which form part of a much wider and more general problem. There are problems of public finance, public administration, agricultural and industrial techniques, social reform, international and national trade, community development,

education, transportation, health, housing, and migration, to mention but a few. Each of them can, under certain conditions, attain over-riding importance. It is the understandable tendency of each expert to attach greatest significance to that problem with which he is concerned most directly. From this tendency, the analysts of population trends are not exempt.

But it is being increasingly recognized that efforts will not only have to be expended in a great many directions, but that they will also have to be co-ordinated for proper balance and integration of the results achieved. And it is also known that no problem can be solved unless the solution is a true expression of the attitudes, aspirations and valuations of the people affected. Thus, the technical regulation of the flow of the Mekong River, a reform of the penal code, the propagation of methods of birth control, an urban planning project, etc., are at best partial measures, which cannot have the desired effects unless they are well integrated with the changing over-all structure of the society and its economy.

B. Geographic distribution of the population

In the context of demographic analysis, it is thought that further light is thrown on South-East Asian problems by an examination of existing inequalities in the geographic distribution of the several national populations.

One outstanding feature of the South-East Asian region is the great unevenness with which population is distributed within the several national territories. Large areas of land are very little settled while relatively small portions of the countries are inhabited at a very high density.

The density of population, however, is an elusive concept. In the first place, not all land is equally suitable for human settlement, hence a given density of population may be excessive in some areas and yet too low for efficient resource-utilization and social integration in others. In the second place, density measures assume a different meaning when small rather than large areas are studied: depending on degrees of economic and social organization, each society develops its peculiar ecology in a hierarchy of inhabited places, ranging from cities, towns and agglomerated villages to small settlements, hamlets, scattered farms and nomadic groups.
Variations of density in small areas, then, reflect the structure of ecologic organization rather than variations in the intensity of exploitation of natural resources.

Many attempts have been made to overcome these shortcomings of measures of population density, but the fact remains that the ratio of population to land area is simplest to compute and appeals most readily to the imagination; simple population density, therefore, is a useful analytical tool, provided its limitations are borne in mind.

Some countries of South-East Asia are large enough to permit separate study of the numerous regions which they contain. In many instances, regions with contrasting features can be singled out on the basis of existing major administrative divisions (provinces, etc., as the case may
be), but in some countries the provincial boundaries are drawn in such a way as to overlap with natural regions, requiring further study of minor sub-divisions.
Sharp contrasts in regional population distribution are shown in Figure IV, based on average population densities which were calculated, on the whole, for each country's major divisions. There are heavy concentrations of population in the Red River delta of Northern Viet-Nam, the Menam delta of Lower Thailand, and a large portion of the island of Java. These are among the most densely settled agrarian regions in the world. Considerable concentrations appear also in the Irrawaddy delta of Lower Burma, the lower Mekong River (south Viet-Nam), and in central Luzon and the Visaya islands of the Philippines. In contrast, population densities are very low in large parts of Burma, Thailand, Laos, Cambodia, many parts of Indonesia except Java and in some of the islands of the Philippines.

Contrasts within some smaller countries are exhibited in Figure V, showing variations of population density within Ceylon, China (Taiwan) and Malaya. Much of the population of Ceylon is found in the south-west; a majority of Malaya's inhabitants are clustered in a narrow band along the south-western coast; the overwhelming proportion of the population of China (Taiwan) lives in the coastal plains, which are wide in the west but narrow in the east. ${ }^{16}$

Break-down into still smaller units brings out even sharper contrasts, but as the units become small, the analysis reflects the organization of the human habitat rather than the intensity of resource utilization.

One way of summarizing regional disparities of population density within each country is to distinguish administrative divisions whose average densities of settlement are respectively under 10,10 to 100 , and over 100 persons per square kilometre. Results brought together in Table 45 depend somewhat on the average size of the divisions selected. ${ }^{17}$

On the basis of the divisions which have been selected, it can be said that nearly all of Laos and British Borneo

[^47] have been selected

Figure IV
South-East Asia. Density of population

dapted from E.H.G. Dobby, Sontheast Asia. London. Untoersty of London Press, 5th Edition 1956, p. 388.

- 50 -
Figure V
Ceylon, China (Taiwan), Malaya and Singapore. Density of population

Percentage of total land area, and percentage of total population, comprised in administrative divisions of varying population densities in South-East Asian countries (recent dates)

Country	Year	Number of divistons	Perceniage of land in divisions inhabited at average densities (per sq. killometre)			Percentage of population in divisions inhabited at average densities (per sq. kllometre)		
			Under 10	10-100	Over 100	Under 10	10-100	Over 100
British Borneo .	1947-1951	3	97	3	0	94	6	0
-Burma . .	1941 .	41	33	66	1.	6	89	5
Cambodia	1950	15	42	54	- 4	8	61	31
Ceylon	1946	9	0	69	31	0	29	71
China (Taiwan) .	1940	15	31	21	48	1	5	94
Indonesia . .	1952	8	42	50	8	5	29	66
Laos	1947	11	100	0	0	100	0	0
Malaya	1947	11	27	71	2	5	81	14
Philippines .	1948	51	8	71	21	1	41	58
Portuguese Timor .	1950	1	0	100	0	0	100	0
Singapore	1947	1	0	0	100	0	0	100
Thailand. .	1947	71	12	85	3	2	82	16
Viet-Nam	1943	63	20	63	17	2	37	61
Total (weighted average) .	-	300	37	55	8	4	44	52

and over one-third of Burma, Cambodia, and Indonesia are very sparsely settled, while areas of very high population density comprise one-third of Ceylon, one-half of China (Taiwan), all of Singapore and small portions of some other countries. Areas of high density, however, contain the majority of the populations of Ceylon, China (Taiwan), Indonesia, the Philippines, Singapore and Viet-Nam, and appreciable proportions in some other countries. Thus, two-thirds of the population of Ceylon lives in one-third of the land; almost the entire population of China (Taiwan) in less than one-half of the land; two-thirds of the population of Indonesia in one-twelfth of the land; more than one-half the population of the Philippines within one-fifth of the land; and nearly three-fifths of the population of Viet-Nam in one sixth of the land. ${ }^{18}$ For the region as a whole, it can be said that one-half of the population live in onetwelfth of the land, whereas one-third of the land comprises only a very small fraction of the population.

As will be noted from the comparison of Figure VI with Figure IV, South-East Asian areas of dense population coincide very nearly with the areas in which intensive forms of rice cultivation are practised. Methods of cultivation vary greatly from one area to another and hundreds of different species of rice are being planted. Where cultivation is intensive, it is both a cause and an effect of dense settlement. This two-fold relationship between methods of cultivation and density of population has been conditioned by two sets of factors.

First of all, there are the factors of the physical environment. Intensive cultivation has been favoured especially in areas of heavy rainfall and rich soil. In much of South-East Asia, tropical rain forest is the natural form

[^48]of vegetation but, however luxurious the growth of forest, the land, when cleared, loses rapidly its natural fertility, which leads to "leached" soils. Forest clearings are sometimes planted for a year or two, at long intervals only by semi-nomadic cultivators; since large areas are required for this extensive form of land use, the populations practising such methods have for the most part remained sparse and widely scattered. In some areas, however, the natural soil fertility is being continuously restored either through volcanic ashes, or through periodic inundations by rivers carrying rich silt. The first type of land, favoured by abundant rainfall, has given rise to very intensive cultivation, often in terraces on mountain slopes up to high altitudes, notably on the island of Java. The other type of land is found in the great river deltas, notably those of the Irrawaddy (Burma), Menam (Thailand), Mekong (Cambodia and southern Viet-Nam), and the Red River (the Tonkin region of northern Viet-Nam); in these regions, however, the intensity of land use and the density of population depend also on the historic age of the present form of settlement. In several countries, there is an abrupt discontinuity between intensive and extensive forms of settlement, but in some countries intermediate land-use densities are also found; such is the case in Upper Burma, a zone of comparatively low rainfall which had been settled at a moderate density for many centuries before intensive cultivation of Lower Burma began.

Historic events, such as the gradual conquest of the Mon, Khmer and Kham civilizations in Lower Burma, Thailand and Viet-Nam by the forward thrust of the Burmese, Thais and Viet-Namese, all coming from the north, account for the varying antiquity of intensive cultivation in different areas. In each area, however, a highly integrated village society has since then been constituted which has become very resistant to change.

Figure VI
South-East Asia. Distribution of rice cultivation

Adapted from E.H.C. Dobby, Southeast Asla. London, Unioersity of London Prese, 5th Edition 1956, p. 352.

The rigidity of the social environment, according to certain views, has been further solidified under colonial systems which were in effect during most of the nineteenth and the first half of the twentieth century. Thus, to a certain extent, man has become the prisoner of his own works. As population continues to increase in areas already densely settled, and large resources remain unused in areas of sparse settlement, a new flexibility is needed to ensure an adequate level of living for all. Local concentrations of rural population, which have originated from the relative natural advantages of certain areas, tend to become excessive as past trends continue. New initiatives are then needed for a more rational re-distribution of the population in relation to available resources. Some initiatives, private and public, have come into play during recent decades, giving rise to internal migratory movements, to which consideration is given in the ensuing sections. Movements for land settlement, however, have been less conspicuous than the recently accelerated tendency towards urbanization.

There has been a rapid growth of cities concerned with international trade, particularly in the most recent phases of colonial development. Since independence has been gained by most countries, the growth of the same cities, now administrative centres of new governments, has been speeded up further. It is often one city only that has gained dominance and whose growth
outpaces by far that of other cities in the same country. Recently, eleven cities of the region under study have passed the half-million mark, namely: Rangoon (Burma), Colombo (Ceylon), Taipei (China (Taiwan)), Djakarta, Djokjakarta, Surabaya and Bandung (Indonesia), Manila (Philippines), Singapore (Singapore), Bangkok (Thailand), and Saigon-Cholon (Viet-Nam). The combined population of these cities in 1955 can be estimated at $1,4250,000,{ }^{19}$ which is about 7 per cent of the combined regional population.
The same eleven cities had a total population of about 3 million in 1920, 4 million in 1930, and over 5 million in 1940; by 1950, the combined population exceeded 11 million. In 1930, only Bangkok and Djakarta exceeded the half-million mark. The eleven cities combined then comprised only 3 per cent of the combined regional population of South-East Asia, Ceylon and China (Taiwan). As compared with earlier periods, the recent acceleration in the growth of these cities has been phenomenal though, outside these cities, urbanization is still not very rapid. Since many socalled service employments are really only disguised

[^49]under-employment, if not unemployment, and since service employments in these large cities greatly exceed the employments in manufacture, it can only be conjectured that cityward migration is activated by "push" rather than by "pull" : villages are being left by rural migrants who no longer find a suitable accommodation within the rural economy, in greater numbers than are warranted by urban industrial development. The result is a partial transfer of under-employment from rural to urban areas, rather than a transfer of workers from less remunerative to more productive employments.

To the extent that this diagnosis is correct, the questior is pertinent whether such spontaneous migratory movements, properly channelled and assisted, could not be utilized for purposes of internal land settlement. New resources would then be drawn into the national economies, and the consequently increased circulation of goods and services, incidentally, would justify part of the urban growth, including the growth of towns of intermediate size, now greatly overshadowed by the expansion of the "primate cities".

Section VI

DEMOGRAPHIC EFFECTS OF MIGRATION FOR LAND SETTLEMENT

Movements of peasants to new farming areas have occurred in most countries of South-East Asia, with important results. Thus, Burma became an exporter of rice when, at the turn of this century, large numbers of peasants from Upper Burma settled in the irrigated deltas of Lower Burma. During several decades, a similar movement from north to south took place in Viet-Nam: subsistence farmers of the crowded Tonkin delta moved to Cochinchina, where they entered the cash crop economy. In Ceylon, Indonesia and the Philippines, the Governments have rendered systematic assistance to the transfer of rural families from densely settled areas to lands of greater opportunity: in Ceylon, the movement of colonists has been from the irrigated south-west to the island's dry zone; in Indonesia, both before and since the Second World War, migrants have been leaving the island of Java for settlement in Sumatra and, in smaller numbers, Borneo; a great part of the movements in the Philippines has been from the island of Luzon and the Visayas to the island of Mindanao. In Malaya, 500,000 rural families have recently been re settled in compact villages, partly for security reasons. Recent warfare has caused an influx of 800,000 refugees into the Republic of Viet-Nam, and the Government is actively engaged in their re-integration in the rural economy, while also undertaking a scheme for land settlement in the country's hilly regions. Plans for the regulation of the Mekong river may some day set in motion a movement of settlers to the river valley in Cambodia, Laos and Thailand.

These movements have been, and will be, attended by greatly varying conditions. In some instances, migration results mostly from the private initiative of the migrants themselves; in other instances, government planning and assistance play a major role; in all instances, the transfer of peasants has profound effects on the structure of the national economy.
The study of land settlement has wide ramifications, involving considerations of anthropology, economics, geology, public administration, sociology and technology -to mention but a few disciplines-if the full implications in terms of human welfare are to be understood. In this context, demography can make several contributions, including the analysis of national and regional population trends, and the study of the growth and stabilization of new settlements. Very few data have so far become available for investigations of this type, but it is probable that much future research will be devoted to the topic.
The limited purpose of this section is to present the results of theoretical computations concerning possible
effects of migratory movements of the stated type. For lack of sufficient statistics on the subject, calculations had to be derived from a conceptual model. Actual movements will never conform to a model, nor will they ever be alike in any two cases. But, for a rough assessment of the long-range effects of agrarian settlement migration, the conceptual model developed here may suffice.

1. Method of study

A movement for land settlement will invariably involve young male and female workers. The extent to which young men are accompanied by young women, children, and older persons, will depend on various circumstances such as the nature of intra-family and inter-family relations, difficulties encountered in the terrain of settlement, its distance from the area of outmovement, the urgency with which the movement is being enjoined, etc. Some of these considerations are more of an economic character, others more social. While the movement progresses, the relative importance of the several factors is likely to change.
It has, therefore, appeared useful to develop a basic model in which the process of migration passes through a variety of phases, with varied assortments of conditions determining the composition of the migratory stream. At the outset, economic needs are the dominant factor, but with time, social considerations assume increasing importance.
Such successive phases can be envisaged in the fictitious case where a closed community is being transferred from one area to another, in its entirety, in a gradual and systematic fashion. Conceivably, this may sometimes happen with a village, but such an isolated event is not the object of the present study. Instead, this fictitious model will be used to deduce a sequence of varied patterns of migratory movements such as, quite possibly, may actually occur. Whether the details of the model are realistic or not is of minor consequence: in the long run, the cumulated effects of movements of varying types tend to become quite similar.

To facilitate the calculation of results which can be readily combined, it was found expedient to assume a migrant population with constant mortality and fertility. ${ }^{1}$ In particular, fertility has been represented by

[^50]a gross reproduction rate equal to 3 , and mortality by an expectation of life equal to 45 years, conditions which are now rather typical of South-East Asian populations. ${ }^{2}$

2. Basic model: the complete transfer of a community

The basic model is best visualized as a closed community, segregated from the rest of the population and moved systematically from one area to another. ${ }^{3}$ This transfer will be assumed to end after 30 years with the complete abandonment of the former place of residence, all members of the community being re-assembled in the new place of settlement. ${ }^{4}$ It has been imagined that this transfer can be attended by the following sequence of events.
As the terrain of settlement presents physical obstacles, much pioneer work such as land clearance will initially be undertaken, mostly by young men. Assuming a customary division of labour between the sexes, even this group of pioneer migrants will be accompanied by certain numbers of young women.
After land clearance and the construction of suitable dwellings, entire households can be moved, provided none of their members are as yet too old. At this stage, crop production, marketing, and a variety of community services will be organized, requiring the co-operation of experienced members of the community, some of them of relatively mature age.
When essential services are fully established, households including old persons can also be transferred. With this sequence of events, persons of different sex and age will migrate at different times with varying frequency. The following assumptions, then, would seem reasonable.
Children aged less than 15 years can be assumed to migrate invariably in the company of their mothers. With assumed rates of fertility and mortality, the numbers of children accompanying women of different ages can be calculated.
The initial movement of pioneers has been conceived as follows: in a population of the assumed type, there is a doubling in the course of an average paternal generation. As, on an average, two sons survive to adulthood in each family, it can be assumed that up to one-half of the young men at the ages of greatest physical strength are free to move within the first few years. At such

[^51]ages, about two-thirds, if not three-quarters, of the young men are married to wives who are usually a few years younger. In this way, the rate at which young men, young women, and their few small children migrate initially can be roughly assessed.

At the other extreme, it can also be imagined that up to one-half of the persons of most advanced age will prefer to remain in the old settlement until its total abandonment becomes imminent. While the immigration of old persons is postponed, some younger members of their families are also precluded, to a varying extent, from joining the movement at an early stage. On the whole, adults of intermediate ages will be increasingly needed in the new settlement and will tend to migrate sooner or later, depending on their age.

A simple scheme in which these several rough assumptions are incorporated has beem developed as follows. It was considered that the proportions of each adult age cohort ${ }^{5}$ remaining in the old place of settlement might diminish linearly from a certain starting position, becoming zero when, at the end of 30 years, the transfer of the community is complete. The starting positions are of two kinds. Thus, it is assumed that certain numbers of young adults are ready to migrate the instant an opportunity to do so is opened up; though, in the year 0 , i.e., prior to the beginning of movements, all are still present in the old settlement (point A in Figure VII, graph for adult males), certain percentages would already have left if they could (as indicated by point B, for males aged 25-29 years). On the other hand, no adults of relatively advanced age are ready to move until some later date when the transfer of the community has made sufficient progress (at point C , in the case of males aged 40-44 years). A seemingly coherent set of such starting positions was devised, consistent with the general considerations discussed in the foregoing.

For children aged under 15 years, the percentages remaining at the old settlement were made to depend on the weighted average of percentages of women so remaining, in the age groups where they might be mothers of the children. Beyond age 15, the decline becomes linear, as in the case of other adult groups.

While Figure VII presents these changes in terms of age cohorts (i.e., individuals born in the same year), Table 46 assembles the same system of data according to age groups, i.e., according to ages attained at each given date.
It has been arbitrarily assumed that the population of the community amounts to 10,000 individuals at the moment when its transfer begins; under the assumed conditions of mortality and fertility, it will attain 21,889 at the end of 30 years, when the transfer is complete. The total population of the community, by groups of sex and age, can be readily projected with the method of stable populations. ${ }^{6}$ Applying the percentages of

[^52]Figure VII
Percentage of population assumed to remain at old settlement, by age at time when migration begins

LEGEND:
 1 PERSONS INITIALLY AGED* 0-4 YEARS
 2 PERSONS INITIALLY AGED* 5-9 YEARS
 3 PERSONS INITIALLY AGED* $10-14$ YEARS
 4 PERSONS INITIALLY AGED* $15-19$ YEARS 5 PERSONS INITIALLY AGED* $20-24$ YEARS
 6 PERSONS INITIALLY AGED* $25-29$ YEARS 7 PERSONS INITIALLY AGED* $30-34$ YEARS 8 PERSONS INITIALLY AGED* $35-39$ YEARS 9 PERSONS INITIALLY AGED* 40-44 YEARS 10 PERSONS INITIALLY AGED* $45-49$ YEARS 11 PERSONS INITIALLY AGED* $50-54$ YEARS 12 PERSONS INITIALLY AGED* 55-60 YEARS 13 PERSONS INItIALLY AGED* 60 YEARS AND OVER

'the age corresponding to year ' 0 ', indicated on the charts by the numbers in the legend, advances with time.

Table 46
Percentage of population assumbd to remain at old settlement, by sex and age, while community is being transferred to a new settlement (age attained at bach given time)

Table 47
Projection of population of old settlement affected by transfer of a COMMUNITY OF initially 10000 inhabitants

Sex and age			Time from besinning of migration (years)				
Males	0	5	10	15	20	25	30
0-4.	883	769	694	633	506	285	0
5-9.	719 '	691	573	483	392	232	0
10-14 . . .	618	648	553	420	315	190	0
15-19..	530	574	507	406	274	154	0
20-24.	451	385	445	368	262	132	0
25-29.	380	216	296	321	236	126	0
30-34.	320	219	166	213	205	113	0
35-39.	268	230	167	119	136	98	0
40-44	223	229	174	119	75	64	0
45-49.	183	208	171	122	74	35	0
50-54.	147	167	191	117	74	34	0
55-59	114	130	148	127	69	33	0
60-64.	85	97	111	113	72	29	0
65-69.	59	67	77	88	60	28	0
70-74.	37	42	48	55	43	21	0
75-79.	20	22	26	29	26	13	0
80-84.	8	9	11	12	13	6	0
85 and over .	3	3	4	4	5	2	0
Total	5048	4706	4362	3749	2837	1595	0
Females							
0-4.	860	749	676	617	493	278	0
5-9.	702	674	558	471	382	226	0
10-14.	602	631	538	409	307	185	0
15-19.	516	559	493	394	266	150	0
20-24.	438	299	432	358	255	129	0
25-29.	369	294	230	311	229	123	0
30-34.	310	282	226	165	199	110	0
35-39.	260	266	216	162	105	95	0
40-44.	217	247	203	154	102	50	0
45-49.	180	205	186	144	97	48	0
50-54.	147	167	191	130	89	45	0
55-59	117	134	152	130	79	40	0
60-64.	90	103	117	120	76	35	0 -
65-69.	65	74	84	96	66	31	0
70-74.	42	48	55	63	50	25	0
75-79.	24	27	31	35	32	16	0
80-84 . . .	10	12	14	16	16	8	0
85 and over	4	4	5	6	7	4	0
Total	4953	4775	4407	3781	2850	1598	0
Total both sexes	10001	9481	8769	7530	5687	3193	0
Households ${ }^{\text {a }}$	1594	1388	1307	1150	890	507	0
Persons per household . . .	6.27	6.83	6.71	6.55	6.39	6.30	\cdots

- Assumed to equal the number of women aged 20-44.

Table 48
Projection of population of new settlement formed in the process of transfer of a community of initially 10000 inhabitants

Sex and age		Time from beginning of migration (years)					
Males	0	5	10	15	20	25	30
0-4.	0	237	452	673	982	1411	1932
5-9	0	129	361	581	821	1150	1575
10-14.	0	56	249	494	727	997	1352
15-19.	0	30	182	379	620	865	1161
20-24	0	128	140	299	498	734	986
25-29 . .	0	217	198	242	405	604	832
30-34 . .	0	146	250	261	335	502	701
35-39	0	76	181	278	316	417	587
40-44 . .	0	25	116	211	301	364	488
45-49 . .	0	0	66	148	234	316	400
50-54.	0	0	0	100	173	248	321
55-59.	0	0	0	42	124	187	250
60-64.	0	0	0	13	72	134	186
65-69 .	0	0	0	0	40	86	130
70-74	0	0	0	0	19	50	81
75-79.	0	0	0	0	7	25	43
80-84.	0	0	0	0	1	10	18
85 and over	0	0	0	0	0	3	6
Total	0	1044	2195	3721	5675	8103	11049
Females							
0-4.	0	231	440	655	957	1,374	1882
5-9	0	126	353	567	801	1122	1536
10-14.	0	55	243	481	708	971	1318
15-19	0	29	177	369	603	841	1129
20-24.	0	200	136	290	483	712	958
25-29	0	126	249	235	393	586	808
30-34.	0	71	177	294	324	486	679
35-39	0	30	121	223	333	404	569
40-44.	0	0	79	67	264	367	475
45-49.	0	0	47	122	206	297	393
50-54.	0	0	0	87	158	237	321
55-59	0	0	0	43	119	185	256
60-64.	0	0	0	13	76	138	197
65-69	0	0	0	0	44	94	142
70-74	0	0	0	0	22	57	93
75-79	0	0	0	0	8	30	52
80-84.	0	0	0	0	2	12	23
85 and over	0	0	0	0	0	4	9
Total	0	868	2022	3546	5501	7917	10840
Total, both sexes .	0	1912	4217	7267	11176	16020	21889
Households ${ }^{\text {a }}$	0	427	762	1209	1797	2555	3489
Persons per household	\ldots	4.48	5.53	6.01	6.22	6.27	6.27

${ }^{a}$ Assumed to equal the number of women aged 20-44.

Table 46, one obtains that segment of the population which, at any time, remains at the old settlement; subtracting these segments from the total population of the sommunity, one obtains the population found at any ime in the new settlement. The results of these projecions are shown in Tables 47 and 48 and plotted in Figure VIII.
Inspection of Figure VIII shows that the new settlenent consists initially of young adults only, together with their children, most of them small; with time, other slements of the population are added until the initial sommunity, which has increased in the meantime, has reen completely assembled. Despite an initial loss of /oung adults, sufficient numbers of fairly young persons emain in the old settlement to accompany the older jersons who are not ready to move until the transfer of the community is nearly complete.
The transfer of an isolated community, however, is 1ot the object of the present study; the basic model s presented in such detail merely in order to show that it is not inconsistent with developments which may actually occur when migration is in progress.

3. Households

In a programme for land settlement, the basic unit considered is usually the family or household, which may be variously defined. Thus, in a land survey of areas suitable for settlement, it will often be determined how many households can reasonably be accommodated. Likewise, if settlers are being recruited from an area of land scarcity, the unit of recruitment will usually be the family or household. Households are sometimes selected for recruitment according to certain criteria of their composition.
The definition of households may, however, vary greatly from one area to another. In some societies, a household corresponds ordinarily to a nuclear family, composed of a father, a mother and their unmarried children. In other societies, it is more usual for extended families, i.e., groups of nuclear families having a common ancestor, to occupy jointly a large dwelling where they conduct their economic and household affairs under the direction of a senior family member. The physical layout of settlement villages will, of course, have to conform to the practical needs arising with varying degrees of co-operation between family units. Nevertheless, many of the facilities required by settlers (e.g., land acreage, schools, supplies, etc.) are more readily calculated in proportion to nuclear families, whether these live in separate units or jointly in an extended group. In speaking of households, therefore, we shall consider those of nuclear families, regardless of whether they constitute autonomous units or mere sub-units of a larger family complex.
Statistics on the detailed composition of households by persons of either sex and all ages are rare and, where found, rather unwieldy. No attempt is made here to delve into these matters. Instead, it will be assumed, rather arbitrarily, that a household exists wherever there is a woman of such age that she may constitute a principal working housewife. This status is probably attained
by a woman shortly after her marriage and is maintained until she is old enough to have an adult daughter, or a married son who, in turn, introduces a new principal housewife into the household. This approximation is very rough, as households of different types also occur for a variety of reasons, while not every woman of suitable age is a principal housewife. For present purposes, however, the number of households will be assumed to equal the number of women aged $20-44$ years. ${ }^{7}$
In the population of origin, ${ }^{8}$ the average size of a household, so defined, is 6.27 persons. In the commu-nity-transfer model discussed so far, there is at first a rise in the average size of households remaining in the old settlement while, in the new settlement, households for the most part are at first small; eventually the average size of households in the population of origin is also approximated in the new settlement as transfer approaches completion. This development seems reasonable since households having many dependants are in a good position to enter a new settlement in its earliest phases.

Use will be made of this rough method of calculating households in the schemes presented further on.

4. Effects of migratory streams variously recruited

The model developed so far deals with the progressive and eventually complete transfer of a single community. This model is intended to serve in building a calculating scheme with which the effects of entire streams of migration can be determined. In making the transition from the movements of a single community to those of migratory streams, two separate principles are used. One concerns the completeness with which individual communities-however these may be definedare being transferred; the other principle establishes the link between the population growth of individual new settlements and that of the entire region within which settlement takes place.
In the community-transfer model, several successive phases can be distinguished. Arbitrarily, we shall space these phases at intervals of 5 years in the basic model, referring by phase I to the position reached in the year 5, phase II the position in the year 10 and so forth. For the period from year 5 to year 25, during which transfers of the community are only partial, we can distinguish five phases. In addition, there are two extreme phases, one at the year 0 , when migration is only initiated, the other at the year 30, when the transfer is complete. For the year 0 , hypothetical numbers of persons, mostly young adults with their small children, have been indicated as potential migrants ready to move the instant an opportunity for migration occurs; ${ }^{9}$ we shall refer to

[^53]these persons as pioneers，and to a movement exclu－ sively composed of such persons as a pioneer migration．
As the results of calculations show，the structure and growth of settlement populations vary considerably with the criteria by which migrants are recruited from their communities of origin．Hence the necessity of distinguishing several successive phases，as regards the selections of migrants．

Under practical conditions，a process of migration ordinarily affects numerous villages in varying measure． So far as each village of origin is concerned，transfers， no matter how partial or how complete，are likely to be effected within relatively short time－periods，but recruitment is carried on simultaneously in numerous villages，and the movements are staggered in time．In the area of immigration，new settlements are being formed one aftera nother and when the formation of some settlements is almost terminated，that of others is merely begun．Individual settlements may be constituted within comparatively brief periods，after which few additional migrants enter the particular settlement．The process of migration continues，however，as the migratory stream is being constantly re－distributed among new points of settlement．
It is therefore useful to consider two types of migra－ tory effects．As regards particular places of settlement， immigration occurs ordinarily within one brief period， after which it is interrupted；the further growth of the settlement then depends on births and deaths occurring among the settlers and their offspring．For the entire settlement region，on the other hand，the continuous stream is nothing else but the summation of numerous discontinued movements to particular places；but here， aside from the natural increase of the population already settled，new migrants are constantly brought in，occupy－ ing an expanding area of particular settlement projects．

5．Methods of calculation

Mathematically rigorous treatment of this phenomenon has many complications；several assumptions，none of them empirically verified，are involved；and these assump－ tions imply a regularity of movements which can hardly be achieved in fact．As the subject is treated here for speculative purposes only，simplicity is preferable to great mathematical precision．
The calculations are carried out in two steps．In the first，a projection is made of the population of a newly formed settlement，with assumed rates of fertility and mortality，${ }^{10}$ migration being assumed as discontinued by the end of a first brief period．In the second step，the results of this projection，for successive dates at equal intervals of time，are simply cumulated to show the calculated effect of continuous migration on the regional population．${ }^{11}$

[^54]For the first step，the successive phases of the new village formed in the community transfer provide so many separate starting points．Assuming that any one given phase is attained at the end of one five－year period，${ }^{12}$ the further development of the population，by births and deaths，is determined with standard methods of popula－ tion projections；these results are then cumulated in the second step．For a migration consisting of pioneers only，a separate calculation was needed to determine the effect obtained at the end of the first five－year period during which movements are assumed to occur．
Because of interest in the comparison of migratory effects for varying criteria governing the selection of migrants，it was deemed useful to reduce all calculations to one common measure．For this reason，it was assumed that，in each instance， 10,000 households of settlers are successfully established in the settlement area at the end of the first five－year period．${ }^{13}$

6．Results：the extreme cases

（a）Successive total transfers of communities

The extreme case of total transfers of entire commu－ nities need not detain us for the present purposes． It is unlikely that land settlement will be carried out by complete transfer of villages，old villages being entirely abandoned，though this may happen in some instances as，for example，when a village must be displaced because a of river barrage．In the unlikely event that an entire migratory stream is composed in such fashion，village after village being transferred，its cross section，by groups of sex and age，is very similar in composition to the population of origin．${ }^{14}$ In the present scheme，the popu－ lation of origin has been assumed as a theoretically stable population，characterized by constant levels of fertility and mortality．If the stream of the movement has the same composition，then the population in each new settlement，and in the entire settlement region， will also have a composition by sex and age groups in constant，or very nearly constant，proportions．The rate of growth of the settlement population is that of the

5 years，the effect is the sum of the effect following immediately upon one five－year period of movements，and of the effect obtained for movements which occurred 5 to 10 years previously．Similarly， by summation of three successive effects，the effect of 15 years of continued movements is obtained；and so forth．This simple method of cumulation is possible because it has been assumed that levels of mortality and fertility remain constant in time．
${ }^{12}$ Here，a mathematical inconsistency is involved．In the commu－ nity－transfer model，periods longer than 5 years were calculated for the attainment of phase II，III，etc．Because of aging，the population involved in the migration is composed somewhat differently than it would be if each phase could be completed in five years．As verified by calculations，however，this difference is trivial for the present purposes．
${ }^{13}$ Households being defined，for this purpose，as equal to the number of women aged 20－44 years．
${ }^{14}$ This statement is mathematically accurate if（a）each transfer is effected so rapidly that no aging occurs during the period of the transfer，or（b）transfers involving longer periods of time occur in such a sequence that a constant proportion of the total population is being moved at any moment of time．When these conditions are not accurately met，the statement remains true within the limits of accuracy needed for the present discussion．
population model itself, to which is added the rate at which new migrants are brought into the area.

(b) The recruitment of pioneers only

Extreme instability of the settlement population can result, on the other hand, if recruitment of migrants is narrowly confined to certain sex-age groups only. The most extreme case considered here is the movement of pioneers only, as defined by the figures of Table 46 shown in parentheses. Such selection of migrants can occur under special circumstances, as in the case of plantation labour, jungle clearance projects and the like, where the greatest emphasis is placed on the physical endurance of young workers. The conditions would ordinarily be such that households, in the proper sense of the word, cannot be established instantly upon arrival but only, perhaps, in the course of five years. A special calculation was therefore required to determine how many pioneers (including some young women and small children) would have to move if, within five years of recruitment, a total of 10,000 households is to be successfully established. ${ }^{15}$

As determined in the calculation, the initial composition of the contingent of pioneers, at the time when recruitment begins, is as indicated in Table 49. The group comprises 16,810 young adult men, half of them aged $20-24$ years, 10,368 young adult women, most of them aged $15-19$, and 5,068 children, most of them quite small. ${ }^{16}$

Table 49

Initial composition by sex-age groups of a contingent of PIONEER MIGRANTS AT THE MOMENT OF RECRUITMENT, according to stated assumptions

Ase group	Males	Females	Both sexes
0-4	2116	2061	4177
5-9	423	413	836
10-14	28	27	55
15-19	2396	6532	8928
20-24	8156	3168	11324
25-29	4811	668	5479
30-34	1447	-	1447
35 and over	-	-	-
Total	19377	12869	32246

Assuming that this contingent of pioneers succeeds in establishing 10,000 households at the end of five

[^55]years, and that no new migrants are then added, the further growth of the settlement, as a result of births, deaths and aging of the population, will proceed as in Table 50 and as illustrated in Figure IX, where the percentage sex-age composition in the resulting settlement, at successive future dates, is also compared with the structure of the population of origin.
The extreme instability of a settlement of this type is very obvious. Thus, at the end of 15 years, children and workers of relatively mature ages will be numerous, while there will be very few young workers. A relative shortage of adult women will also persist. In a less extreme form, this situation will also recur after another 25 or 30 years when most of the grandchildren of the initial migrants will have been born but will not yet have reached adolescence. Thus, it will take the settlement at least 60 years to approach stability, i.e., when the initial pioneers, if still living, have become greatgrandparents.
This abnormal development is also partly reflected in estimated changes in the average sizes of households. Small at first, households increase in size with additional births while most of the children are not yet old enough to establish households of their own. After about 20 years, the daughters of the pioneers begin to be principal housewives, many new households are formed, and their average size decreases. With a smaller amplitude, this fluctuation in average sizes of households is repeated in the next parental generation. ${ }^{17}$

It is very doubtful whether a settlement of this type can develop the social cohesion necessary to make it endure. One crisis will arise at the time when there is a dearth of young workers, though children are numerous; a crisis of a different kind will result at a time when the formation of numerous new households presses on available land resources. To avert such difficulties, provision may have to be made from the outset for the eventual absorption of another contingent of pioneer migrants preferably about 15 years after the establishment of the initial settlement. This new contingent would then fill some of the gaps which arise as a result of the aging of the earlier contingent, as illustrated in Table 51 below. It can safely be concluded that settlements formed by pioneers only are highly unstable, unless further supplemented with the arrival of new settlers.

If pioneers only are recruited but recruitment occurs continuously, the combined population of settlements will develop as indicated in Table 52. The resulting age structures are also illustrated in Figure IX. It will be noted that the continuing arrival of migrants permits the age structure of settlements to approach stability more rapidly, on condition that additional migrants can be continuously introduced into each place of settlement, which is unlikely. Even then, because of this peculiar selection of migrants, some distortion of the age structure will persist for a considerable time.

[^56]Table 50
PROJECTION OF POPULATION OF A SETTLEMENT RESULTING FROM DISCONTINUED RECRUTTMENT OF PIONEERS ONLY, 10000 households being established at the end of the first five-year period

Sex and age		Time from besining of misration (years)						
Males		5	10	15	20	25	30	60
0-4.		5217	6720	5799	4857	5085	7133	16635
5-9	.	1965	4845	6241	5386	4511	4722	12684
10-14	.	414	1923	4741	6107	5270	4414	10779
15-19.		27	405	1881	4638	5974	5156	10129
20-24	. .	2323	26	392	1821	4490	5783	9564
25-29	. .	7840	2234	25	377	1751	4317	8034
30-34		4620	7520	2143	24	362	1680	5662
35-39		1383	4413	7182	2047	23	346	3855
40-44	. . .	-	1310	4180	6804	1939	22	3488
45-49. .		-	-	1224	3,905	6356	1811	3891
50-54	. . .	-	-	-	1120	3573	5816	4125
55-59	. . .	-	-	-	-	994	3172	2842
60-64.		-	-	-	-	-	844	979
65-69		-	-	-	-	-	-	167
70-74	-	-	-	-	-	-	8
75-79.		-	-	-	-	-	-	426
80-84		-	-	-	-	-	-	712
85 and over		-	-	-	-	-	-	131
	Total	23789	29396	33808	37086	40328	45216	94111
Females								
0-4.		5082	6546	5649	4731	4953	6949	16204
5-9		1917	4726	6088	5254	4400	4606	12374
10-14.	. . .	403	1873	4619	5950	5135	4300	10502
15-19.		27	393	1829	4510	5810	5014	9851
20-24.		6317	26	380	1769	4362	5619	9290
25-29.	. .	3043	6068	25	365	1699	4190	7796
30-34.		639	2914	5811	24	350	1627	5487
35-39		-	610	2783	5550	23	334	3754
40-44.		-	-	580	2647	5280	22	3394
45-49.		-	-	-	547	2499	4984	3826
50-54.		-	-	-	-	509	2325	4124
55-59.	.	-	-	-	-	-	463	2913
60-64		-	-	-	-	-	-	1035
65-69	. . .	-	-	-	-	-	-	184
70-74 . . .		-	-	-	-	-	-	10
75-79.		-	-	-	-	-	-	1439
80-84.		-	-	-	-	-	-	364
85 and over	. .	-	-	-	-	-	-	24
	Total	17428	23156	27764	31347	35020	40433	92551
Total, both sexes		41217	52552	61572	68433	75348	85649	186662
Households ${ }^{\text {a }}$		9999	9618	9579	10355	11714	11792	29701
Persons per household		4.12	5.46	6.43	6.61	6.43	7.26	6.28

[^57]Effect of recruitment of an additional contingent of pioneers fifteen years after the initial establishment of a pioneer settlement: sex-age composition of initial settlers, new settlers and sum of the two

Sex and age \quad Initial settlers a New settlers $b \quad$ Sum of the two

Males

Females

0-4		4731	5082	9813
5-9		5254	1917	7171
10-14		5950	403	6353
15-19		4510	27	4537
20-24	. .	1769	6317	8086
25-29		365	3043	3408
30-34		24	639	663
35-39		5550	-	5550
40-44		2647	-	2647
45-49		547	-	547
50 and over		-	-	-
	Total	31347	17428	48775
Total, both sexes		68433	41217	109650
Households ${ }^{\text {c }}$		10355	9999	20354
Persons per household		6.61	4.12	5.39

- According to year 20 in Table 50.
${ }^{6}$ According to year 5 in Table 50.
c Assumed to equal the number of women aged 20-44.

Table 52
Projection of settlement population accumulating from continuous recruitment of pioneer migrants only a

Sex and age		Time from beginning of migration (years)					
Males	0	10	15	20	25	30	60
0-4. .	5217	11937	17736	22593	27678	34811	109180
5-9	1965	6810	13051	18437	22948	27670	87912
10-14.	414	2337	7078	13185	18455	22869	74024
15-19..	27	432	2313	6951	12925	18081	61899
20-24.	2323	2349	2741	4562	9052	14835	52442
25-29.	7840	10074	10099	10476	12227	16544	49068
30-34 . .	4,620	12140	14283	14307	14669	16349	43980
35-39	1383	5796	12978	15025	15048	15394	37982
40-44.	-	1310	5490	12294	14233	14255	32329
45-49 . .	-	-	1224	5129	11485	13296	26942
50-54.	-	-	-	1120	4693	10509	21091
55-59.	-	-	-	-	994	4166	15061
60-64.	-	-	-	-	-	844	10371
65-69.	-	-	-	-	-	-	7442
70-74.	-	-	-	-	-	-	5177
75-79	-	-	-	-	-	-	3129
80-84.	-	-	-	-	-	-	1286
85 and over .	-	-	-	-	-	-	169
Total	23789	53185	86993	124079	164407	209623	639484
Females							
0-4.	5082	11628	17277	22008	26961	33910	106355
5-9	1917	6643	12731	17985	22385	26991	85758
10-14.	403	2276	6895	12845	17980	22280	72121
15-19.	27	420	2249	6759	12569	17583	60193
20-24.	6317	6343	6723	8492	12854	18473	55003
25-29	3043	9111	9136	9501	11200	15390	46955
30-34.	639	3553	9364	9388	9738	11365	38142
35-39	-	610	3393	8943	8966	9300	31185
40-44.	-	-	580	3227	8507	8529	26114
45-49.	-	-	-	547	3046	8030	21446
50-54.	-	-	-	-	509	2834	16394
55-59.	-	-	-	-	-	463	11163
60-64.	-	-	-	-	-	-	7229
65-69.	-	-	-	-	-	-	5098
70-74.	-	-	-	-	-	-	3658
75-79.	-	-	-	-	-	-	2319
80-84.	-	-	-	-	-	-	444
85 and over .	-	-	-	-	-	-	24
Total	17428	40584	68348	99695	134715	175148	589601
Total, both sexes . .	41217	93769	155341	223774	299122	384771	1229085
Households ${ }^{\text {a }}$. .	9999	19617	29196	39551	51265	63057	197399
Persons per household	4.12	4.78	5.32	5.66	5.83	6.10	6.23

- Assumed to equal the number of women aged 20-44.

7. Results for intermediate patterns of migration

Two extreme cases have been considered so far: the complete transfer of entire communities; and the recruitment of pioneer migrants only. Under most practical conditions, recruitment for land settlement will be governed by criteria which are intermediate between the two extremes. The transfer of entire communities, while ensuring continuity of the social relationships already established, would involve large expenditures and be economically irrational, unless very great value is attached to keeping existing communities socially intact. The recruitment of pioneers only, while perhaps economically expedient in the very short run, is likely to encounter formidable social difficulties within a few years. The actual phase of recruitment will ordinarily correspond to some belance between the economic and the social objectives which are being pursued.

The effects of migration conforming to some intermediate patterns of recruitment have been calculated according to the given successive phases in the transfer of a community, by the methods described in the foregoing pages. The first set of calculations, i.e., migration being discontinued at the end of the first five-year period, as may very well be the case for such particular place of settlement, leads to the results shown in Tables 53 to 57. The second set of calculations, in which the effects of continuous migration are obtained through cumulation, are presented in Tables 58 to 69. By comparing the various results, several interesting inferences can be made.

Depending on the phase of recruitment (Table 50 for pioneers only, and Tables 53 to 57 for other phases),
individual settlements, for which migration is discontinued, will develop as follows; Households, numbering 10,000 at the end of the first five-year period, will number $11,792,14,053,18,240,19,307,19,382$ or 19,265 at the end of 30 years, for each successive scheme of recruitment; at the end of 60 years, they will number 29,701, $33,131,39,685,42,043,42,438$ or 42,296 ; in other words, the increase in numbers of households will be slow at first in the case of pioneers, but increasingly more rapid with more advanced phases, up to phase III. The opposite can be observed for rates of population growth. Thus, a pioneer settlement numbering 41,217 individuals at the end of 5 years and 85,649 at the end of 30 years, increases its population by 108 per cent within the 25 years; in the same period, population increase is by 110 per cent if recruitment is as in phase I, by 105 per cent according to phase II, by 100 per cent according to phase III, by 96 per cent according to phase IV and by 93 per cent according to phase V. There are sharp fluctuations in average sizes of households and age composition if recruitment corresponds to early phases, while for more advanced phases of recruitment, stability of population structure is attained quite rapidly. Similar observations also apply to the progressive establishment of a balance in the number of both sexes, stability being approached the more rapidly the more advanced the criteria in the initial selection of migrants.

Many of these observations can also be inferred from the age pyramids presented in Figure X, where the cumulative effects of continuing migration are considered; there is a more rapid approach to stability in early periods, but complete stability of structure is never attained.

Table 53
Projection of population of a settlement resulting from discontinubd recruitment of migrants selected as in Phase I of the community-transfer model

Females							
0-4	5429	6348	5709	5379	6146	8105	18145
5-9	2948	5049	5904	5309	5002	5716	14173
10-14.	1288	2881	4934	5770	5188	4888	11943
15-19..	690	1258	2813	4818	5634	5066	10739
20-24.	4684	667	1217	2720	4659	5449	9823
25-29.	2961	4499	641	1169	2613	4475	8416
30-34. .	1659	2836	4309	614	1120	2502	6399
35-39.	695	1584	2708	4115	586	1070	4635
40-44.	-	661	1507	2576	3915	557	3858
45-49 . .	-	-	624	1422	2431	3695	3864
50-54..	-	-	-	581	1323	2262	4000
55-59.	-	-	-	-	529	1204	3112
60-64.	-	-	-	-	-	463	1591
65-69.	-	-	-	-	-	-	586
70-74.	-	-	-	-	-	-	239
75-79.	-	-	-	-	-	-	1067
80-84 . .	-	-	-	-	-	-	354
85 and over	-	-	-	-	-	-	70
Total	20354	25783	30366	34473	39146	45452	103014
Total both sexes.	44896	55716	64785	72822	81914	94214	207941
Households ${ }^{\text {a }}$	9999	10247	10382	11194	12893	14053	33131
Persons per household .	4.49	5.44	6.24	6.51	6.35	6.70	6.28

a Assumed to equal the number of women aged 20-44.

Table 54
Projection of population of a settlement resulting from discontinued recruitment of migrants selected as in Phase II of the community-transfer model

Sex and age			Time from bestnning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5918	6041	6316	7165	8690	10385	22197
5-9	4738	5496	5610	5866	6654	8070	17903
10-14	3269	4636	5378	5489	5740	6511	15075
15-19.	2383	3198	4535	5261	5370	5615	12859
20-24.	1840	2307	5096	4390	5093	5199	11172
25-29.	2588	1769	2218	2977	4221	4897	9746
30-34.	3268	2482	1697	2128	2856	4049	8243
35-39.	2374	3121	2371	1621	2032	2728	6588
40-44 . .	1518	2249	2957	2246	1536	1925	5147
45-49..	871	1418	2101	2762	2098	1435	4238
50-54.	-	797	1297	1922	2527	1920	3708
55-59.	-	-	707	1151	1706	2243	3225
60-64.	-	-	-	600	977	1448	2359
65-69 . .	-	-	-	-	475	774	1319
70-74 . .	-	-	-	-	-	338	699
75-79.	-	-	-	-	-	-	338
80-84	-	-	-	-	-	-	235
85 and over	-	-	-	-	-	-	107
Total	28767	33514	38283	43578	49975	57537	125158
Females							
0-4	5764	5884	6153	6979	8465	10116	21622
5-9	4621	5361	5472	5722	6490	7872	17464
10-14.	3185	4516	5239	5348	5592	6343	14687
15-19.	2317	3110	4409	5115	5222	5460	12504
20-24.	1787	2241	3008	4264	4947	5050	10852
25-29	3265	1717	2153	2889	4096	4752	9458
30-34.	2322	3127	1644	2062	2767	3923	7987
35-39.	1592	2218	2986	1570	1969	2642	6382
40-44.	1034	1514	2110	2841	1494	1873	5006
45-49.	612	976	1429	1992	2682	1410	4164
50-54.	-	569	908	1330	1853	2495	3707
55-59.	-	-	518	826	1210	1686	3303
60-64.	-	-	-	454	724	1060	2495
65-69.	-	-	-	-	374	596	1448
70-74.	-	-	-	-	-	278	804
75-79.	-	-	-	-	-	-	408
80-84. .	-	-	-	-	-	-	390
85 and over	-	-	-	-	-	-	109
Total	26499	31233	36029	41392	47885	55556	122790
Total, both sexes .	55266	64747	74312	84970	97860	113093	247948
Households a	10000	10817	11901	13626	15273	18240	39685
Persons per household . .	5.53	5.99	6.24	6.24	6.41	6.20	6.25

- Assumed to equal the number of women aged 20-44.

$$
-73-
$$

Table 55
Projection of population of a settlement resulting from discontinued recruitment of migrants selected as in Phase III of the communty-transfer model

Sex and age			Time from beginning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5566	6076	6910	8126	9490	10790	23361
5-9	4809	5169	5643	6417	7547	8813	19080
10-14	4092	4706	5058	5522	6279	7385	16294
15-19..	3136	4003	4604	4948	5402	6143	13847
20-24	2472	3036	3875	4457	4790	5230	11723
25-29	2002	2377	2919	3726	4285	4606	10003
30-34 . .	2155	1920	2280	2800	3574	4110	8565
35-39	2299	2058	1834	2178	2674	3414	7196
40-44	1747	2178	1950	1737	2063	2533	5837
45-49 . .	1231	1632	2035	1822	1623	1927	4636
50-54.	827	1126	1493	1862	1667	1485	3730
55-59.	350	734	1000	1325	1653	1480	3034
60-64 . .	104	297	623	849	1125	1403	2394
65-69.	-	82	235	494	673	891	1651
70-74.	-	-	58	167	352	479	919
75-79.	-	-	-	35	101	213	453
80-84.	-	-	-	-	17	48	182
85 and over	-	-	-	-	-	5	79
Total	30790	35394	40517	46465	53315	60955	132984
Females							
0-4	5421	5919	6731	7916	9245	10510	22757
5-9	4691	5042	5505	6260	7362	8598	18612
10-14	3986	4585	4928	5380	15874	7195	15874
15-19.	3050	3892	4477	4812	5253	5974	13466
20-24.	2401	2950	3764	4330	4654	5080	11388
25-29	1942	2306	2834	3616	4159	4471	9707
30-34.	2430	1860	2208	2714	3463	3983	8298
35-39.	1846	2321	1776	2109	2592	3307	6972
40-44.	1381	1756	2208	1690	2006	2466	5678
45-49.	1012	1304	1657	2084	1595	1893	4557
50-54.	719	942	1213	1542	1939	1484	3730
55-59.	359	654	857	1104	1403	1764	3108
60-64.	110	315	573	751	967	1229	2533
65-69.	-	91	259	472	618	796	1813
70-74.	-	-	68	193	351	460	1058
75-79	-	-		43	123	223	547
80-84.	-	-	-	-	22	62	232
85 and over	-	-	-	-	-	7	118
Total	29348	33937	39058	45016	51870	59502	130448
Total, both sexes	60138	69331	79575	91481	105185	120457	263432
Households ${ }^{\text {a }}$	10000	11193	12790	14459	16874	19307	42043
Persons per household.	6.01	6.19	6.22	6.33	6.23	6.24	6.27

a Assumed to equal the number of women aged 20-44.

Table 56
Projection of population of a settlement resulting from discontinued recruitment of migrants selected as in Phase IV of the community-transfer model

Sex and age			Time from beginning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5466	6250	7236	8349	9497	10727	23533
5-9	4569	5076	5804	6720	7754	8820	19224
10-14.	4046	4471	4967	5679	6576	7587	16526
15-19	3453	3958	4374	4859	5556	6433	14147
20-24.	2769	3343	3832	4234	4704	5379	11955
25-29.	2254	2662	3214	3684	4071	4523	10062
30-34.	1862	2162	2553	3083	3534	3905	8515
35-39.	1762	1778	2065	2438	2945	3375	7200
40-44	1674	1669	1684	1956	2310	2790	5995
45-49.	1304	1564	1559	1573	1827	2158	4855
50-54.	964	1193	1431	1426	1439	1672	3837
55-59	687	856	1059	1270	1266	1277	2978
60-64.	400	583	727	899	1078	1075	2276
65-69	222	317	462	576	712	854	1632
70-74.	104	158	226	329	410	507	1013
75-79 . .	37	63	96	137	199	248	508
80-84.	8	18	30	46	65	95	205
85 and over	-	2	6	10	16	22	67
Total	31581	36123	41325	47268	53959	61447	134528
Females							
0-4	5324	6088	7049	8133	9251	10450	22924
5-9	4457	4951	5662	6556	7564	8603	18753
10-14	3941	4356	4839	5533	6407	7392	16101
15-19.	3358	3848	4253	4725	5402	6256	13757
20-24.	2690	3248	3721	4113	4570	5224	11612
25-29.	2188	2584	3120	3574	3951	4390	9766
30-34.	1804	2095	2475	2988	3423	3784	8251
35-39	1853	1723	2001	2364	2854	3269	6975
40-44.	1466	1763	1639	1904	2249	2715	5834
45-49.	1147	1384	1663	1547	1797	2123	4773
50-54.	881	1067	1288	1548	1439	1672	3834
55-59.	660	802	971	1172	1408	1309	3051
60-64.	423	578	703	851	1027	1234	2407
65-69.	244	348	476	579	700	845	1792
70-74.	120	182	259	354	431	521	1165
75-79.	44	76	116	165	225	274	613
80-84.	10	22	38	58	83	113	262
85 and over	-	3	7	13	21	31	96
Total	30610	35118	40281	46177	52802	60205	131966
Total, both sexes	62191	71241	81606	93445	106761	121652	266494
Households a	10001	11413	12956	14943	17047	19382	42438
Persons per household . .	6.22	6.24	6.30	6.25	6.26	6.28	6.28

a Assumed to equal the number of women aged 20-44.

兴々

PHASE III

\downarrow
JRITERIA, COMPARED WITH THE STABLE POPULATION OF ORIGIN (YEARS 5, 15 and 30 after beginning of migration)

Table 57
Projection of population of a settlement resulting from discontinued recruitment of migrants selected as in Phase V of the community-transfer model

Sex and age			Time from besinning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5520	6332	7255	8268	9390	10677	23468
5-9	4499	5126	5881	6738	7678	8720	19128
10-14.	3901	4402	5016	5755	6593	7513	16437
15-19.	3385	3816	4306	4907	5630	6450	14113
20-24.	2869	3277	3694	4169	4750	5450	11972
25-29.	2364	2759	3151	3552	4008	4567	10078
30-34.	1963	2268	2646	3022	3407	3844	8475
35-39.	1633	1875	2166	2527	2886	3254	7119
40-44	1425	1547	1776	2052	2394	2734	5938
45-49.	1237	1331	1445	1659	1917	2236	4867
50-54.	971	1132	1218	1322	1518	1754	3887
55-59.	731	862	1005	1081	1174	1348	3008
60-64	525	620	732	853	918	996	2240
65-69.	334	416	491	580	676	727	1573
70-74.	195	238	296	349	413	481	993
75-79	96	118	144	179	211	250	526
80-84	37	46	56	69	85	100	215
85 and over	11	13	16	20	25	30	68
Total	31696	36178	41294	47102	53673	61131	134105
Females							
0-4	5377	6168	7067	8053	9147	10401	22861
5-9	4389	5001	5736	6572	7489	8507	18660
10-14.	3800	4289	4887	5606	6423	7319	16015
15-19.	3291	3710	4188	4772	5474	6271	13724
20-24.	2787	3183	3588	4050	4615	5294	11629
25-29	2294	2677	3058	3447	3890	4433	9782
30-34.	1902	2197	2564	2929	3301	3725	8211
35-39.	1582	1816	2098	2449	2797	3152	6898
40-44	1435	1505	1728	1996	2330	2661	5776
45-49.	1162	1354	1421	1631	1884	2199	4785
50-54.	927	1081	1260	1322	1517	1753	3885
55-59.	722	843	983	1146	1203	1380	3082
60-64	542	633	739	861	1004	1054	2369
65-69.	367	446	521	608	709	826	1727
70-74.	224	273	332	388	453	528	1141
75-79.	116	142	174	211	247	288	635
80-84	47	58	72	88	106	124	274
85 and over	16	19	23	28	35	42	96
Total	30980	35395	40439	46157	52624	59957	131550
Total, both sexes	62676	71573	81733	93259	106297	121088	265655
Households ${ }^{\text {a }}$	10000	11378	13036	14871	16933	19265	42296
Persons per household . .	6.27	6.29	6.27	6.27	6.28	6.29	6.28

${ }^{a}$ Assumed to equal the number of women aged 20-44.

Table 58
Projection of settlement population accumulating from continuous recruitment of migrants selected as in Phase I of the communty-transfer model

Sex and age			Time from beginning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5573	12090	17951	23473	29783	38104	120513
5-9	3022	8198	14250	19693	24821	30681	97643
10-14.	1322	4279	9344	15266	20592	25610	82649
15-19.	709	2002	4895	9850	15643	20853	69571
20-24.	3014	3700	4952	7753	12550	18158	59675
25-29.	5086	7984	8644	9848	12541	17153	52742
30-34.	3425	8303	11083	11716	12871	15454	45699
35-39.	1794	5065	9724	12379	12984	14087	39132
40-44.	597	2296	5395	9808	12323	12896	33134
45-49.	-	558	2145	5040	9163	11513	27250
50-54.	-	-	511	1963	4612	8385	21336
55-59.	-	-	-	454	1743	4095	15391
60-64.	-	-	-	-	385	1479	10485
65-69	-	-	-	-	-	305	7116
70-74	-	-	-	-	-	-	4685
75-79.	-		-	-	-	-	2710
80-84. .	-	-	-	-	-	-	1025
85 and over	-	-	-	-	-	-	176
Total	24542	54475	88894	127243	170011	218773	690932
Females							
0-4	5429	11777	17486	22865	29011	37116	117394
5-9	2948	7997	13901	19210	24212	29928	95250
10-14.	1288	4169	9103	14873	20061	24949	80524
15-19.	690	1948	4761	9579	15213	20279	67654
20-24.	4684	5351	6568	9288	13947	19396	59726
25-29.	2961	7460	8101	9270	11883	16358	50897
30-34.	1659	4495	8804	9418	10538	13040	42344
35-39.	695	2279	4987	9102	9688	10758	35021
40-44.	-	661	2168	4744	8659	9216	28907
45-49.	-	-	624	2046	4477	8172	23643
50-54	-	-	-	581	1904	4166	18403
55-59	-	-	-	-	529	1733	13105
60-64.	-	-	-	-	-	463	8754
65-69.	-	-	-	-	-	-	5895
70-74	-	-	-	-	-	-	2362
75-79.	-	-	-	-	-	-	3952
80-84	-	-	-	-	-	-	652
85 and over .	-	-	-	-	-	-	97
Total	20354	46137	76503	110976	150122	195574	654580
Total, both sexes	44896	100612	165397	238219	320133	414347	1345512
Households ${ }^{\text {a }}$	9999	20246	30628	41822	54715	68768	216895
Persons per household . .	4.49	4.97	5.40	5.70	5.85	6.03	6.20

- Assumed to equal the number of women aged 20-44.

Table 59
Projection of settlement population accumulating from continuous recrutment of migrants selected as in Phase II of the communty-transfer model

Sex and age			Time from beginning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5918	11959	18275	25440	34130	44515	141800
5-9	4738	10234	15844	21710	28364	36434	115813
10-14.	3269	7905	13283	18772	24512	31023	99074
15-19.	2383	5581	10116	15377	20747	26362	84559
20-24.	1840	4147	7243	11633	16726	21925	71253
25-29	2588	4357	6575	9552	13773	18670	60357
30-34.	3268	5750	7447	9575	12431	16480	51815
35-39.	2374	5495	7866	9487	11519	14247	43990
40-44.	1518	3767	6724	8970	10506	12431	36951
45-49.	871	2289	4390	7152	9250	10685	30580
50-54.	-	797	2094	4016	6543	8463	24102
55-59.	-	-	707	1858	3564	5807	18102
60-64.	-	-	-	600	1577	3025	12627
65-69	-	-	-	-	475	1249	8136
70-74.	-	-	-	-	-	338	4851
75-79.	-		-	-	-	-	2514
80-84.	-	-	-	-	-	-	1036
85 and over	-	-	-	-	-	-	264
Total	28767	62281	100564	144142	194117	251654	807824
Females							
0-4	5764	11648	17801	24780	33245	43361	138126
5-9	4621	9982	15454	21176	27666	35538	112969
10-14	3185	7701	12940	18288	23880	30223	96522
15-19.	2317	5427	9836	14951	20173	25633	82220
20-24.	1787	4028	7036	11300	16247	21297	69210
25-29.	3265	4982	7135	10024	14120	18872	59324
30-34 . .	2322	5449	7093	9155	11922	15845	50079
35-39.	1592	3810	6796	8366	10335	12977	41788
40-44.	1034	2548	4658	7499	8993	10866	34716
45-49 . .	612	1588	3017	5009	7691	9101	28655
50-54.	-	569	1477	2807	4660	7155	22786
55-59.	-	-	518	1344	2554	4240	17360
60-64.	-	-	-	454	1178	2238	12316
65-69.	-	-	-	-	374	970	8084
70-74	-	-	-	-	-	278	4939
75-79.	-	, -	-	-	-	-	2629
80-84.	-	-	-	-	-	-	1119
85 and over	-	-	-	-	-	-	263
Total	26499	57732	93761	135153	183038	238594	783105
Total, both sexes.	55266	120013	194325	279295	377155	490248	1590929
Households ${ }^{\text {a }}$	10000	20817	32718	46344	61617	79857	255117
Persons per household . . .	5.53	5.77	5.94	6.03	6.12	6.14	6.24

[^58]$$
-80-
$$

Table 60
Projection of settlement population accumulating from continuous recruitment of migrants selected as in Phase III of the community-transfer model

Sex and age			Time from beginntng of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5566	11642	18552	26678	36168	46958	150079
5-9	4809	9978	15621	22038	29585	38398	122492
10-14.	4092	8798	13856	19378	25657	33042	105283
15-19.	3136	7139	11743	16691	22093	28236	90194
20-24.	2472	5508	9383	13840	18630	23860	76384
25-29.	2002	4379	7298	11024	15309	19915	64174
30-34.	2155	4075	6355	9155	12729	16839	54117
35-39.	2299	4357	6191	8369	11043	14457	45806
40-44.	1747	3925	5875	7612	9675	12208	38322
45-49.	1231	2863	4898	6720	8343	10270	31578
50-54.	827	1953	3446	5308	6975	8460	25478
55-59.	350	1084	2084	3409	5062	6542	19656
60-64.	104	401	1024	1873	2998	4401	14212
65-69.	-	82	317	811	1484	2375	9364
70-74.	-	-	58	225	577	1056	5488
75-79	-	-	-	35	136	349	2766
80-84.	-	-	-	-	17	65	1101
85 and over	-	-	-	-	-	5	323
Total	30790	66184	106701	153166	206481	267436	856817
Females							
0-4	5421	11340	18071	25987	35232	45742	146195
5-9	4691	9733	15238	21498	28860	37458	119489
10-14.	3986	8571	13499	18879	24997	32192	102574
15-19.	3050	6942	11419	16231	21484	27458	87705
20-24.	2401	5351	9115	13445	18099	23179	74198
25-29.	1942	4248	7082	10698	14857	19328	62277
30-34.	2430	4290	6498	9212	12675	16658	52776
35-39.	1846	4167	5943	8052	10644	13951	44324
40-44	1381	3137	5345	7035	9041	11507	36915
45-49	1012	2316	3973	6057	7652	9545	30497
50-54.	719	1661	2874	4416	6355	7839	24853
55-59.	359	1013	1870	2974	4377	6141	19577
60-64 .	110	425	998	1749	2716	3945	14540
65-69 .	-	91	350	822	1440	2236	9882
70-74	-	-	68	261	612	1072	6006
75-79.	-	-	-	43	166	389	3145
80-84	-	-	-	-	22	84	1309
85 and over	-	-	-	-	-	7	409
Total	29348	63285	102343	147359	199229	258731	836671
Total, both sexes	60138	129469	209044	300525	405710	526167	1693488
Households ${ }^{\text {a }}$	10000	21193	33983	48442	65316	84623	270490
Persons per household	6.01	6.11	6.15	6.20	6.21	6.22	6.26

${ }^{a}$ Assumed to equal the number of women aged 20-44.

Table 61
Projection of settlement population accumulating from continuous recruitment of migrants selected as in Phase IV of the community-transfer model

a Assumed to equal the number of women aged 20-44.

Table 62
Projection of settlement population accumulating from continuous recruitment of migrants selected as in Phase V of the community-transfer model

Sex and age			Time from besinning of migration (years)				
Males	5	10	15	20	25	30	60
0-4	5520	11852	19107	27375	36765	47442	151558
5-9	4499	9625	15506	22244	29922	38642	123455
10-14.	3901	8303	13319	19074	25667	33180	105986
15-19.	3385	7201	11507	16414	22044	28494	90990
20-24.	2869	6146	9840	14009	18759	24209	77294
25-29	2364	5123	8274	11826	15834	20401	65171
30-34.	1963	4231	6877	9899	13306	17150	54808
35-39	1633	3508	5674	8201	11087	14341	45883
40-44.	1425	2972	4748	6800	9194	11928	38148
45-49	1237	2568	4013	5672	7589	9825	31326
50-54.	971	2103	3321	4643	6161	7915	25181
55-59	731	1593	2598	3679	4853	6201	19635
60-64.	525	1145	1877	2730	3648	4644	14637
65-69.	334	750	1241	1821	2497	3224	10157
70-74.	195	433	729	1078	1491	1972	6303
75-79.	96	214	358	537	748	998	3310
80-84	37	83	139	208	293	393	1362
85 and over	11	24	40	60	85	115	427
Total	31696	67874	109168	156270	209943	271074	865631
Females							
0-4	5377	11545	18612	26665	35812	46213	147636
5-9	4389	9390	15126	21698	29187	37694	120431
10-14.	3800	8089	12976	18582	25005	32324	103261
15-19	3291	7001	11189	15961	21435	27706	88478
20-24	2787	5970	9558	13608	18223	23517	75082
25-29.	2294	4971	8029	11476	15366	19799	63247
30-34.	1902	4099	6663	9592	12893	16618	53105
35-39.	1582	3398	5496	7945	10742	13894	44455
40-44.	1435	2940	4668	6664	8994	11655	37163
45-49.	1162	2516	3937	5568	7452	9651	30789
50-54.	927	2008	3268	4590	6107	7860	25121
55-59.	722	1565	2548	3694	4897	6277	20041
60-64.	542	1175	1914	2775	3779	4833	15400
65-69.	367	813	1334	1942	2651	3477	11090
70-74	224	497	829	1217	1670	2198	7194
75-79.	116	258	432	643	890	1178	3965
80-84	47	105	177	265	371	495	1724
85 and over	16	35	58	86	121	163	598
Total	30980	66375	106814	152971	205595	265552	848780
Total, both sexes	62676	134249	215982	309241	415538	536626	1714411
Households ${ }^{\text {a }}$	10000	21378	34414	49285	66218	85483	273052
Persons per household	6.27	6.28	6.28	6.27	6.28	6.28	6.28

- Assumed to equal the number of women aged 20-44.

Section VII

EFFECTS OF INTERNAL MIGRATION OF POPULATION DISTRIBUTION AND GROWTH

As a possible basis for discussion, a speculative example has been worked out in which the migration model developed in the foregoing section was applied. It will be shown, in a rough approximation, how population growth in the two islands of Java and Sumatra may be affected if there is a continuing transfer of settlers from one island to the other.
It must be admitted that the present example is unrealistic in several respects. Population movements from Java to Sumatra have occurred at various times in the past, without ever quite attaining the volume contemplated here. On a minor scale, migrants have also moved to and from Sumatra, Kalimantan (Indonesian part of Borneo), and other areas, including British Borneo, Malaya and even Surinam. Indonesia also had a European population now reduced as a result of repatriation. In Java, Sumatra and other Indonesian islands, furthermore, there has been a considerable immigration of Chinese at various times. There are no precise records of movements between 1940 and 1950. It is suggested in some sources that several hundred thousand labourers were deported by the Japanese military authorities from Java to other areas, few of whom have returned subsequently.
The calculations carried out here assume no migration prior to 1950, but varying amounts of migration from that year onward. Several years, however, have elapsed since that date, during which spontaneous interisland movements of unrecorded volume have occurred in addition to those assisted movements for which statistics are available. ${ }^{1}$ At the same time there may have been an immigration into Java and particularly its growing city of Djakarta.
Even if other movements are disregarded, the observations available here do not suffice for an assessment of the structure of the migration which actually characterizes the movements between Java and Sumatra. Already at the census of 1930, more than a million persons of Javanese ancestry were enumerated as residing in Sumatra. Substantial transfers of governmentassisted settlers occurred during the 1930s, and also in recent years. Parallel with these, there has also been a stream of spontaneous migrants joining settlements

\footnotetext{
${ }^{1}$ Families whose transfer from Java to other islands has been assisted by the Transmigration Department and other agencies numbered 3,164 in 1950, 2,322 in 1951, 8,909 in 1952, 12,190 in 1953 and 24,705 in 1954. Assisted migration continued until March 1957 when it was temporarily halted. The following numbers of individual migrants have been assisted in various years:

in Sumatra which had been established for some time. The two streams, one assisted and the other spontaneous, may have been very differently composed by sex and age. Movements to areas other than Sumatra may have a yet different composition since settlement, in many instances, must first be preceded by preparatory labour, including the clearance of jungle.
Finally, even the available statistics on the size and growth of the total Indonesian population, taken as a whole, are still subject to wide interpretations as to their accuracy. With the present state of statistical information, therefore, it would be futile to aim at more exact calculations in matters of detail.
The case of Java and Sumatra has nevertheless been selected as an example of the application of methods for calculating the effects of migration. In the first place, the population affected by problems of unequal geographical distribution is, in this case, unusually large. Secondly, the fact that two separate islands are affected brings this matter into sharper focus. The type of reasoning involved is, nevertheless, equally applicable to other areas in South-East Asia where, as has been noted, internal contrasts in the density of settlement are greater than the local differences in available natural resources alone would seem to warrant.

The future population of Java and Sumatra, according to conservative assumptions

The conservative population projection for Indonesia (see Section I and tables in Appendix II) has been carried out in two parts, one for Java (including the small island of Madura), the other for the remaining islands. In both instances, the same trends of fertility and mortality have been assumed for the 1950-1980 period, but the projections differ in that different age structures had to be estimated for 1950, the base date. ${ }^{2}$ The

\footnotetext{
${ }^{2}$ Irregular population trends had to be estimated for the disturbed years of the 1940-1950 period. For Java and the other islands alike, it was assumed that mortality was then far greater than if more normal conditions had prevailed. In addition, it was also assumed that birth rates were lower than in normal times, and relative birth deficits were estimated separately for Java and for the other islands, to arrive at population totals which agree with available estimates for both the pre-war and the post-war years. In this context, a much sharper birth deficit had to be estimated for Java than for the other islands. The age structures estimated for 1950 differ accordingly. The assumptions imply the following average crude birth and death rates in 1940-1945 and 1945-1950:

	Birth rates		Death rates		Infant mortalty	
	1940-1945	1945-1950	1940-1945	1945-1950	1940-1945	1945-1950
Java	40.3	35.2	32.2	35.7	244.7	300.0
Sumatra	42.1	42.0	29.8	29.7	228.9	228.9

projection for Java, as in the original calculation, and that for Sumatra, as derived from the original projection for the remaining parts of Indonesia, are presented in summary form in Table $63 .{ }^{3}$
Assuming equal future trends in mortality and fertility, and no migration, the populations of the two

[^59]islands are likely to grow as follows: Beginning with 50 million in 1950, Java may attain 92 million by 1980; in the same period, the population of Sumatra may rise from 12 to 22 million. If these trends are to materializeand there may be reasons to doubt this possibility in the case of Java-the economic implications are serious. The land area of Java is 132,174 square kilometres, and that of Sumatra is 473,606. According to the estimates, population density to the square kilometre in 1950 was 378 in Java and 25 in Sumatra; in 1980, these densities will become 698 and 47 respectively. Few, if any, areas in the world the size of Java contain as much population as Java now has already. Average population density in Sumatra will be quite moderate even thirty years hence.

Table 63
Java and Sumatra. Conservative projection of the populations, assuming no migration (numbers in thousands)

Both sexes	Java						
	1950	1955	1960	1965	1970	1975	1980
0-14	17899	20059	23466	27868	30109	32565	36353
15-29	14753	15844	16130	15788	17845	21202	25496
30-44	9456	10365	11412	12585	13750	14209	14103
45-59	5373	5925	6599	7398	8325	9380	10556
60-74	2199	2446	2759	3146	3618	4181	4846
75 and over	320	371	435	516	620	747	907
Total	50000	55010	60801	67301	74267	82284	92261
Both sexes	Sumatra						
	1950	1955	1960	1965	1970	1975	1980
0-14	4665	5094	5689	6388	7113	7954	8993
15-29	3322	3585	3822	4109	4543	5144	5843
30-44	2158	2351	2577	2833	3110	3367	3672
45-59	1252	1371	1516	1688	1889	2118	2377
60-74	523	577	646	732	836	960	1104
75 and over	80	90	105	123	145	174	211
Total	12000	13068	14355	15873	17636	19717	22200

There are, of course, variations of population density among the sub-regions of each island, and natural resources per unit of land are not nearly equal in the two cases. Thus Java, with its volcanic soils, favours a more intensive cultivation of the land than may be attainable in most of the greatly varied terrains of Sumatra. In Sumatra, on the other hand, there is a certain abundance of mineral resources, notably oil and metal ores. Nevertheless, it seems quite improbable that differences in the natural endowment of the two islands are so great as to justify, by themselves, a ratio of fifteen to one in their respective population densities, either in 1950 or in 1980.

Factors other than natural resources must he held largely accountable for this contrast. This becomes most obvious if we consider another extreme case, that of Kalimantan (the Indonesian part of Borneo). Here, in an area of 539,460 square kilometres, a population
of only $3,586,000$ has been estimated for $1952,{ }^{4}$ and even this figure represents a large increase over earlier estimates. The average density is one of only 6.6 persons to the square kilometre; on the basis of natural increase alone, an average density of about 13 might, perhaps, be attained by 1980 . The natural resources of Kalimantan have not yet been fully explored. Most of the area is covered by dense forests which would require large expenditures of human labour before a great intensification in the use of resources could be envisaged. Probably, in pre-historic times the natural vegetation in Java and Sumatra was almost equally forbidding. In Kalimantan, however, an organized civilization capable of transforming jungles into permanent rice fields has not appeared in historic times. Some

[^60]initial development, difficult to achieve, evidently is a pre-requisite before more intensive development can follow.

This pristine condition has already been overcome in large sections of Sumatra, where several clusters of fairly dense settlement can now be found. These clusters, however, are still separated by great distances, and internal transportation encounters severe obstacles. Under the conditions, the cost of social overheads, including such diverse items as improved means of transportation, the extension of education, the acquisition of skills, and the organization of markets for labour and commodities, is very high. The prospects for rapid economic development, without doubt, will be greatly improved by a rapid growth of the population. Since a beginning in the more intensive use of resources has already been made, the stage has probably been reached where a considerable further growth of population can be accommodated.

Views on the demographic situation of Java may differ much more widely. Some students of Java's unparalleled situation have expressed a fear that, here, a population pressing on limited natural resources can be effectively prevented from increasing any further by a recurrence of catastrophic events. Such an attitude implies the belief that the present methods of resource utilization are rigidly determined and cannot be modified. It makes no allowance for human ingenuity in coping with a difficult situation. But, even if the view were tenable, it would have little relevance to any constructive efforts that are made in matters of economic and social development. ${ }^{5}$
This view is rejected by all those who believe that improvements in technique and organization at all times provide room for some added numbers of the population. Yet there are wide differences in the rate at which it is estimated that improvements can become effective. The expected rate of technical and organizational progress may or may not match the rate of population growth which can be reasonably projected on the basis of current observations. Even if sufficient progress is made within the near future, difficulties may increase with time until a point is reached where continued population growth neutralizes all the improvements realized so far. Population growth itself, furthermore, may limit the rate at which resource-use can be intensified, since shelter and clothing must also be provided for continuously increasing numbers.
It is known that Java's cultivated area can hardly be extended any further without a dangerous depletion of the remaining forest cover, and consequent erosion. Nor is there much scope for any further expansion of irrigation. Considerable land areas are cropped twice, and some even three times a year; in addition a catch of fish is made in rice fields seasonally flooded. With the yields now obtained, local food production needs to

[^61]be supplemented by imported foods. The tendency has also been noted to substitute cassava for the cultivation of rice; a bulkier food product is then obtained, but its nutritive value is low. If, with a rise in population, more food has to be imported, the means of payment will depend on increased exports of raw materials and manufactured goods; but with the low level of incomes, very little capital can be generated, and with the lack of capital it is very difficult to increase the value of exported goods. From a strictly technical standpoint, an increase in average yields may seem feasible; in practice, such further achievement is largely impeded by the lack of needed capital, the limited ability to produce needed savings, and the persistence of traditional working methods.
The situation in some respects resembles that of Japan at the turn of this century where, at the time, a population of about 35 million inhabitants appeared excessive for a predominantly agrarian island country with limited natural resources. And yet, since then, Japan has been converted into an industrialized country supporting at the present time 90 million inhabitants at a higher level of living than some fifty years ago. But historical and social circumstances are not the same in the two cases. In Indonesia, facilities for the training of indigenous administrators and technicians have been exceedingly limited in the past, and there continues to be a severe shortage of qualified personnel capable of dealing with an organizational task of the given magnitude, as well as of a labour force with intermediate levels of skill and experience. To enter the competition for foreign markets has become more difficult than before as a result of accumulated technical progress and organization on the part of the more seasoned competitors. As a matter of fact, the output of formerly exported products such as sugar, tea, coffee, cocoa and tobacco has been sharply curtailed in Java. While views on economic prospects may differ, it is generally agreed that Java's situation is a difficult one.

Possible alternative population trends in Java in the absence of migration

The populations of Java and Sumatra have been projected on the conservative assumptions of normal mortality decline, constant fertility and no migration. Except for migration, this set of assumptions seems reasonable for Sumatra, an area with abundant natural resources but difficult internal communication. In the case of Java, alternative considerations are of greater interest.
The extremely pessimistic view which foresees no possibility of further increase once Java's population has attained a supposedly fixed limit provides no guideline for practical planning, and is therefore dismissed here.
At the other extreme, on the basis of a low-mortality assumption (of the kind presented in Section II), a population as high as 106.4 million can be projected for Java in 1980. This figure is staggering, since the average density of population would then amount to 805 persons per square kilometre of land, mountains and marshlands included. On the conservative assumption, where a more moderate decline of mortality is
projected, the 1980 population would be 92.3 million, and population density would be 698 per square kilometre. On the very pessimistic assumption of no mortality decline, mortality remaining constant at the level estimated for the pre-1940 period, Java's population in 1980 would attain 76.5 million, with 578 persons per square kilometre.

On all the above assumptions, fertility is assumed to remain constant. The rate of mortality decline will depend on the speed with which modern sanitary services can be expanded; but also, under adverse conditions, on some economic difficulties that might be encountered in ensuring the livelihood of this dense population. If the possibility of future fertility declines are taken into account, other results are obtained, as shown in Table 64, below. The fertility declines are assumed to begin in 1960 and to proceed by 1 per cent annually of the initial level if they are moderate, or by 2 per cent annually if they are rapid. The lowest of all population figures
obtained for 1980, 68.5 million, results from the very unlikely combination of no decline in mortality and a very sharp decline in fertility; even then, average population density will be 519 to the square kilometre, as against the 378 estimated for 1950.

While there is nothing impossible in an eventually very large and very dense population in Java, doubts may be entertained whether, in view of its present high density, additional resources can be developed rapidly enough to provide for population growth such as can reasonably be anticipated by 1980 . It will have to be noted that a population smaller than 80 million can hardly result unless there is a severe retardation in the decline of mortality, a sharp decline of fertility, or a combination of the two. As compared with the 50 million estimated for 1950, the 80 million represent an increase of 60 per cent. On the other hand, the 1980 population may become even more than twice that in 1950.

Table 64

Population and population density of Java in 1980, resulting from various COMBINATIONS OF ASSUMPTIONS OF FUTURE FERTILITY AND MORTALITY TRENDS

Fertllty trend	Population (millions)			Inhabtants per square kilometre		
	Very rapid mortality decline	$\begin{gathered} \text { Normal } \\ \text { mortallity } \\ \text { decline } \end{gathered}$	$\begin{aligned} & \text { Mortality } \\ & \text { constant at } \\ & \text { pre-1940 level } \end{aligned}$	Very rapld mortality decline	Normal mortalty decline	$\begin{gathered} \text { Mortality } \\ \text { constant at } \\ \text { pre-1940 level } \end{gathered}$
Constant level	106.4	92.3 *	76.5	805	$698{ }^{\text {a }}$	578
Moderate decline	100.4	87.3	72.5	759	660	549
Rapid decline	94.4	82.3	68.5	714	623	519

- Conservative assumption.

These alternative assumptions are listed only for purposes of clarification. Other combinations of assumptions can also be imagined, some appearing more likely than others, depending on whether the future is being viewed with optimism or more guardedly. The results listed here, however, may suffice for purposes of discussion.

In the following paragraphs consideration is given to the manner in which migration might affect population growth in either Java or Sumatra.

The type of migratory movement

In Section VI, where models for the calculation of migratory effects were developed, a distinction was made between the effects of one-time migration, such as the movement which results in the foundation of one particular settlement, and continuing migration affecting an entire region within which numerous settlements are formed in the course of time. Both types of effect merit close study.

In a society of close-knit villages, depending largely on a subsistence economy, the demographic development of those villages whence the migrants originate and of those founded by them, is of prime importance. The economic success of the settlements will depend in large
measure on the inherent social structure and on the degree of social stability and cohesion which it confers.

On the other hand, it is to be expected that, in the process of settlement, the population will undergo considerable changes in its economy and social outlook, with a consequent widening of horizons. The penetration of a cash economy increases contacts among settlements, as well as contacts between settlers and the remainder of the regional population. The spread of education and literacy diminishes the barriers of kinship groups and enables individuals to form associations within wider circles of the society, thereby increasing their occupational and social as well as geographic mobility. With modern community development techniques, this process can be stimulated and intensified.

In the course of time, therefore, the population of settlers increasingly forms part of the general regional population. The demographic development of the entire region then becomes more and more relevant. In the early phases of settlement, this is less likely to be the case.

Detailed statistics on the composition of migratory streams originating from Java have not become available, but statistics have been secured relating to land settlement schemes in Ceylon and in the Philippines. Thus, in the Gal Oya region of Ceylon, an age distribution
of recent settlers ${ }^{6}$ showed that, of 27,817 persons, 3,594 , i.e., 12.9 per cent of the total, were aged 40 years and over. In three recent settlement projects of the Philippines, ${ }^{7}$ the percentage of persons aged 40 and over was $13.5,12.8$ and 19.5 respectively. Evidently, some but not many adult persons past their middle age participate in these schemes, though the majority are young couples with their children, most of them small.
The statistics examined conform most nearly to phase III of the migratory model developed in Section VI. Whether migrants from Java settling in Sumatra are similarly composed is not known, though conceivably they might be. It will be assumed that phase III of the model most nearly applies to the case under study.
It will be noted that, in the original community-transfer model (see Tables 47 and 48, Section VI), phase III occurs when about one-half of the population of a community is involved in the movement. This point is of some interest, though a very loose interpretation may have to be given to the concept of the communities from which the migrants originate.
It is, of course, desirable that migrants be recruited from among groups of families, whether living in the same village or not, who for reasons of kinship or economic co-operation maintain relations of mutual interest. Without some initial community of interest, social cohesion among the settlers may be difficult to achieve. Since in phase III about one-half of a community, however conceived, is transferred, about twice as many persons are directly affected by a movement of this type as the number of migrants themselves. It can, therefore, be assumed that immediate relief from population pressure is afforded to population groups in the area of origin, which are about as large as the groups of settlers. This measure of relief, other things being equal, can last until the population has doubled again as a result of natural increase, i.e., perhaps for a period of thirty years, under the given assumptions.
As can be seen from Table 55 (Section VI), stability of the settlement is not immediately attained, but the deformation of its age structure, about fifteen years later, is not very marked. Under the conditions, severe social stress can probably be averted with success.

Whether recruitment of migrants according to criteria approximating those of phase III is most desirable depends on a balanced consideration of economic and social factors. In the region of settlement, success will best be ensured if the initial economic burdens on households are not too heavy while the elements which strengthen social cohesion are yet sufficiently represented. In the region of out-movement, varying criteria of recruitment provide varying measures of economic relief, though also some social hardship, for more or less prolonged periods of time. Relief should be created especially in those areas where the consequent release

[^62]of local resources can make the greatest contribution to local and regional economic development.

The volume of the migratory movement

The amount of population growth in Java can be curtailed, and that in Sumatra augmented, by amounts which depend on the numbers of migrants transferred each year. Assuming a constant rate of annual transfers, the net effects can be calculated directly by the multiplication of figures in Table 60 (Section VI) by any desired constant. As shown in that table, the successful transfer of 10,000 households in every five-year period gives rise to a settlement population which numbers, at the end of 30 years, some 526,000 persons. It can be assumed that an annual transfer of 2,000 families results in 10,000 households being established in 5 years. Depending on the annual volume of transfers which can be achieved, population growth in Java will be diminished as follows, at the end of 30 years: by 2.6 million, with an annual transfer of 10,000 families; by 5.3 million, with an annual transfer of 20,000 families; by 13.2 million, with an annual transfer of 50,000 families; and by 42.1 million, with an annual transfer of 160,000 families. In the latter event, population growth in Java, resulting from conservatively projected natural increase, would be completely neutralized, and Java's population would be maintained very near a constant level.

Population growth in Sumatra would then be speeded up by the same amounts. With no migration, Sumatra's population has been conservatively projected from a figure of 12 million in 1950 to one of 22.2 million in 1980, an increase of 85 per cent in 30 years, or of 2.1 per cent on an annual average. For Java's population to be stabilized, Sumatra would have to receive, within 30 years, an additional population of 42.1 million, the total population then amounting to 64.3 million. Though a population of this size is not inconceivable for Sumatra (the average density would then be 136 persons to the square kilometre, i.e., still only one-third the present density in Java), it is rather difficult to imagine that such a large and sustained growth could be absorbed within such a short time; the average annual rate of population growth, on this extreme assumption, would be 5.8 per cent, and it is doubtful whether economic expansion can be maintained at a comparable tempo.
No assumption is made here as to the most desirable, or practically feasible, rate of migration. Sizeable investments are required to implement any substantial programme of transmigration. ${ }^{8}$ And there are limits to the possible rates of economic development and to the rapidity with which a society can adjust, without severe stress, to a set of changing conditions.

For illustrative purposes only, it is assumed that an annual movement of 20,000 households from Java to Sumatra can be carried out. This volume exceeds past achievements since, according to statistics, only 40,932

[^63]families were moved from Java in the five-year period 1950-1954, some of them to Sumatra and some to other islands. ${ }^{9}$ But as there are no statistics on unassisted migrants, it is possible that the total number of movements was considerably greater. The annual movement of 20,000 families, assumed here, while large in the light

[^64]of past achievement, is not inconceivable. If movements on this scale continue from 1950 to 1980, the populations of Java and Sumatra will develop as in Tables 65 and $66 .{ }^{10}$

[^65]Table 65
Population of Java, according to conservative projection, 1950-1980, assuming no migration and an annual bmigration of 20000 households (population in thousands)

Both sexes	1950	1955	1960	1965	1970	1975	1980
1. Assuming no migration							
0-14	17899	20059	23466	27868	30109	32565	36353
15-29	14753	15844	16130	15788	17845	21202	25496
30-44	9456	10365	11412	12585	13750	14209	14103
45-59	5373	5925	6599	7398	8325	9380	10556
60-74	2199	2446	2759	4136	3618	4181	4846
75 and over	320	371	435	516	620	747	907
Total	50000	55010	60801	67301	74267	82284	92261
2. Migrants and their offspring							
0-14	-	286	600	949	1345	1806	2338
15-19	-	149	335	560	818	1105	1420
30-44	-	118	240	362	495	657	857
45-59	-	45	110	192	289	389	487
60-74	-	2	10	28	57	98	151
75 and over	-	0	0	0	0	3	9
Total	-	600	1295	2091	3004	4058	5262
3. With emigration							
0-14	17899	19773	22866	26919	28764	30759	34015
15-29	14753	15965	15795	15228	17027	20097	24076
30-44	9456	10247	11172	12223	13255	13552	13246
45-59	5373	5880	6489	7206	8036	8991	10069
60-74	2199	2444	2749	3118	3561	4083	4695
75 and over	320	371	435	516	620	744	898
Total	50000	54410	59506	65210	71263	78226	86999

The direct effect on Java's population is relatively slight. Instead of 92 million, there will be 87 million inhabitants in 1980, barely 6 per cent less. Java's population increase in thirty years will be 37 million instead of 42 million, or about one-eighth less; the remaining seven-eighths of Java's population increase will continue to have to be absorbed in its growing local economy.

The direct effect of this movement on Sumatra will be much more appreciable. The absolute increase, in thirty years, will be by 15.5 million instead of the 10.2 million resulting from the natural increase of the 1950 population. As, on the average of this long period, the rate of population growth is augmented by one-half,
the stimulating effects on local economic development are bound to be keenly felt.
Indirect effects of the movements on the national economy of Indonesia, as well as in local areas, are likely to be far greater.

The question of the optimum rate of migration

In the process of population transfer from crowded areas to lands of opportunity, new circuits are brought into being in the economy. In the areas of out-movement, resources are released which previously provided for the subsistence of a larger population. In the areas

Table 66
Population of Sumatra, according to conservative projection, 1950-1980, assuming no migration and an annual immigration of 20000 households (POPULATION in thousands)

Both sexes	1950	1955	1960	1965	1970	1975	1980
1. Assuming no migration							
0-14	4665	5094	5689	6388	7113	7954	8993
15-29	3322	3585	3822	4109	4543	5144	5843
30-44	2158	2351	2577	2833	3110	3367	3672
45-59	1252	1371	1516	1688	1889	2118	2377
60-74	523	577	646	732	836	960	1104
75 and over	80	90	105	123	145	174	211
Total	12000	13068	14355	15873	17636	19717	22200
2. Migrants and their offspring							
0-14	-	286	600	949	1345	1806	2338
15-29	-	149	335	560	818	1105	1420
30-44	-	118	240	362	495	657	857
45-59	-	45	110	192	289	389	487
60-74	-	2	10	28	57	98	151
75 and over	-	0	0	0	0	3	9
Total	-	600	1295	2091	3004	4058	5262
3. With immigration							
0-14	4665	5380	6289	7337	8458	9760	11331
15-29	3322	3734	4157	4669	5361	6249	7263
30-44	2158	2469	2817	3195	3605	4024	4529
45-59	1252	1416	1626	1880	2178	2507	2864
60-74	523	579	656	760	893	1058	1255
75 and over	80	90	105	123	145	177	220
Total	12000	13668	15650	17964	20640	23775	27462

Table 67
Population of Java in 1980, and population increase, 1950-1980, resulting from various combinations of assumptions of future fertility, mortality and migration trends

Fertllity trend	(Population millions)			Population in 1980 per 100 of population in 1950		
	Very rapld mortality decline	Normal mortality decline	$\begin{gathered} \text { Mortality } \\ \text { constant at } \\ \text { pre-1940 level } \end{gathered}$	Very rapld mortality decline	$\begin{gathered} \text { Normal } \\ \text { mortality } \\ \text { decline } \end{gathered}$	$\begin{gathered} \text { Mortality } \\ \text { constant at } \\ \text { pre-1940 level } \end{gathered}$
1. Assuming no migration						
Constant level	106.4	$92.3{ }^{\text {a }}$	76.5	213	$185{ }^{\text {a }}$	153
Moderate decline	100.4	87.3	72.5	201	175	145
Rapid decline	94.4	82.3	68.5	189	165	137
2. Assuming annual emigration of 20000 households						
Constant level	101.1	$87.0{ }^{\text {a }}$	71.2	202	$174{ }^{\text {a }}$	142
Moderate decline	95.1	82.0	67.2	190	164	134
Rapid decline	89.1	77.0	63.2	178	154	126
3. Assuming annual emigration of 50000 households						
Constant level	93.2	$79.1{ }^{\text {a }}$	63.3	186	$158{ }^{\text {a }}$	127
Moderate decline	87.2	74.1	59.3	174	148	119
Rapid decline	81.2	69.1	55.3	162	138	111

a Conservative assumption.

$$
-90-
$$

ff settlement, new resources, previously unexploited, are brought into use. In both areas, ratios between population and resources can be brought nearer an optimum, ${ }^{11}$ with consequent economic benefits. The economy is also activated by the increase in the volume of cash transactions. A study of the economic opportunities thus opened out is outside the field of this report. It is nevertheless evident that multiplying effects are generated in the process, and the number of people whose level of living is raised above mere subsistence is likely to be some multiple of the number of persons directly involved in the transfer of settlement.
With such beneficial effects on the economy, population pressure in the densely settled region is effectively reduced, while the possibilities for economic expansion in the region of settlement are augmented. Though Java's population continues to grow, the transfer of some Javanese can make room for greater population growth within Java itself. At the same time, an increased availability of resources within Java can help to speed up the process of resource development in Sumatra. A greater measure of industrialization can then be encour-

[^66]aged in both areas since, through a widening of the economic flow, the manufactured goods can more profitably be disposed of. ${ }^{12}$
The nature and amount of these multiplying effects merit the close study of economists. It will help to determine what rate of migration is likely to yield the most satisfactory returns. The assistance needed by the migrants can be costly, requiring large financial resources, especially if a programme of large volume is to be carried out rapidly. Funds are also needed for other purposes of no less urgency as, for example, industrialization. There are, without doubt, diminishing returns when the programme is unduly expanded. On the other hand, the enlargement of a small migration programme might be found to promise increasing returns.

[^67]
Section VIII

SOUTH-EAST ASIA'S POPULATION IN A HISTORIC PERSPECTIVE

1. A rising share in the world's population

All available estimates suggest that South-East Asia's share in the population of the world has been, and will be, rising.
Past estimates of regional and world populations, for dates beginning with 1920, are assembled in each current issue of the United Nations Demographic Yearbook; the region defined there as South-East Asia includes Netherlands New Guinea, but excludes Ceylon and China (Taiwan).
With the use of rough methods, regional populations of the world have been estimated for a period from 1950 to 2000 in a recent United Nations publication on future world population growth. ${ }^{1}$ Some of those rough and simple assumptions were not entirely realistic; as determined by tests, mortality seems to have been over-estimated in the case of South-East Asia. ${ }^{2}$
Since population projections of the type shown in the present report are not available for all parts of the
${ }^{1}$ The Future Growth of World Population, United Nations publication, Sales No.: 58.XIII.2. The medium series of estimates will here be referred to.
${ }^{2}$ Ibid., p. 61.
world, a comparison of estimated population growth in the world and its several regions, of which South-East Asia is one, must first be made with the admittedly rough data in the publication referred to above. ${ }^{3}$ Such a comparison appears in Table 68.

In a world population of 1,810 million in $1920,2,500$ million in 1950, and 4220 million in 1980, the population of South-East Asia proper amounted to 110 million in 1920, 171 million in 1950 and may attain 315 million in 1980 (the figures are 118, 186 and 348 million respectively when the area is defined to include Ceylon and China (Taiwan)). The percentage of South-East Asia in the total world population, then, changes as follows:

Year		Per cent of world population in South-East Asta	
		I. Excluding Ceylon (and China Taiwan)	II. Including Ceylon and China (Taiwan)
1920	- -	6.1	6.5
1930	. .	6.4	6.9
1940	. .	6.9	7.4
1950	. .	6.8	7.4
1960	.	7.0	7.7
1970	. .	7.2	7.9
1980	.	7.5	8.2

${ }^{3}$ The estimates of this report will be considered further on.

Table 68
Estimates of world and regional populations, 1920-1980a

	Year	World	$\begin{aligned} & \text { Northern } \\ & \text { and western } \\ & \text { Europe }{ }^{\text {b }} \end{aligned}$	Northern America ${ }^{\text {c }}$	Soviet Union	$\underset{\text { America e }}{\text { Latin }}$	South-East Asia	
							$1 f$	IIs
1920	.	1810	115	117	158	91	110	118
1930	.	2013	122	135	176	109	128	138
1940	. .	2246	128	146	192	131	155	167
1950	.	2500	133	168	181	163	171	186
1960	. .	2910	140	197	215	206	204	224
1970	. .	3480	148	225	254	265	250	276
1980	.	4220	159	254	297	349	315	348

[^68]

One out of fifteen, or sixteen of the world's inhabitants in 1920 was a South-East Asian, depending on how the limits of the area are defined; in 1980, it may be one out of twelve or thirteen. The rise of South-East Asia's share in the world population seems continuous, except for the 1940-1950 period when, apparently, it was more heavily affected by the war than some other parts of the world.

We shall presently criticize the absolute value of these rough estimates. Their comparison is nevertheless instructive. Thus, in 1920, the population of South-East Asia was about equal to that of either northern and western Europe, or northern America; it was smaller than that of the Soviet Union, and larger than that of Latin America. But ever since the 1920's, South-East Asia's population growth outdistanced that of northern and western Europe, and by 1980 the ratio of these two regional populations will probably be two to one, if not more. Northern America almost kept pace with South-East Asia (defined in the narrower limits) until about 1950, but in the decades to come will increasingly fall behind. The larger population of the Soviet Union will be surpassed by South-East Asia somewhere around 1960 or 1970. Only the population of Latin America seems to increase with still greater speed: smaller than that of South-East Asia in all decades of the past, it may equal, or even exceed it in the relatively near future.

The rough estimates for the future which have just been compared are not in agreement with the more refined estimates presented in this report. In preparing population projections for the world as a whole, it has been feasible to employ only crude models which are
mere approximations to actual conditions and, as has been pointed out, South-East Asian mortality probably was assessed too high. In other respects, the crude model used for South-East Asia in the context of world population estimates resembles the system of conservative assumptions used in the present report.
As a by-product of estimated future world and regional populations, rough estimates of future populations for all countries of the world up to 1975 have also been obtained and published in the report referred to. ${ }^{4}$ Those estimates depend on a generalized formula by which country estimates are derived from regional estimates, detailed study of population trends in each of the world's countries having been impossible at the time. The approximate nature of those derived country estimates can be gauged by comparing them with the more elaborate estimates for 1975 in this report, as is done in Table 69.
Except for British Borneo, Indonesia, Laos, Portuguese Timor and Viet-Nam, the rough derived future estimates seem to be definitely on the low side, falling even below the detailed projection in which a future fertility decline is speculatively allowed for. The derived rough figures seem to be severe under-estimates in the cases of the Philippines and Singapore. ${ }^{5}$
As discussed in Sections II, III and IV of this report, special considerations may apply in each instance,
${ }^{4}$ Presented in The Future Growth of World Population, op. cit., pp. 72-75
${ }^{5}$ And possibly Burma, if it is admitted that the official population estimate for 1950 may have fallen considerably short of actual population.

Table 69

Comparison of population estimates in 1975 for individual countries of South-East Asia, obtained by different sets of methods (in millions)
A. Derived rough estimates according to The Future Growth of World Population.
B. Conservative estimates of the present report.
C. Low-mortality estimates of the present report.
D. Moderate-fertility-decline estimates of the present report.
E. Derived rough estimates as percentages of conservative estimates (100 A : B).

Country	A	B	C	D	$E=100$ A:B
British Borneo .	1.7	1.6	1.8	1.5	106
Burma	27.4	28.8	$38.4{ }^{\text {a }}$	27.9	95
Cambodia .	6.4	7.5	8.3	7.2	85
Indonesia	122	123	137	119	99
Laos	2.2	2.2	2.4	2.1	100
Malaya .	10.2	11.6	11.9	11.1	88
Philippines .	34.1	42.8	47.0	41.2	80
Portuguese Timor	0.7	0.7	0.8	0.7	100
Singapore . .	2.2	2.7	$2.7{ }^{\text {b }}$	2.6	81
Thailand .	32.1	35.8	39.8	34.6	90
Viet-Nam .	40.4	40.2	43.0	38.9	100
Total	279.4	296.9	333.1	286.8	94
Ceylon		15.5	$15.5{ }^{\text {b }}$	15.0	90
China (Taiwan) . . .	15.6	17.7	$17.7{ }^{\text {b }}$	17.0	88
Total	309.1	330.1	366.3	318.8	94

a Bstimate implies a larger population in 1950 than officially estimated.
${ }^{\boldsymbol{b}}$ Result of conservative projection, no alternative low-mortality assumption having been made in this instance.
making some future estimates more plausible than others. The rough estimates of the earlier report, while generally on the low side, are not entirely outside the range of conceivable future contingencies. But the comparisons of Table 69 make it appear that South-East Asia's share in world population can rise even more rapidly than suggested by some of the figures shown in Table 68. ${ }^{6}$

2. Earlier centuries

In historic times, South-East Asia's part in the world has fluctuated with the rise and fall of civilizations. But contacts were then mostly confined to neighbouring regions, making world-wide comparisons irrelevant.

Remnants of an extensive ancient irrigation system in eastern Ceylon, the ruins of Angkor Vat in Cambodia, and the pagodas of Borobudur in Java, are all witness to the fact that large populations have existed in certain areas of South-East Asia during earlier epochs. These ancient civilizations have, however, declined and their continuity has been interrupted. The former seat of the Khmer Empire, in Cambodia, became overgrown with jungle and has only recently been re-discovered. The dry zone of Ceylon, once the centre of a thriving culture, became infested with malaria and remained depopulated for many centuries, to be partially resettled only in the present one.

Why these ancient and probably populous cultures should have vanished is a riddle that has not yet been solved. Warfare, invasions and conquest may have been one set of causes; internal social disintegration may have been another. When the society could no longer maintain the elaborate irrigation works, economic ruin became complete with a renewed spread of malaria, which frustrated all subsequent attempts at reconstruction.

During many centuries, much of South-East Asia was in a state of flux. Descending from the mountains bordering the south of China, Burmese, Thais and Annamites gradually penetrated southward, overcoming the resistance of the Mons and Khmers previously dominant in the area. Moslem rulers established themselves in Malaya, Indonesia and part of the Philippines. European powers eventually conquered large parts of the region and gradually widened their domains. An era of relative peace began in most coastal regions in the nineteenth century, but land conquests in the interior continued for another hundred years. At the turn of the century, European powers were joined by the United States and Japan, who annexed the Philippines and the Chinese island of Taiwan, respectively. The present phase of population growth in South-East Asia probably gathered momentum during the nineteenth century as a by-product of colonial policies aiming at internal

[^69]pacification and an expansion of commercial exports. 1 S Until then, population was rather small, ${ }^{2}$ and perhaps if no larger than it had been a thousand years previously. 2 But, as the regions of the world were drawn together into inextricable interdependent relationships, the importance of South-East Asia to the rest of the world rose rather conspicuously.
How much the regional population grew during the nineteenth century cannot now be determined without much painstaking research; it may very well have tripled, or quadrupled. Relatively peaceful conditions played their part. In the view of some authors, the stimulation of export crops, under the culture system practised in Java from 1830 to 1870, and the introduction of estates and plantations, notably in Ceylon and Malaya, have provided an additional impetus. ${ }^{8}$ The settlement of cash crop regions in the deltas of Burma, Thailand and southern Viet-Nam, and the intensification of agriculture in Ceylon, Java and China (Taiwan), considerably enlarged the basis of livelihood for the increasing populations while at the same time introducing sharp differentiations in their class structure. With the turn of the century, considerable numbers of immigrants from China and India began to appear, and these now constitute important minorities in the populations of some countries. An increasing concern for the education and welfare of the indigenous people eventually began to manifest itself in a reduction of the normally prevailing high rates of mortality.

3. The present century

Substantial reductions of mortality have probably not been achieved until the present century. By mid-century the rate of progress, at least in certain limited areas, has become truly astounding. Reliable statistics for Ceylon, China (Taiwan), Malaya and Singapore render an eloquent testimony of recent achievements. It is inevitable that similar progress will also be made in other areas, though perhaps not always so rapidly.

Even so, population growth has not been uniformly rapid in the past three decades. The figures presented in Table 68 (including Ceylon and China (Taiwan)) indicate a regional increase of 19 per cent in 1920-1930, of 21 per cent in 1930-1940 and of 11 per cent in 19401950. It is probable that the world-wide influenza epidemic of 1921 exacted its toll of human lives also

[^70]
in South-East Asia. In the 1940's, as a result of active warfare, military occupation and the disruption of normal channels of trade, there was another recrudescence of high mortality combined with some temporary decreases in the birth rate; this is confirmed by available statistics, some of them fragmentary, and inferred from the analysis of recent data on age structure, though not very reliably.

The refined analysis of age structure, according to various censuses, also leads to the view that birth rates, though high, have undergone some fluctuations in the past. ${ }^{2}$ Birth rates have not been exactly constant but they have, so far, not shown any definite trend. The decline in death rates is now well established but, as shown by the experience of the 1940 's, temporary reversals can also occur. The risk of loss of lives following a disruption of normal commerce is probably greatest in agrarian regions of densest settlement. Both in Tonkin and in Java, famines resulting from the Second World War probably attained severe proportions.

The future increase in regional population (Ceylon and China (Taiwan) being included), according to the conservative assumptions of constant fertility and a continuing decline in mortality, will be by 24 per cent in 1950-1960, 27 per cent in 1960-1970 and 30 per cent in 1970-1980. As there have been relative birth deficits during the Second World War, a slightly reduced proportion of the population will be of child-bearing ages in the 1960's; this effect will wear off in the 1970's causing a further acceleration in the rate of population growth, unless once again new and unforeseeable factors emerge which tend to slow it down.
Unfavourable circumstances can delay declines in mortality, but only catastrophic conditions can prevent them entirely. This makes it debatable how long the high level of fertility can be maintained.
The encouragement of families with large numbers of offspring seems to be a feature common to patriarchal societies and systems of extended families. ${ }^{10}$ Despite considerable heterogeneity in the cultures among SouthEast Asia's peoples, the large family, the clan, or the village have been the corner-stones of society. Profound social and economic changes may tend to weaken them with time and, in doing so, can also deprive societies and individuals of one moral frame of reference, in whose absence a recrudescence of socially disruptive forces may have to be feared. This problem of the influence of family and kinship groups is fundamental in the future of Asian society and culture. Incidentally, it may have important repercussions on future population trends. But it is a lesson of history that cultural features of the type referred to change but slowly, unless assailed by rather severe circumstances.

[^71]The projections of the present report are based on the assumption that the established population trends will not be affected by abrupt changes, such as those occasioned by war, famine, or some major social disaster. All available records indicate that, barring severe disrupting events, population trends are usually fairly continuous.
A regional population ranging between 300 and 400 million by 1980 must then be regarded as practically certain. In the longer run, population trends may deviate increasingly from those projected, but it is probable that by the end of the century South-East Asia will contain between 400 and 600 million inhabitants, with the prospect of further increases in the next.
Populations of the order of 400 or 600 million are at this time contained in two neighbouring regions of comparable land area: the Chinese mainland, and the Indo-Pakistanian subcontinent. ${ }^{11}$ Though various problems will result, there is no reason to think that a population of comparable size cannot be supported in South-East Asia. Nevertheless, the long-run prospect gives occasion for much serious thought. In particular, consideration must be given to the facts that (1) very large numbers will be attained within a very short time, (2) even larger numbers will ultimately result unless continued population growth is terminated rather abruptly, and (3) the balance of inter-regional relationships will be profoundly altered when South-East Asia, hitherto a region of comparatively abundant resources, is no less densely settled than the neighbouring population giants, China and India, are now. If planning for SouthEast Asia's future is not to be confined to the immediate short range, there is a certain urgency in making the best possible use of its resources at a time when they are still relatively bountiful.

4. Economic factors

Whether South-East Asia's role in the world will continue to increase depends upon factors other than population alone.
The dominant feature of the economic situation in countries of South-East Asia is the low material plane of living. Great efforts are being deployed to raise the level of living through systematic action in the countries themselves, and with the aid of international assistance. The aim which inspires these efforts is clear.
The means of attaining such an objective are also well known. To raise the level of living, it is necessary

[^72]to cultivate more land, to increase yields, to raise the productivity of labour, to increase foreign trade and improve its terms, to promote industrialization of a suitable type, and to bring about, directly or incidentally, a geographic re-distribution of the population.
Nor is there anything novel about the methods of effective implementation. Generally speaking, the same types of methods are pertinent in South-East Asia as those which have facilitated a rise in living levels for increasing populations in other parts of the world. These methods have already been introduced in South-East Asia, with conspicuous material results such as those noted in Section V of this report. So far, however, these results have not produced any sizeable improvement in average living levels for a regional population which has doubled within the past half-century.

As also indicated in Section V, these methods have not yet tapped all the available resources. There are still unused lands. The yields of cultivated lands are mediocre in comparison with some technologically more advanced countries. Implements are few, the productivity of labour is low, and raw materials, exported in large quantity, are still scarcely utilized in local industry. ${ }^{12}$ Foreign trade is not conducted efficiently with a view to securing the needed productive investments. Great possibilities for economically useful migration subsist. ${ }^{13}$
The methods sought to implement a rise in South-East Asian levels of living, therefore, are not essentially new, at least so far as the strictly economic aspect is concerned. But past efforts in this direction have scarcely sufficed to keep pace with the increase of populations. In a sense, therefore, population growth has tended to make unattainable the objective of raising material standards. More intensive and better coordinated efforts in the future may succeed in bringing about an acceleration of productivity increments sufficient for a rise in levels of living, though population itself will increase more rapidly than heretofore. The question is appropriate whether, in view of accelerated population growth, the nature of the methods employed must not also be re-examined.

So far, the economic methods have not radically altered the social framework within which they were being employed. For a period of time, and within

[^73]certain limits, this is possible. But nothing can grow indefinitely without an eventual change in its basic functional structure. Population growth itself introduces a radical change into the existing social framework, to which other commensurate changes will eventually have to respond. At the same time it provides an opportunity for structural changes because a growing and youthful population is more flexible than one that is stagnant and has a larger proportion of older persons.

With prevailing demographic conditions, the size of the labour force will be augmented some 3 or 4 per cent each year by new workers seeking their first remunerative employment. To find adequate employment is an economic problem, but more important still is the problem of allocating this young labour force among occupations and activities whose expansion will determine the changing structure of the growing economy of the future. Adequately trained, these young persons can be directed into professions other than those exercised by their fathers, and a skilled industrial labour force will eventually be created. Perhaps the key problem of SouthEast Asia's economic future lies precisely in the training and direction which can be given to this young and growing segment of workers. For, as has lately been pointed out, that country is under-developed which is under-stocked with personnel of suitable technological qualifications. ${ }^{14}$ And this is not an economic, but an eminently social, problem.

5. The basically social nature of the problem

To settle new lands is a complex undertaking with profound social repercussions. To increase yields-at first thought a mere question of technique-is a social problem, likely to run into opposition with routine, customs and traditions. Thus, from a technical point of view, one may recommend the planting of rice in accordance with Japanese methods, which are of demonstrated efficiency, and by which yields can be doubled; and yet these methods cannot easily be transferred to a foreign clime, where the customary way of living differs from that of the Japanese peasants. Social change is even more radical because workers move from a rural to an urban environment, submit to the discipline of the factory rather than that of a paternalistic workshop, and have to provide for the housing and education of their families in surroundings to which they are not yet accustomed. Innovation and initiative of an untried kind are likewise required if foreign trade is to be transacted on favourable terms.
In short, feasible technological progress depends to a large extent on the possibilities of effecting those social changes without which no new method can be introduced. If the system of cultural values and norms which is the foundation of every society suffers injury from the use of new techniques, there is the severe risk that the benefit of technological progress can be cancelled out by the ensuing moral and social disintegration.

[^74] : -

\qquad -

Paradoxical as it may seem, it is the lack of people that inhibits economic and social development. When the countries of South-East Asia have enough people capable of directing and carrying out the required economic and social changes, the budgetary and financial methods to implement the change will inevitably be found.
A large potential for economic development still waits to be used to the full. But soon, with the
further increase in population, this potential will be greatly depleted. The best possible use, therefore, must be made of those years in the nearest future when population growth can still be turned to good advantage. The task faced by the countries of SouthEast Asia is immense. It presents a challenge to the enthusiasm of the young |generation which, in that part of the world, comprises nearly one-half of the total population.

ANNEXES

Annex I

SYNOPTIC TABLES ON DATA, METHODS AND ESTIMATES USED IN THE PROJECTION OF THE POPULATIONS OF SOUTH-EAST ASIAN COUNTRIES *

Table I. Data used in the projections

Country	Date of census results used	Use of vital statistics data in the projections	Other data used
British Borneo			
Brunei	1931, 1947	Available data too limited for use	-
North Borneo	1931, 1951		
Sarawak	1931, 1947		
Burma	$\begin{aligned} & \text { 1921, 1931, } \\ & 1941,{ }^{a} 1953-54 \end{aligned}$	Available data too limited for use	-
Cambodia	-	Data not available	1921 official estimate by sex and age; estimates of total population, 1937, 1948, 1955
Ceylon	1946, 1953	Official data, adjusted for incomplete birth and death registration	Post-enumeration survey, 1953, verifying under-registration of births and deaths
China (Taiwan)	-	Official data, with adjustment for deaths at ages 0-4	Data on population by sex and age according to continuous population registers
Indonesia	$1930{ }^{\text {c }}$	Selected data for areas with presumably more accurate registration	1954 voting registration distinguishing population aged over and under 18 years
Laos	-	Data not available	Official estimates for 1937, 1946 and 1955
Malaya	1947, $1957{ }^{\text {a }}$	Official data, adjusted for incomplete birth and death registration	Statistics on international migration
Philippines	$\begin{aligned} & 1905,1918 \\ & 1939,1948 \end{aligned}$	Official data incomplete; age distribution of deaths used as gauge to estimate recent mortality trends	1956 Sample Surveys of household data on sex-age composition and on children born to married women
Portuguese Timor		Available data too limited for use	-
Singapore	1947, $1957{ }^{\text {a }}$	Official data, adjusted for incomplete birth and death registration	Statistics on international migration
Thailand	1937, 1947	Official data incomplete; age distribution of deaths used as gauge to estimate recent mortality trends	-
Viet-Nam .	-	Sample data for early periods	Recent official estimates

* A more detailed account of methods used for estimating population trends in South-East Asian countries will be presented in a forthcoming publication dealing with future population estimates for this and other regions of Asia, now being prepared.
${ }^{4}$ Data on total population only.
${ }^{6}$ Sample data secured from censuses conducted in parts of the country.
${ }^{6}$ Data distinguishing children " not yet able to walk", other children, and adults.

Table. II. Methods used to establish basic estimates of population by sex and age groups, FERTILITY AND MORTALITY ${ }^{a}$
Country
British Borneo
Indigenous population

[^75]$$
-100-
$$

Table III. Vital indices implied in the conservative projection ${ }^{a}$

Country	Expectation of life at birth (in years) Both sexes		Infant deaths per 1000 live births per year ${ }^{\circ}$		Sex-age ad justed birth rate per 1000 per year ${ }^{d}$ (assumed constant)
	1950-1955	1975-1980	1950-1955	1975-1980	
British Borneo					
1. Indigenous population	27.5	40.0	261.5	185.7	48.3
2. Non-indigenous population	50.0	63.2	133.8	60.9	54.2
Burma . .	32.5	45.0	228.9	159.1	45.5
Cambodia.	39.1	52.1	185.7	121.2	48.5
Ceylon	52.7	65.6	133.8	60.9	46.6
China (Taiwan)	$59.2{ }^{\text {® }}$	68.8	$77.5{ }^{\circ}$	26.5	48.0
Indonesia . . .	37.5	50.0	199.2	133.8	42.8
Laos .	32.5	45.0	228.9	159.1	47.6
Malaya . .	$52.5{ }^{\text { }}$	63.2	$121.2{ }^{\circ}$	60.9	54.2
Philippines	42.5	55.0	172.2	108.8	53.0
Portuguese Timor	30.0	42.5	244.7	172.2	47.6
Singapore	$60.0{ }^{\circ}$	69.4	$77.5{ }^{\circ}$	26.5	56.2
Thailand	39.1	52.1	185.7	121.2	48.5
Viet-Nam .	$42.5{ }^{\circ}$	52.5	$172.2{ }^{\circ}$	121.2	40.7

${ }^{a}$ Crude birth and death rates are presented in Table 5, page 9.
${ }^{b}$ It was assumed that sex-age specific mortality rates conform to one model life table only, except in the cases of Ceylon, China (Taiwan), Singapore and Thailand. In these instances, sex-age specific rates were selected from two or more model life tables, according to available indications. The expectation of life is that of the model table where only the one was used; where rates were selected from two or more tables, expectation of life was determined by separate computation.
${ }^{6}$ Infant deaths per 1000 live births as implied in the mortality assumptions.
${ }^{d}$ The calculation of sex-age adjusted birth rates is explained in the United Nations publication Manual III. Methods for Population Projection by Sex and Age, op. cit.
${ }^{e}$ For 1955-1960.
Table IV. Vital indices implied in alternative projections

Country	Low-mortality projection ${ }^{\text {a }}$ Expectation of life at birth (in years) ${ }^{\circ}$ Both sexes		Declining fertility projection ${ }^{b}$ Sex-age adjusted birth rate per 1000 per year, ${ }^{\text {d }}$ 1975-1980 assuming	
	1950-1955	1975-1980	Moderate decline	Rapid decline
British Borneo				
1. Indigenous population	30.0	55.0	39.8	31.4
2. Non-indigenous population	50.0	65.8	44.7	35.2
Burma ${ }^{\text {e }}$.	41.6	65.6	37.5	29.6
Cambodia	41.6	65.6	40.0	31.5
Ceylon	38.4	30.3
China (Taiwan)	\cdots	...	39.6	31.2
Indonesia	40.0	65.8	35.3	27.8
Laos	35.0	60.4	39.3	30.9
Malaya	$52.5{ }^{\prime}$	65.8	44.7	35.2
Philippines . .	45.0	65.8	43.7	34.4
Portuguese Timor	32.5	57.6	39.3	30.9
Singapore			46.4	36.5
Thailand	41.6	65.6	40.0	31.5
Viet-Nam	$45.0{ }^{\prime}$	65.8	33.6	26.5

${ }^{4}$ No alternative mortality assumptions were made for Ceylon, China (Taiwan) and Singapore. Fertility as in conservative projection-
${ }^{6}$ Assuming fertility declines beginning in 1960. Mortality as in conservative projection.
${ }^{c}$ See Table III, footnote ${ }^{b}$.
${ }^{d}$ See Table III, footnote ${ }^{d}$.
${ }^{\prime}$ On the low-mortality assumption, a larger population was calculated already for 1950, the base date.
${ }^{\prime}$ For 1955-1960.

Annex II

DETAILED RESULTS OF CONSERVATIVE POPULATION PROJECTIONS FOR COUNTRIES OF SOUTH-EAST ASIA

EXPLANATORY NOTE

Presented here are the results of population projections made with conservative assumptions, as explained in Section I of the text. These results are recommended for general use unless good reasons appear for making different assumptions.

The tables are arranged, for each country, on two facing pages. On the first page are shown the results for both sexes combined, both in detail (by five-year age groups) and in summary form (by fifteen-year age groups); the latter data are also expressed as percentages of total population at each of the successive dates. On the second page the detailed results are shown separately for either sex.

For convenience, and irrespective of their presumable accuracy, all absolute figures shown have been rounded to the nearest thousand. The sums are obtained by addition of the
rounded detailed figures though, in some instances, a further error is thereby introduced. It was felt, however, that confusion is best avoided by rounded sums which are fully consistent with every detailed rounded figure shown. The rounded figures, and their sums, have also been used in the computation of percentages, but these percentages, because of rounding, do not invariably make the precise sum of 100 per cent when added together.
All estimates are affected by errors in the assessment of population size and structure at the base date, and of fertility and mortality levels in the base period, as well as by the extent to which the assumptions here made are relevant to future conditions. Though, in the absence of precise criteria, use of the conservative projections is recommended, some consideration should be given to the alternative projections tabulated in Annex III and Annex IV, and the special alternatives considered in Section IV of the text.

II. Conservative projections

1. British Bornbo (Brunei, North Borneo, and Sarawak)

| | | (a) Both sexes | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

- 104 -

II. Conservative projections (continued)

1. British borneo (Brunei, North Borneo, and Sarawak)

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

0-4	77	85	96	109	124	141	164
5-9	65	67	76	86	100	114	132
10-14	58	62	64	73	84	97	112
15-19	49	56	60	62	71	82	95
20-24	43	47	53	58	60	69	80
25-29	39	40	44	51	55	57	67
30-34	35	36	37	41	48	53	55
35-39	33	33	33	35	39	46	51
40-44	29	30	30	31	33	37	43
45-49	23	26	27	27	28	30	34
50-54	18	20	23	24	24	25	28
55-59	13	15	17	19	21	22	23
60-64	9	10	12	14	16	18	18
65-69	6	7	7	9	11	13	14
70-74	3	4	4	5	7	8	10
75-79	1	2	2	3	3	4	5
80-84	0	1	1	1	1	1	2
85 and over	0	0	0	0	0	0	1
All ages	501	541	586	648	725	817	$\underline{934}$

Females

II. Conservative projections

2. Burma

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

2. Burma

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Malbs							
0-4	1448	1581	1735	1908	2108	2361	2680
5-9	1160	1264	1402	1561	1736	1939	2193
10-14	1055	1115	1220	1359	1518	1693	1897
15-19	971	1016	1077	1184	1322	1481	1657
20-24	863	921	968	1031	1138	1276	1434
25-29	747	810	869	918	983	1089	1227
30-34	660	696	760	820	872	938	1045
35-39	530	609	647	712	774	828	896
40-44	504	481	558	599	665	728	784
45-49	450	446	432	507	550	616	681
50-54	365	387	390	382	454	498	564
55-59	249	301	325	333	331	399	442
60-64	179	194	240	264	275	278	339
65-69	109	128	143	180	202	214	220
70-74	67	69	83	95	123	141	152
75-79	32	35	37	46	55	72	85
80-84	13	13	14	16	21	25	34
85 and over	2	3	3	4	5	7	
All ages	9404	10069	10903	11919	13132	14583	16339
Females							
0-4	1415	1547	1694	1859	2054	2301	2611
5-9	1132	1236	1373	1524	1692	1891	2140
10-14	1024	1084	1189	1327	1479	1649	1848
15-19	937	982	1044	1150	1288	1440	1610
20-24	828	885	932	996	1102	1240	1393
25-29	714	772	831	880	946	1,053	1191
30-34	623	660	720	780	832	900	1009
35-39	532	572	612	673	735	790	860
40-44	495	484	527	568	630	694	751
45-49	402	446	441	485	528	591	655
50-54	322	355	399	399	443	487	550
55-59	230	276	308	351	356	399	443
60-64	178	187	228	259	300	308	350
65-59	118	134	144	179	206	243	253
70-74	77	79	92	100	128	151	181
75-79	38	43	45	54	60	79	96
80-84	15	16	18	20	25	29	40
85 and over	3	4	5	6	7	7	12
All ages	9083	9762	10602	11610	12811	14254	15993

II. Conservative projections (continued)

3. Cambodia

| | | (a) Both sexes | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Detailed age groups (in thousands)

Broad age groups (in thousands)

0-14	1666	1872	2176	2510	2880	3305	3841
15-29	1071	1220	1339	1486	1691	1989	2320
30-44	637	689	780	919	1070	1197	1345
45-59	355	403	453	497	555	642	778
60-74	133	151	176	208	246	288	325
75 and over	23	25	28	32	38	49	63
All ages	3885	4360	4952	5652	6480	7470	8672

Per cent of total population

II. Conservative projections (continued)
3. Cambodia

	(b) Detailed age groups, by sex (in thousands)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	345	387	447	508	575	662	780
5-9	261	314	356	415	476	543	631
10-14	244	254	306	348	407	468	535
15-19	217	238	248	299	341	400	461
20-24	175	208	229	240	291	332	391
25-29	138	165	199	221	231	282	323
30-34	118	129	156	191	213	224	273
35-39	108	110	121	147	183	205	217
40-44	93	99	102	113	138	176	197
45-49	75	83	90	93	105	129	167
50-54 .	58	65	74	81	85	96	119
55-59 .	43	49	56	64	71	75	86
60-64	31	34	39	46	53	60	64
65-69	21	23	26	30	36	42	48
70-74	13	14	15	17	21	26	31
75-79	6	7	8	9	10	13	16
80-84	2	2	3	3	4	5	6
85 and over	1	1	1	1	1	1	2
All ages	1949	2182	2476	2826	3241	3739	4347
Females							
0-4	320	377	436	495	560	645	758
5-9	257	291	347	405	465	530	615
10-14	239	249	284	339	397	457	522
15-19	215	231	243	277	332	390	449
20-24	181	206	223	235	269	324	381
25-29	145	172	197	214	227	261	315
30-34	121	137	163	188	206	219	253
35-39	107	114	130	156	181	199	213
40-44	90	100	108	124	149	174	192
45-49	75	84	94	102	118	143	167
50-54	60	69	77	87	96	111	136
55-59	44	53	62	70	80	88	103
60-64	32	38	46	54	62	72	80
65-69	22	26	31	38	45	53	61
70-74 . . .	14	16	19	23	29	35	41
75-79	8	9	10	12	15	19	24
80-84	4	4	4	5	6	8	11
85 and over	2	2	2	2	2	3	4
All ages	1936	2178	2476	2826	3239	3731	4325

II. Conservative projections (continued)

4. Ceylon

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)
4. Ceylon

	(b) Detailed age groups, by sex (in thousands)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	645	729	825	947	1126	1364	1645
5-9	492	609	694	790	913	1093	1332
10-14	404	485	602	687	783	906	1086
15-19	385	400	481	597	682	780	903
20-24	359	380	395	477	593	679	777
25-29	321	353	375	391	473	590	676
30-34	285	315	348	370	387	469	586
35-39	250	279	309	343	366	383	465
40-44	221	243	272	302	336	360	378
45-49	185	213	235	263	294	328	352
50-54	142	176	203	225	254	284	318
55-59	107	132	164	191	213	241	271
60-64	79	96	119	150	175	196	222
65-69	55	67	82	103	130	153	173
70-74	36	42	52	65	82	105	124
75-79	21	24	29	36	46	58	75
80-84	10	11	13	16	20	26	34
85 and over	5	5	5	6	8	10	13
All ages	4002	4559	5203	5959	6881	8025	9430
Fbmalbs							
0-4	625	710	802	920	1091	1318	
5-9	473	592	577	771	890	1062	1291
10-14	390	465	583	669	762	882	1055
15-19	353	385	461	579	665	759	879
20-24	315	347	379	454	572	659	754
25-29	275	305	338	370	446	563	650
30-34	237	266	297	329	362	438	555
35-39	204	229	258	289	322	356	431
40-44	173	196	221	250	282	316	349
45-49	143	167	190	215	244	276	309
50-54	113	136	160	183	208	237	268
55-59	86	106	128	152	174	199	228
60-64	62	78	97	119	141	163	187
65-69	43	53	67	85	105	126	146
70-74	29	33	41	54	68	85	104
75-79	15	19	23	29	38	49	63
80-84	6	8	11	13	17	23	30
85 and over	3	3	4	5	6	8	11
All ages	3545	4098	4737	5486	6393	7518	8897

II. Conservative projections (continued)

5. China (Taiwan)

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)

5. China (Taiwan)

| | | | | | | | (b) Detailed age groups, by sex (in thousands) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

II. Conservative projections (continued)

6. Indonesia

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)

6. Indonesia

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

II. Conservative projections (continued)
7. Laos

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)
7. Laos

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Males

Females

0-4				105	116	129	143	161	183	209
5-9	. . .	-	84	93	104	116	131	149	171
10-14	75	81	89	100	113	128	146
15-19	-••	- • •	. \cdot	.	. \cdot		67	72	78	87	98	110	125
20-24	59	63	68	74	83	94	107
25-29	- .	.	51	55	59	65	71	80	91
30-34	- • •	- • •	.	. .	-	.	44	47	51	56	61	68	77
35-39	37	40	44	48	53	59	65
40-44	- •	-	31	34	37	41	46	50	56
45-49	- .	- \cdot	. .	.	26	28	31	35	39	43	48
50-54	- .	-	.	21	23	26	29	32	36	40
55-59	- • -	-••	-	.	17	18	20	23	26	29	33
60-64	-••	- \cdot			13	14	15	17	20	22	25
65-69	-		9	9	11	12	14	16	18
70-74	-••	- • .	. .	- -	- \cdot	.	5	6	6	7	9	10	12
75-79	3	3	3	4	5	5	7
80-84	. .	- • -		1	1	1	2	2	2	3
85 and	over	- • -	. .	- •	- -		0	0	0	0	1	1	1
	1 ages			648	703	772	859	965	1085	1234

- 117 -

> II. Conservative projections (continued)

8. Malaya

| | | (a) Both sexes | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Detailed age groups, by sex (in thousands)

0-4	875	1137	1266	1507	1816	2248	2787
5-9	690	824	1083	1215	1455	1765	2198
10-14	635	671	812	1069	1202	1443	1752
15-19	497	617	661	802	1057	1190	1431
20-24	383	468	603	648	789	1042	1176
25-29	342	349	456	588	635	774	1028
30-34	328	311	340	445	576	623	763
35-39	317	305	302	330	435	565	613
40-44	302	296	294	293	322	424	553
45-49	251	283	284	282	282	311	413
50-54	199	232	267	269	269	270	300
55-59	138	181	213	247	252	253	255
60-64	98	121	161	191	223	228	232
65-69	69	81	101	136	164	193	200
70-74	38	54	62	78	107	130	156
75-79	25	26	35	42	54	74	92
80-84	12	17	14	19	23	31	44
85 and over	12	17	11	8	10	11	15
All ages	5211	5990	6965	8169	9671	11575	14008

Broad age groups (in thousands)

Per cent of total population

- 118 -
II. Conservative projections (continued)

8. Malaya

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

II. Conservative projections (continued)

9. Philippines

	(a) Both sexes								
	1950	1955	1960	1965	1970	1975	1980		

Detailed age groups (in thousands)

Broad age groups (in thousands)

0-14	9134
15-29	5151
30-44	3221
45-59	1630
60-74	868
75 and over	146
All ages	20150

10493
6028
3527
1908
900
168
23024

12260
7025
3907
2287
927
199
26605

14278
8252
4545
2649
1032
$\quad 233$
30989

16860
9596
5395
2958
1261
$\quad 250$
36320

19967	23806
11332	13332
6367	7570
3340	3958
1554	1840
272	
	334
42832	50840

Per cent of total population

0-14	45.3	45.6	46.1	46.1	46.4	46.6	46.8
15-29	25.6	26.2	26.4	26.6	26.4	26.5	26.2
30-44	16.0	15.3	14.7	14.7	14.9	14.9	14.9
45-59	8.1	8.3	8.6	8.5	8.1	7.8	7.8
60-74	4.3	3.9	3.5	3.3	3.5	3.6	3.6
75 and over	0.7	0.7	0.7	0.8	0.7	0.6	0.7
All ages	100.0	100.0	100.0	100.0	100.0	100.0	100.0

	(b) Detailed age groups, by sex (in thousands)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	1977	2132	2507	2938	3453	4092	4893
5-9	1478	1819	1980	2349	2775	3286	3922
10-14 . . .	1225	1442	1780	1943	2310	2735	3245
15-19	1018	1195	1411	1745	1909	2275	2699
20-24	807	982	1157	1371	1700	1865	2229
25-29	682	773	945	1117	1328	1653	1820
30-34	617	651	741	910	1081	1290	1612
35-39	546	586	622	712	878	1047	1254
40-44	453	514	555	593	682	845	1012
45-49	353	419	480	522	561	649	809
50-54	274	320	384	443	485	525	612
55-59	224	241	284	344	400	443	482
60-64	194	188	204	244	299	351	392
65-69 .	143	151	149	164	199	246	293
70-74	86	99	108	108	121	149	187
75-79	44	51	60	67	68	78	98
80-84	18	20	24	30	34	35	42
85 and over	5	6	7	9	12	14	16
All ages .	10144	11589	13398	15609	18295	21578	25617
Females							
$0-4$ $5-9$	1799	2078	2442	2862	3362	3980	4756
5-9	1401	1657	1932	2292	2708	3206	3824
10-14	1254	1365	1619	1894	2252	2668	3166
15-19	1079	1221	1333	1586	1859	2217	2632
20-24.	856	1039	1181	1294	1545	1818	2175
25-29	709	818	998	1139	1255	1504	1777
30-34	621	675	783	961	1102	1219	1467
35-39.	542	589	645	752	928	1069	1187
40-44	442	512	561	617	724	897	1038
45-49	322	414	483	533	590	695	866
50-54.	239	298	385	453	503	560	664
55-59 . . .	218	216	271	354	419	468	525
60-64.	202	189	189	240	317	378	426
65-69	149	164	155	158	203	271	327
70-74	94	109	122	118	122	159	215
75-79	50	58	69	79	78	83	110
80-84	22	25	29	36	43	43	47
85 and over	7	8	10	12	15	19	21
All ages . .	10006	11435	13207	15380	18025	21254	25223

II. Conservative projections (continued)

10. Portuguese timor

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)

10. Portuguese timor

| | | | | | | | (b) Detailed age groups, by sex (in thousands) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Females

II. Conservative projections (continued)

11. Singapore

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)
11. Singapore

	(b) Detailed age groups, by sex (in thousands)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	90	131	148	171	206	265	344
5-9	62	89	127	145	168	203	263
10-14	58	63	88	127	144	167	203
1519	53	61	63	88	126	144	167
20-24	50	59	60	63	87	126	143
25-29	49	58	59	60	62	87	125
30-34	47	55	57	58	59	62	86
35-39	45	50	54	56	57	58	61
40-44	41	46	49	53	55	56	57
45-49	32	40	44	47	51	53	54
50-54	23	30	38	42	44	49	51
55-59	15	21	28	34	38	41	45
60-64	9	13	18	24	30	34	37
65-69	5	8	11	15	20	25	29
70-74	2	4	5	8	11	15	20
75-79	1	1	2	3	5	7	10
80-84	0	0	1	1	2	3	4
85 and over	0	0	0	0	0	1	1
All ages .	582	729	852	995	1165	1396	1700
Females							
0-4	85	126	143	165	198	255	330
5-9.	59	84	122	140	162	196	253
10-14	54	60	84	122	140	162	196
15-19	46	56	60	84	122	140	162
20-24	39	48	55	59	83	121	139
25-29	35	42	48	55	59	83	121
30-34	32	36	41	47	54	59	82
35-39	31	33	36	40	47	54	58
40-44	28	31	32	35	40	46	53
45-49 .	22	27		31	34	39	
50-54	16	21	26	29	30	33	38
55-59	12	15	20	25	28	29	32
60-64	9	11	14	18	23	26	27
65-69	6	8	10	12	16	21	23
70-74	3	5	6	8	10	14	18
75-79	2	2	4	5	6	8	11
80-84	1	1	1	2	3	4	5
85 and over	0	1	1	1	1	2	2
All ages . . .	480	607	733	878	$\overline{1056}$	1292	1595

II. Conservative projections (continued)

12. Thailand

	(a) Both sexes						
	1950	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)							
0-4	3187	3666	4233	4813	5446	6272	7377
5-9	2484	2901	3372	3934	4514	5149	5976
10-14	2318	2413	2828	3297	3857	4438	5075
15-19	2069	2251	2352	2765	3231	3790	4368
20-24	1707	1986	2170	2276	2684	3149	3704
25-29	1357	1616	1899	2085	2197	2601	3064
30-34	1148	1278	1532	1820	2009	2125	2527
35-39	1031	1076	1205	1455	1747	1938	2060
40-44	877	955	1006	1137	1381	1678	1870
45-49	719	801	882	937	1067	1305	1605
50-54	563	643	724	806	865	993	1222
55-59	417	488	565	644	723	784	909
60-64	303	344	410	481	555	632	692
65-59	206	232	269	327	389	456	526
70-74	129	141	162	192	239	290	345
75-79	67	74	83	99	120	153	190
80-84	30	30	34	40	49	61	81
85 and over	17	12	11	12	15	20	26
All ages	18629	20907	23737	27120	31088	35834	41617
Broad age groups (in thousands)							
0-14	7989	8980	10433	12044	13817	15859	18428
15-29	5133	5853	6421	7126	8112	9540	11136
30-44	3056	3309	3743	4412	5137	5741	6457
45-59	1699	1932	2171	2387	2655	3082	3736
60-74	638	717	841	1000	1183	1378	1563
75 and over	114	116	128	151	184	234	297
All ages	18629	20907	23737	27120	31088	35834	41617
Per cent of total population							
0-14	42.9	43.0	44.0	44.4	44.4	44.3	44.3
15-29	27.6	28.0	27.1	26.3	26.1	26.6	26.8
30-44	16.4	15.8	15.8	16.3	16.5	16.0	15.5
45-59	9.1	9.2	9.1	8.8	8.5	8.6	9.0
60-74	3.4	3.4	3.5	3.7	3.8	3.8	3.8
75 and over	0.6	0.6	0.5	0.6	0.6	0.7	0.7
All ages	100.0	100.0	100.0	100.1	99.9	100.0	100.1

II. Conservative projections (continued)
12. Thailand

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Males

0-4		1653	1857	2144	2438	2759	3178	3740
5-9		1251	1504	1706	1991	2285	2606	3025
10-14	-	1173	1217	1467	1669	1953	2247	2569
15-19	- •	- .	-					1039	1141	1187	1436	1637	1920	2212
30-24		840	999	1101	1150	1394	1595	1876
25-29	- .	.	.	-	661	792	956	1058	1110	1351	1551
30-34	- •	- •	-	.	.	.		566	620	748	917	1020	1073	1312
35-39 -	.	-		520	527	581	706	880	983	1040
40-44	-	.	.	-	444	476	488	543	664	843	947
45-49	-		359	399	433	448	503	620	803
50-54		277	314	353	388	406	460	572
55-59	-••	. . .	-	-	.	.	-	204	233	268	306	340	360	413
60-64		149	163	189	221	256	289	309
65-69	- -	.	-		100	110	122	145	172	203	232
70-74	-	. \cdot	.	.	.	61	65	73	83	101	123	147
75-79		29	33	36	42	49	61	76
80-84		12	12	14	16	19	23	30
85 and	over	- .	.	- •	.	-		6	4	4	4	5	7	9
	ll ages		9344	10466	11870	13561	15553	17942	20863

Females

II. Conservative projections (continued)
13. Viet-Nam

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

II. Conservative projections (continued)

13. Viet-Nam

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

DETAILED RESULTS OF POPULATION PROJECTIONS

 IN WHICH LOW AND RAPIDLY DECLINING MORTALITY IS ASSUMED
EXPLANATORY NOTE

The projections presented here reflect a mortality trend suggested by recent observations which, however, are still unreliable as has been noted in Section II of the text. When significance is given to these observations and their possible implications for the future, the low-mortality projections provide a suitable alternative to the conservative projections tabulated in Annex II.
There seemed to be no reasons for assuming alternative mortality trends for Ceylon, China (Taiwan) and Singapore: even on the conservative projections, current and future
mortality levels are relatively quite low in their instances
In the case of Burma, the assumption of low mortality is inconsistent with the 1950 estimate of total population used for the conservative projection. A larger 1950 estimate had, therefore, to be used. The two projections for Burma are not comparable, but a special alternative is discussed in Section IV of the text.
For other countries and areas of South-East Asia, the projections based on an assumption of low mortality are comparable with those made on the conservative assumptions. The two sets of projections are, therefore, presented in the same form.

III. LOW-MORTALITY PROJECTIONS

1. British Borneo (Brunei, North Borneo, and Sarawak)

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

0-14	40.8	40.9	41.5	42.9	44.0	44.4	45.0
15-29	26.5	26.5	26.5	25.7	25.1	25.1	25.5
30-44	18.5	17.8	16.8	16.1	15.9	15.7	14.9
45-59	10.1	10.4	10.5	10.4	9.9	9.3	8.9
60-74	3.6	3.8	4.0	4.2	4.5	4.7	4.6
75 and over .	0.5	0.6	0.5	0.6	0.6	0.8	1.0
All ages	100.0	100.0	99.9	99.9	100.1	100.0	99.9

III. Low-mortality projections (continued)

1. British Borneo (Brunei, North Borneo, and Sarawak)

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

III. Low-mortality projections (continued)

| | (a) Both sexes | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Detailed age groups (rounded to nearest thousand)

0-4				3118	3558	4128	4816	5651	6740	7982
5-9	-			2572	2869	3336	3932	4652	5525	6625
10-14	-		.	2279	2507	2814	3287	3891	4618	5493
15-19	-••	.	- .					2011	2221	2457	2770	3249	3860	4588
20-24			1709	1938	2158	2401	2724	3210	3822
25-29	1447	1627	1871	2099	2353	2685	3173
30-34	- . \cdot			1294	1372	1560	1818	2055	2318	2651
35-39	. .	- .	-	-	-			1055	1221	1310	1506	1776	2020	2285
40-44	- • -	- .	- .	- .	.	-	.	1020	988	1159	1257	1459	1739	1985
45-49	-			884	942	927	1101	1208	1413	1697
50-54	- .	. .	-	. .	.			740	799	869	869	1044	1156	1360
55-59	- .	- .	-	- .	.		-	512	648	716	795	807	981	1094
60-64	-••			396	430	559	631	715	735	902
65-69	-	-				250	309	347	463	537	621	647
70-74	- .	- •	-	-	-		-	165	176	225	262	360	430	505
75-79				82	97	109	147	178	254	309
80-84			35	37	48	58	82	104	151
85 and	over	- .	-	.	.			8	11	14	20	26	38	50
	1 ages	- •	-•	-•	-			19577	21750	24607	28232	32767	38447	45319

Broad age groups

Per cent of total population

III. Low-mortality projections (continued)

2. Burma

	(b) Detailed age groups, by sex (rounded to nearest thousand)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	1579	1802	2091	2441	2869	3431	4068
5-9	1301	1452	1688	1990	2356	2802	3368
10-14	1153	1269	1425	1664	1969	2338	2784
15-19	1018	1125	1245	1403	1644	1952	2321
20-24	865	982	1093	1216	1379	1623	1931
25-29	730	820	948	1063	1191	1358	1602
30-34	659	689	783	921	1040	1172	1339
35-39	517	618	654	752	899	1021	1154
40-44	500	479	582	623	724	879	1002
45-49	457	454	444	547	594	696	855
50-54	387	405	412	410	512	562	665
55-59	263	330	355	369	374	474	526
60-64	195	214	277	305	324	333	428
65-69	118	146	167	222	252	273	286
70-74	74	79	102	121	166	194	215
75-79	36	41	46	63	78	112	134
80-84	15	15	19	23	33	43	63
85 and over	3	4	5	7	9	14	19
All ages	9870	10924	12336	14140	16413	19277	22760
Females							
0-4	1539	1756	2037	2375	2782	3309	3914
5-9	1217	1417	1648	1942	2296	2723	3257
10-14	1126	1238	1389	1623	1922	2280	2709
15-19.	993	1096	1212	1367	1605	1908	2267
20-24	844	956	1065	1185	1345	1587	1891
25-29	717	807	923	1036	1162	1327	1571
30-34	635	683	777	897	1015	1146	1312
35-39	538	603	656	754	877	999	1131
40-44	520	509	577	634	735	860	983
45-49	427	488	483	554	614	717	842
50-54	353	394	457	459	532	594	695
55-59	249	318	361	426	433	507	568
60-64	201	216	282	326	391	402	474
65-69	132	163	180	241	285	348	361
70-74	91	97	123	141	194	236	290
75-79	46	56	63	84	100	142	175
80-84	20	22	29	35	49	61	88
85 and over	5	7	9	13	17	24	31
All ages	9707	10826	12271	14092	16354	19170	22559

LOW-MORTALITY PROJECTIONS (continued)

3. Cambodia

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (rounded to nearest thousand)

0-4		665	782	926	1081	1260	1514	1828
5-9		518	611	733	882	1043	1232	1489
10-14	. . .	-		483	504	600	723	873	1035	1225
15-19	. . .	-			432	471	495	590	715	866	1028
20-24	- .	-		356	416	457	484	580	706	857
25-29	-	.		283	339	401	445	474	572	697
30-34	- .	- .	- • •	.	.		239	268	324	390	435	467	565
35-39		215	226	257	313	381	428	460
40-44	,	183	201	214	246	303	373	420
45-49 \cdot	.		150	169	189	204	236	294	364
50-54 \cdot	.		118	135	155	177	194	226	284
55-59	- -	-	-	87	103	122	142	164	182	214
60-64	- •	- .	-		63	73	89	107	128	150	168
65-59		43	49	59	74	91	110	131
70-74	. . .	-	- .	.		27	30	36	45	58	73	90
75-79	- •	.	- .	. \cdot			14	16	19	23	31	41	53
80-84			6	7	8	10	13	18	24
85 and	over	-	.		3	3	3	3	5	6	8
	ages	-	-••	-•	-		3885	4403	5087	5939	6984	8293	9905

Broad age groups

Per cent of total population

III. Low-mortality projections (continued)

3. Cambodia
(b) Detailed age groups, by sex (rounded to nearest thousand)

| 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Males

Females

0-4	. . .	- •	- .					320	386	457	533	620	743	896
5-9		257	294	362	436	515	607	732
10-14		239	250	289	357	431	511	604
15-19		215	232	245	284	353	428	508
20-24		181	207	225	240	279	349	424
25-29	-	.		145	173	199	220	235	276	345
30-34	-		121	138	166	194	215	232	273
35-39	-	-		107	115	133	161	190	212	229
40-44		90	101	110	128	157	186	208
45-49	-			75	85	96	106	124	153	182
50-54		60	69	79	91	102	120	149
55-59	-		44	54	64	74	86	97	115
60-64			32	38	48	57	68	80	91
65-69			22	26	32	41	50	60	71
70-74	-		14	16	20	25	33	41	50
75-79				8	9	11	13	18	24	31
80-84				4	4	5	6	8	11	15
85 and	over	-		2	2	2	2	3	4	5
	1 ages	. .	-		1936	2199	2543	2968	3487	4134	4928

III. Low-mortality projections (continued)
6. Indonesia

	(a) Both sexes						
	1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

III. Low-mortality projections (continued)

6. Indonesia

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Males

Females

> III. LOW-Mortality projections (continued)
7. Laos

	(a) Both sexes						
	1950	1955	1960	1965	1970	1975	1980
Detailed age groups (in thousands)							
0-4.	213	241	275	313	363	428	517
5-9.	170	189	220	255	296	349	416
10-14	151	164	184	215	251	293	346
15-19	136	146	160	180	211	247	290
20-24	120	128	140	154	175	207	244
25-29	104	112	122	134	150	170	204
30-34	90	98	106	118	130	146	168
3539	76	84	92	102	114	124	143
40-44	64	70	78	87	98	110	124
45-49	53	59	65	73	83	94	107
50-54	42	47	53	60	69	79	89
55-59	33	36	41	48	54	64	74
60-64	25	27	31	35	41	49	58
65-69	17	19	21	25	29	35	43
70-74	9	11	13	15	19	23	28
75-79	5	5	7	8	9	13	16
80-84 . .	2	2	2	3	4	5	7
85 and over	0	0	0	1	2	2	2
All ages	1310	1438	1610	1826	2098	2440	2876
Broad age groups (in thousands)							
0-14	534	594	679	783	910	1070	1279
15-29	360	386	422	468	536	624	738
30-44	230	252	276	307	342	382	435
45-59	128	142	159	181	206	237	270
60-74	51	57	65	75	89	107	129
75 and over	7	7	9	12	15	20	25
All ages	1310	1438	1610	1826	2098	2440	2876
Per cent of total population							
0-14	40.8	41.3	42.2	42.9	43.4	43.9	44.5
15-29.	27.5	26.8	26.2	25.6	25.5	25.6	25.7
30-44	17.6	17.5	17.1	16.8	16.3	15.7	15.1
45-59	9.8	9.9	9.9	9.9.	9.8	9.7	9.4
60-74	3.8	4.0	4.0	4.1	4.2	4.4	4.5
75 and over.	0.5	0.5	0.6	0.7	0.7	0.8	0.9
All ages	100.0	100.0	100.0	100.0	99.9	100.1	100.1

III. Low-mortality projections (continued)
7. Laos

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

0-4	108	122	139	159	184	217	263
5-9	86	96	111	129	150	177	211
10-14	76	83	93	109	127	149	175
15-19	69	74	81	91	107	125	147
20-24	61	65	71	78	89	105	123
25-29	53	57	62	68	76	86	103
30-34	46	50	54	60	66	74	85
35-39	39	43	47	52	58	64	72
50-44	33	36	40	44	50	56	63
45-49	27	30	33	37	42	48	54
40-54	21	24	27	30	35	40	45
55-59	16	18	20	24	27	32	37
60-64	12	13	15	17	20	24	29
65-69	8	9	10	12	14	17	21
70-74	4	5	6	7	9	11	13
75-79	2	2	3	4	4	6	7
80-84	1	1	1	1	2	2	3
85 and over	0	0	0	0	1	1	1
All ages	662	728	813	922	1061	1234	1452

Females

III. Low-mortality projections (continued)

8. Malaya

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (rounded to nearest thousand)

Broad age groups

Per cent of total population

III. LOW-MORTALITY PROJECTIONS (continued)
8. Malaya
(b) Detailed age groups, by sex (rounded to nearest thousand)

	(b) Detailed age groups, by sex (rounded to nearest thousand)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4.	445	578	654	783	949	1181	1472
5-9	351	419	554	631	761	927	1159
10-14	326	342	414	548	625	755	921
15-19	254	315	338	409	542	620	749
20-24	190	235	309	332	403	535	613
25-29	165	167	230	302	326	397	529
30-34	163	145	163	225	296	320	392
35-39	170	149	141	159	220	291	316
40-44	170	157	144	137	155	215	286
45-49	149	158	151	138	132	151	209
50-54	122	136	149	143	131	126	145
55-59	84	110	125	138	133	123	119
60-64	59	73	97	112	124	120	112
65-69	39	48	61	82	95	106	104
70-74	20	30	37	47	64	75	84
75-79	12	13	20	25	32	44	53
80-84	6	8	7	11	14	18	26
85 and over	6	9	5	4	5	6	9
All ages	2731	3092	3599	$\overline{4226}$	5007	6010	7298
Females							
0-4.	430	559	636	759	918	1139	1416
5-9	339	405	537	615	739	898	1121
10-14.	309	329	400	531	609	734	894
15-19	243	302	325	396	526	605	730
20-24	193	233	296	320	390	521	600
25-29	177	182	228	290	315	385	515
30-34	165	166	177	223	285	310	381
35-39	147	156	162	173	219	281	306
40-44	132	139	151	158	170	215	276
45-49	102	125	135	147	154	166	210
50-54	77	96	119	129	141	149	161
55-59	54	71	90	113	122	135	142
60-64	39	48	65	82	104	114	126
65-69	30	33	41	57	73	93	102
70-74	18	24	26	33	46	60	77
75-79	13	13	17	19	24	34	44
80-84 . .	6	9	7	10	11	15	21
85 and over	6	8	6	5	5	6	8
All ages . . .	2480	2898	3418	4060	4851	5860	7130

III. Low-mortality projections (continued)

9. Philippines

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

III. LOW-mortality projections (continued)

9. Philippines

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Malbs							
0-4	1977	2180	2624	3155	3843	4650	5695
5-9	1478	1836	2059	2515	3063	3753	4565
10-14	1225	1447	1806	2033	2492	3040	3729
15-19	1018	1198	1422	1782	2013	2471	3018
20-24	807	986	1167	1393	1755	1987	2444
25-29	682	776	955	1139	1368	1728	1962
30-34	617	654	751	931	1118	1346	1705
35-39	546	589	631	730	912	1098	1325
40-44	453	517	565	610	712	891	1077
45-49	353	423	490	541	589	690	867
50-54	274	323	393	461	514	563	662
55-59	224	243	292	361	429	481	530
60-64	194	190	211	259	324	388	438
65-69	143	154	155	176	220	278	335
70-74	86	101	113	118	137	173	221
75-79	44	52	64	75	80	95	121
80-84	18	21	26	34	42	45	55
85 and over	5	6	8	11	15	19	23
All ages	10144	11696	13732	16324	19626	23696	28772

Females

- 145 -

III. LOW-MORTALITY PROJECTIONS (continued)

10. Portuguese timor

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

0-14	179	195	219	251	292	340	401
15-29	121	129	141	155	173	199	234
30-44	79	83	92	101	112	126	142
45-59	43	47	53	60	67	77	88
60-74	17	19	21	25	29	34	41
75 and over	2	2	2	3	5	6	7
All ages	441	475	528	595	678	782	913
Per cent of total population							
0-14	40.6	41.1	415	42.2	43.1	43.5	43.9
15-29	27.4	27.2	26.7	26.1	25.5	25.4	25.6
30-44	17.9	17.5	17.4	17.0	16.5	16.1	15.6
45-59	9.8	9.9	10.0	10.1	9.9	9.8	9.6
60-74	3.9	4.0	4.0	4.2	4.3	4.3	4.5
75 and over	0.5	0.4	0.4	0.5	0.7	0.8	0.8
All ages	100.1	100.1	100.0	100.1	100.0	99.9	100.0

III. Low-mortality projections (continued)
10. Portuguese Timor

(b) Detailed age groups, by sex (in thousands)						
1950	1955	1960	1965	1970	1975	1980

Males

Females

III. LOW-mortality projections (continued)
12. Thailand

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

| | (b) Detailed age groups, by sex (in thousands) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1950 | 1955 | 1960 | 1965 | 1970 | 1975 | 1980 |

Males

Females

0-4 \cdot			1534	1853	2191	2555	2975	3566	4300
5-9	1233	1413	1738	2089	2470	2913	3510
10-14	1145	1201	1385	1713	2067	2453	2898
15-19	-	1030	1114	1176	1363	1693	2052	2439
20-24	-	867	992	1082	1150	1341	1675	2034
25-29	-	696	828	957	1053	1127	1323	1657
30-34	. .	- • .	. .	- •	-	.	582	662	798	930	1031	1111	1308
35-39	511	553	636	774	909	1015	1097
40-44	433	483	529	615	754	892	999
45-49	. . .	- . .	-•	- •	.	.	360	406	459	508	596	736	873
50-54	286	332	380	436	487	576	714
55-59	. . .	- • •	- .	- •	-	-	213	258	305	354	411	464	552
60-64	- •	- . . .	- .	.	-	.	154	184	229	275	325	382	434
65-69	106	125	154	196	241	289	343
70-74	. . .	- • •	-••	-	-	-	68	78	94	120	158	199	242
75-79	- • •	- • •	-•	- •	-	-	38	42	50	64	85	115	148
80-84		18	18	22	28	37	52	72
85 and	over \cdot	-	-	.	11	8	8	10	13	18	26
	lages	- •	- •	.	-	9285	10550	12193	14233	16720	19831	23646

III. Low-mortality projections (continued)
13. Viet-Nam

(a) Both sexes						
1950	1955	1960	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	-				3180	2968	4916	5554	6046	6459	7431
5-9		3272	2820	2758	4648	5329	5876	6350
10-14	3057	3154	2758	2711	4590	5282	5841
15-19	. .	- .	- .	.				2748	2950	3082	2709	2675	4545	5247
20-24	-		2426	2589	2854	3003	2655	2637	4501
25-29	-	-		2120	2255	2488	2766	2933	2610	2607
30-34	- .	- •	- • •	.				1845	1952	2161	2407	2697	2878	2577
35-39	1595	1677	1864	2086	2342	2644	2838
40-44	-	-	.	1368	1426	1582	1789	2021	2287	2597
45-49	- .	- .	- • •	-				1158	1196	1339	1505	1720	1959	2232
50-54		960	984	1104	1255	1427	1646	1889
55-59	. . .	- . .	- .	-		-	-	772	787	885	1010	1165	1340	1562
60-64	. .	- .	- .	-				592	600	679	781	907	1062	1237
65-69				422	436	486	564	664	787	936
70-74	. . .	- • .	- .	-	-	-	-	268	282	318	366	440	531	643
75-79	- • •	- •	- .	-				142	149	176	208	249	309	385
80-84				57	60	73	92	114	144	186
85 and	over	. .	-	.	-	-	.	17	17	22	29	41	54	72
	ages	- - .	- •	.	-	-		25999	26302	29545	33483	38015	43050	49131

Broad age groups

Per cent of total population

	(b) Detailed age groups, by sex (in thousands)						
	1950	1955	1960	1965	1970	1975	1980
Males							
0-4	1607	1502	2490	2814	3066	3284	3787
5-9	1658	1425	1395	2352	2697	2976	3224
10-14	1550	1600	1394	1371	2323	2672	2957
15-19	1396	1499	1565	1370	1353	2300	2653
20-24.	1235	1305	1451	1525	1342	1333	2275
25-29.	1081	1137	1255	1406	1488	1318	1316
30-34	943	983	1090	1214	1370	1459	1300
35-39	816	841	939	1052	1180	1342	1437
40-44	697	709	797	899	1017	1150	1316
45-49	585	585	662	755	861	982	1119
50-54	479	472	535	616	711	819	942
55-59	380	369	419	484	566	661	770
60-64	286	275	313	364	428	508	602
65-69	200	201	218	255	303	364	439
70-74	124	130	143	160	194	236	290
75-79	64	67	79	91	106	132	166
$80-84$. . . .	25	26	32 9	40	48	$\begin{array}{r}59 \\ \\ \hline\end{array}$	76
85 and over	7	7	9	12	17	22	28
All ages	13133	13133	14786	16780	19070	21617	24697
Females							
0-4	1573	1466	2426	2740	2980	3175	3644
5-9	1614	1395	1363	2296	2632	2900	3126
10-14	1507	1554	1364	1340	2267	2610	2884
15-19	1352	1451	1517	1339	1322	2245	2594
20-24	1191	1284	1403	1478	1313	1304	2226
25-29	1039	1118	1233	1360	1445	1292	1291
30-34	902	969	1071	1193	1327	1419	1277
35-39.	779	836	925	1034	1162	1302	1401
40-44	671	717	785	890	1004	1137	1281
45-49	573	611	677	750	859	977	1113
50-54	481	512	569	639	716	827	947
55-59	392	418	466	526	599	679	792
60-64	306	325	366	417	479	554	635
65-69.	222	235	268	309	361	423	497
70-74	144	152	175	206	246	295	353
75-79	78	82	97	117	143	177	219
80-84	32	34	- 41	52	66	85	110
85 and over	10	10	13	17	24	32	44
All ages	12866	13169	14759	16703	18945	21433	24434

Annex IV

DETAILED RESULTS OF POPULATION PROJECTIONS IN WHICH A FUTURE DECLINE OF FERTILITY IS ASSUMED

EXPLANATORY NOTE

The projections presented in these tables are highly speculative, as explained in Section III of the text. The possibility of an eventual fertility decline is of interest where it is believed that such a trend may emerge as a concomitant of expected future economic and social changes in the area. But, since there is hardly an indication that such a trend has already begun in any part of South-East Asia, fertility decline is in no case assumed to begin before 1960.

If fertility decline begins in 1960, the figures for 1965 will be the first to be affected, because projections are made by five-year intervals of time. Up to 1960, the projections coincide with those made according to conservative assump-
tions, as tabulated in Annex II. Two rates of fertility decline, by 1 or by 2 per cent annually of the initial level, are assumed. The population estimates for years from 1965 to 1980 resulting from the two assumptions are presented in parallel columns on the same page, under the headings of moderate and rapid fertility decline respectively.

Because of their speculative nature, detailed results separately for each sex did not seem to present much interest and have, therefore, been omitted. This has made it possible to present results for any one country or area on one page only.

The possibility of extremely rapid fertility decline in Singapore is taken into account in a special projection, presented in Section IV.

IV. Declining-Fertility projections

1. British Borneo (Brunei, North Borneo, and Sarawak)

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	209	226	243	266	203	208	208	209
5-9	170	193	209	228	170	189	192	195
10-14	144	166	188	205	144	166	184	189
15-19	121	140	162	184	121	140	162	180
20-24	113	117	136	157	113	117	136	157
25-29	98	107	111	131	98	107	111	131
30-34.	80	93	103	107	80	93	103	107
35-39	67	75	89	98	67	75	89	98
40-44	59	63	71	83	59	63	71	83
45-49	51	54	58	66	51	54	58	66
50-54	44	46	49	54	44	46	49	54
55-59	35	39	42	45	35	39	42	45
60-64	25	29	34	35	25	29	34	35
65-69	17	20	24	27	17	20	24	27
70-74	10	12	14	18	10	12	14	18
75-79	5	6	7	9	5	6	7	9
80-84	2	2	2	4	2	2	2	4
85 and over	0	0	0	2	0	0	0	2
All ages	1250	1388	1542	1719	1244	1366	1486	1609

Broad age groups (in thousands)

0-14	523	585	640	699	517	563	584	593
15-29	332	364	409	472	332	364	409	468
30-44	206	231	263	288	206	231	263	288
45-59	130	139	149	165	130	139	149	165
60-74	52	61	72	80	52	61	72	80
75 and over	7	8	9	15	7	8	9	15
All ages	1250	1388	1542	1719	1244	1366	1486	1609

Per cent of total population

0-14	41.8	42.1	41.5	40.7	41.6	41.2	39.3	36.9
15-29	26.6	26.2	26.5	27.5	26.7	26.6	27.5	29.1
30-44	16.5	16.6	17.1	16.8	16.6	16.9	17.7	17.9
45-59	10.4	10.0	9.7	9.6	10.5	10.2	10.0	10.3
60-74	4.2	4.4	4.7	4.7	4.2	4.5	4.8	5.0
75 and over	0.6	0.6	0.6	0.9	0.6	0.6	0.6	0.9
All ages	100.1	99.9	100.1	100.2	100.2	100.0	99.9	100.1

IV. Declining-Fertility projections (continued)

2. Burma

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

0-14	9444	10190	10881	11620	9350	9793	9928	9871
15-29	6159	6779	7579	8431	6159	6779	7579	8350
30-44	4152	4508	4878	5345	4152	4508	4878	5345
45-59	2457	2662	2990	3335	2457	2662	2990	3335
60-74	1077	1234	1335	1495	1077	1234	1335	1495
75 and over	146	173	221	276	146	173	221	276
All ages	23435	25546	27884	30502	23341	25149	26931	28672

Per cent of total population

$$
-155 \quad-
$$

IV. Declining-fertility projections (continued)

3. Cambodia

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	978	1050	1143	1269	953	965	979	1000
5-9	820	917	992	1090	820	893	911	934
10-14	687	804	902	978	687	804	879	899
15-19	576	673	790	887	576	673	790	864
20-24	475	560	656	772	475	560	656	772
25-29	435	458	543	638	435	458	543	638
30-34	379	419	443	526	379	419	443	526
35-39	303	364	404	430	303	364	404	430
40-44	237	287	350	389	237	287	350	389
45-49	195	223	272	334	195	223	272	334
50-54	168	181	207	255	168	181	207	255
55-59	134	151	163	189	134	151	163	189
60-64	100	115	132	144	100	115	132	144
65-69	68	81	95	109	68	81	95	109
70-74	40	50	61	72	40	50	61	72
75-79	21	25	32	40	21	25	32	40
80-84	8	10	13	17	8	10	13	17
85 and over	3	3	4	6	3	3	4	6
All ages	5627	6371	7202	8145	5602	6262	6934	7618

Broad age groups (in thousands)

Per cent of total population

$0-14$	4	44.2	43.5	42.2	41.0

IV. DECLINING-FERTILITY PROJECTIONS (continued)

4. Ceylon

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	1820	2051	2347	2666	1773	1885	2012	2100
5-9	1561	1758	1993	2295	1561	1713	1831	1967
10-14	1356	1545	1743	1980	1356	1545	1698	1819
15-19	1176	1347	1539	1737	1176	1347	1539	1692
20-24	931	1165	1338	1531	931	1165	1338	1531
25-29	761	919	1153	1326	761	919	1153	1326
30-34	699	749	907	1141	699	749	907	1141
35-39	632	688	739	896	632	688	739	896
40-44	552	618	675	727	552	618	675	727
45-49	478	538	604	661	478	538	604	661
50-53	408	462	521	586	408	462	521	586
55-59	343	387	440	499	343	387 .	440	499
60-64	269	316	359	409	269	316	359	409
65-69	188	235	279	319	188	235	279	319
70-74	119	150	190	228	119	150	190	228
75-79	65	84	107	138	65	84	107	138
80-84	29	37	49	64	29	37	49	64
85 and over	11	14	18	24	11	14	18	24
All ages .	11398	13063	15001	17227	11351	12852	14459	16127

Broad age groups (in thousands)

Per cent of total population

IV. Declining-fertility projections (continued)

5. China (Taiwan)

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	2220	2427	2789	3286	2163	2231	2391	2589
5-9	1928	2182	2397	2766	1928	2126	2203	2371
10-14	1682	1919	2174	2390	1682	1919	2119	2196
15-19	1136	1675	1914	2169	1136	1675	1914	2114
20-24	949	1130	1669	1909	949	1130	1669	1909
25-29	897	943	1125	1664	897	943	1125	1664
30-34	754	888	936	1118	754	888	936	1118
35-39	670	743	878	927	670	743	878	927
40-44	566	656	730	865	566	656	730	865
45-49	448	548	638	712	448	548	638	712
50-54	399	428	526	615	399	428	526	615
55-59.	306	372	401	496	306	372	401	496
60-64	220	275	337	367	220	275	337	367
65-69	148	187	236	292	148	187	236	292
70-74 .	89	115	147	188	89	115	147	188
75-79	51	60	79	104	51	60	79	104
80-84	23	28	34	46	23	28	34	46
85 and over	9	10	13	17	9	10	13	17
All ages .	12495	14586	17023	19931	12438	14334	16376	18590

Broad age groups (in thousands)

Per cent of total population

IV. Declining-fertility projections (continued)
6. Indonesia

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	15506	15675	16411	17934	15109	14404	14066	14130
5-9	13503	14410	14698	15514	13503	14041	13506	13297
10-14	11771	13205	14130	14450	11771	13205	13768	13279
15-19	8357	11505	12940	13880	8357	11505	12940	13524
20-24	8035	8087	11172	12607	8035	8087	11172	12607
25-29	7953	7722	7804	10826	7953	7722	7804	10826
30-34	7093	7622	7438	7550	7093	7622	7438	7550
35-39	6145	6774	7319	7176	6145	6774	7319	7176
40-44	5251	5832	6468	7027	5251	5832	6468	7027
45-49	4413	4930	5514	6153	4413	4930	5514	6153
50-54	3623	4072	4585	5163	3623	4072	4585	5163
55-59	2878	3255	3693	4194	2878	3255	3693	4194
60-64	2179	2483	2840	3255	2179	2483	2840	3255
65-69	1532	1761	2035	2359	1532	1761	2035	2359
70-74	961	1117	1306	1535	961	1117	1306	1535
75-79	506	598	711	850	506	598	711	850
80-84	206	248	303	372	206	248	303	372
85 and over	61	76	98	125	61	76	98	125
All ages	99973	109372	119465	130970	99576	107732	115566	123422

Broad age groups (in thousands)

0-14	40780	43290	45239	47898	40383	41650	41340	40706
15-29	24345	27314	31916	37313	24345	27314	31916	36957
30-44	18489	20228	21225	21753	18489	20228	21225	21753
45-59	10914	12257	13792	15510	10914	12257	13792	15510
60-74	4672	5361	6181	7149	4672	5361	6181	7149
75 and over	773	922	1112	1347	773	922	1112	1347
All ages	99973	109372	119465	130970	99576	107732	115566	123422

Per cent of total population

0-14	40.8	39.6	37.9	36.6	40.6	38.7	35.8	33.0
15-29	24.4	25.0	26.7	28.5	24.4	25.4	27.6	29.9
30-44	18.5	18.5	17.8	16.6	18.6	18.8	18.4	17.6
45-49	10.9	11.2	11.5	11.8	11.0	11.4	11.9	12.6
60-74	4.7	4.9	5.2	5.5	4.7	5.0	5.3	5.8
75 and over	0.8	0.8	0.9	1.0	0.8	0.9	1.0	1.1
All ages .	100.1	100.0	100.0	100.0	100.1	100.2	100.0	100.0

IV. Declining-fertility projections (continued)

7. Laos

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

Broad age groups (in thousands)

Per cent of total population

IV. Declining-Fertility projections (continued)

8. Malaya

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	1469	1680	1967	2300	1431	1544	1686	1813
5-9	1215	1419	1633	1923	1215	1383	1501	1648
10-14	1069	1202	1407	1620	1069	1202	1371	1488
15-19	802	1057	1190	1395	802	1057	1190	1359
20-24	648	789	1042	1176	648	789	1042	1176
25-29	588	635	774	1028	588	635	774	1028
30-34	445	576	623	763	445	576	623	763
35-39	330	435	565	613	330	435	565	613
40-44	293	322	424	553	293	322	424	553
45-49	282	282	311	413	282	282	311	413
50-54	269	269	270	300	269	269	270	300
55-59	247	252	253	255	247	252	253	255
60-64	191	223	228	232	191	223	228	232
65-69	136	164	193	200	136	164	193	200
70-74	78	107	130	156	78	107	130	156
75-79	42	54	74	92	42	54	74	92
80-84	19	23	31	44	19	23	31	44
85 and over	8	10	11	15	8	10	11	15
All ages .	8131	9499	11126	13078	8093	9327	10677	12148

Broad age groups (in thousands)

0-14	3753	4301	5007	5843	3715	4129	4558	4949
15-29	2038	2481	3006	3599	2038	2481	3006	3563
30-44	1068	1333	1612	1929	1068	1333	1612	1929
45-59	798	803	834	968	798	803	834	968
60-74	405	494	551	588	405	494	551	588
75 and over	69	87	116	151	69	87	116	151
All ages .	8131	9499	11126	13078	8093	9327	10677	12148

Per cent of total population

IV. Declining-fertility projections (continued)

9. Philippines

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	5655	6304	7063	7960	5510	5793	6054	6271
5-9	4641	5346	6005	6778	4641	5209	5518	5810
10-14	3837	4562	5268	5930	3837	4562	5133	5449
15-19	3331	3768	4492	5198	3331	3768	4492	5065
20-24	2665	3245	3683	4404	2665	3245	3683	4404
25-29	2256	2583	3157	3597	2256	2583	3157	3597
30-34	1871	2183	2509	3079	1871	2183	2509	3079
35-39	1464	1806	2116	2441	1464	1806	2116	2441
40-44	1210	1406	1742	2050	1210	1406	1742	2050
45-49	1055	1151	1344	1675	1055	1151	1344	1675
50-54	896	988	1085	1276	896	988	1085	1276
55-59	698	819	911	1007	698	819	911	1007
60-64	484	616	729	818	484	616	729	818
65-69	332	402	517	620	323	402	517	620
70-74	226	243	308	402	226	243	308	402
75-79	146	146	161	208	146	146	161	208
80-84	66	77	78	89	66	77	78	89
85 and over	21	27	33	37	21	27	33	37
All ages	30844	35672	41201	47569	30699	35024	39570	44298

Broad age groups (in thousands)

Per cent of total population

0-14	45.8	45.4	44.5	43.4	45.6	44.4	42.2	39.6
15-29	26.8	26.9	27.5	27.7	26.9	27.4	28.6	29.5
30-44	14.7	15.1	15.5	15.9	14.8	15.4	16.1	17.1
45-59	8.6	8.3	8.1	8.3	8.6	8.4	8.4	8.9
60-74	3.3	3.5	3.8	3.9	3.4	3.6	3.9	4.2
75 and over	0.8	0.7	0.7	0.7	0.8	0.7	0.7	0.8
All ages	100.0	99.9	100.1	99.9	100.1	99.9	99.9	100.1

Detailed age groups (in thousands)

0-4	92	97	104	110	90	89	90	86
5-9	75	83	88	95	75	81	80	81
10-14	65	73	81	86	65	73	79	79
15-19	57	63	71	79	57	63	71	77
20-24	50	55	61	69	50	55	61	69
25-29	43	47	53	59	43	47	53	59
30-34	38	41	45	50	38	41	45	50
35-39	33	35	39	43	33	35	39	43
40-44	28	30	33	37	28	30	33	37
45-49	23	26	28	32	23	26	28	32
50-54	18	20	24	26	18	20	24	26
55-59	14	16	18	20	14	16	18	20
60-64	10	12	14	16	10	12	14	16
65-69	7	8	10	11	7	8	10	11
70-74	4	5	6	7	4	5	6	7
75-79	2	2	3	4	2	2	3	4
80-84	0	1	2	2	0	1	2	2
85 and over	0	0	0	0	0	0	0	0
All ages	559	614	680	746	557	604	656	699

Broad age groups (in thousands)

0-14	232	253	273	291	230	243	249	246
15-29	150	165	185	207	150	165	185	205
30-44	99	106	117	130	99	106	117	130
45-59	55	62	70	78	55	62	70	78
60-74	21	25	30	34	21	25	30	34
75 and over	2	3	5	6	2	,	5	6
All ages	559	614	680	746	557	604	656	699

Per cent of total population

0-14	41.5	41.2	40.1	39.0	41.3	40.2	38.0	35.2
15-29	26.8	26.9	27.2	27.7	26.9	27.3	28.2	29.3
30-44	17.7	17.3	17.2	17.4	17.8	17.5	17.8	18.6
45-49	9.8	10.1	10.3	10.5	9.9	10.3	10.7	11.2
60-74	3.8	4.1	4.4	4.6	3.8	4.1	4.6	4.9
75 and over	0.4	0.5	0.7	0.8	0.4	0.5	0.8	0.9
All ages	100.0	100.1	99.9	100.0	100.1	99.9	100.1	100.1

IV. Declining-FERTILITY projections (continued)

11. Singapore

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	328	374	455	556	320	344	390	438
5-9	285	322	369	451	285	314	339	386
10-14	249	284	321	369	249	284	313	339
15-19	172	248	284	321	172	248	284	313
20-24	122	170	247	282	122	170	247	282
25-29	115	121	170	246	115	121	170	246
30-34	105	113	121	168	105	113	121	168
35-39	96	104	112	119	96	104	112	119
40-44	88	95	102	110	88	95	102	110
45-49	78	85	92	99	78	85	92	99
50-54	71	74	82	89	71	74	82	89
55-59	59	66	70	77	59	66	70	77
60-64	42	53	60	64	42	53	60	64
65-69	27	36	46	52	27	36	46	52
70-74	16	21	29	38	16	21	29	38
75-79	8	11	15	21	8	11	15	21
80-84	3	5	7	9	3	5	7	9
85 and over	1	1	3	3	1	,	,	3
All ages	1865	2183	2585	3074	1857	2145	2482	2853

Broad age groups (in thousands)

0-14	862	980	1145	1376	854	942	1042	1163
15-29	409	539	701	849	409	539	701	841
30-44	289	312	335	397	289	312	335	397
45-59	208	225	244	265	208	225	244	265
60-74	85	110	135	154	85	110	135	154
75 and over	12	17	25	33	12	17	25	33
All ages	1865	2183	2585	3074	1857	2145	2482	2853

Per cent of total population

0-14	46.2	44.9	44.3	44.8	46.0	43.9	42.0	40.8
15-29	21.9	24.7	27.1	27.6	22.0	25.1	28.2	29.5
30-44	15.5	14.3	13.0	12.9	15.6	14.5	13.5	13.9
45-59	11.2	10.3	9.4	8.6	11.2	10.5	9.8	9.3
60-74	4.6	5.0	5.2	5.0	4.6	5.1	5.4	5.4
75 and over	0.6	0.8	1.0	1.1	0.6	0.8	1.0	1.2
All ages	100.0	100.0	100.0	100.0	100.0	99.9	99.9	100.1

1
 IV. Declining-fertility projections (continued)

12. Thailand

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands) .

0-4	4693	5037	5488	6086	4573	4628	4704	4795
5-9	3934	4401	4763	5229	3934	4288	4377	4482
10-14	3297	3857	4327	4694	3297	3857	4216	4313
15-19	2765	3231	3790	4259	2765	3231	3790	4150
20-24	2276	2684	3149	3704	2276	2684	3149	3704
25-29	2085	2197	2601	3064	2085	2197	2601	3064
30-34	1820	2009	2125	2527	1820	2009	2125	2527
35-39	1455	1747	1938	2060	1455	1747	1938	2060
40-44	1137	1381	1678	1870	1137	1381	1678	1870
45-49	937	1067	1305	1605	937	1067	1305	1605
50-54	806	865	993	1222	806	865	993	1222
55-59	644	723	784	909	644	723	784	909
60-64	481	555	632	692	481	555	632	692
65-69	327	389	456	526	327	389	456	526
70-74	192	239	290	345	192	239	290	345
75-79	99	120	153	190	99	120	153	190
80-84	40	49	61	81	40	49	61	81
85 and over	12	15	20	26	12	15	20	26
All ages	27000	30566	34553	39089	26880	30044	33272	36561

Broad age groups (in thousands)

0-14	11924	13295	14578	16009	11804	12773	13297	13590
15-29	7126	8112	9540	11027	7126	8112	9540	10918
30-44	4412	5137	5741	6457	4412	5137	5741	6457
45-59	2387	2655	3082	3736	2387	2655	3082	3736
60-74	1000	1183	1378	1563	1000	1183	1378	1563
75 and over	151	184	234	297	151	184	234	297
All ages	27000	30566	34553	39089	26880	30044	33272	36561

Per cent of total population

IV. Declining-fertility projections (continued)

13. Viet-Nam

Both sexes	(a) Moderate fertility decline				(b) Rapid fertility decline			
	1965	1970	1975	1980	1965	1970	1975	1980

Detailed age groups (in thousands)

0-4	5174	5210	5094	5312	5042	4788	4366	4185
5-9	4472	4851	4926	4854	4472	4727	4527	4161
10-14	2670	4385	4769	4854	2670	4385	4647	4461
15-19	2687	2617	4307	4696	2687	2617	4307	4576
20-24	2974	2610	2550	4210	2974	2610	2550	4210
25-29	2732	2871	2529	2481	2732	2871	2529	2481
30-34	2370	2631	2777	2457	2370	2631	2777	2457
35-39	2053	2276	2540	2692	2053	2276	2540	2692
40-44	1759	1960	2185	2450	1759	1960	2185	2450
45-49	1485	1663	1865	2091	1405	1663	1865	2091
50-54	1226	1381	1557	1758	1226	1381	1557	1758
55-59	984	1113	1264	1436	984	1113	1264	1436
60-64	756	859	982	1125	756	859	982	1125
65-69	542	621	714	826	542	621	714	826
70-74	348	402	468	547	348	402	468	547
75-79	194	222	262	312	194	222	262	312
80-84	83	99	117	141	83	99	117	141
85 and over	27	34	42	51	27	34	42	51
All ages	32536	35805	38948	42293	32404	35259	37699	39960

Broad age groups (in thousands)

Per cent of total population

0-14	37.9	40.3	38.0	35.5	37.6	39.4	35.9	32.0
15-29	25.8	22.6	24.1	26.9	25.9	23.0	24.9	28.2
30-44	19.0	19.2	19.3	18.0	19.1	19.5	19.9	19.0
45-59	11.4	11.6	12.0	12.5	11.4	11.8	12.4	13.2
60-74	5.1	5.3	5.6	5.9	5.1	5.3	5.7	6.3
75 and over	0.9	1.0	1.1	1.2	0.9	1.0	1.1	1.3
All ages	100.1	100.0	100.1	100.0	100.0	100.0	99.9	100.0

DO NOT REMOVE OR
MUTILATE CARD

[^0]: ${ }^{1}$ The Future Growth of World Population (United Nations publication, Sales No.: 1958.XIII.2).

[^1]: ${ }^{1}$ A more detailed account of methods used for estimating population trends in South-East Asian countries will be presented in a forthcoming publication dealing with future population estimates for this and other regions of Asia, now being prepared.
 ${ }^{2}$ I.e., the territories of Brunei, North Borneo and Sarawak.

[^2]: ${ }^{3}$ In this report Viet-Nam is understood to comprise both the northern and southern parts of the country.

 - Projections of Ceylon's population to the year 1970 have recently been published in an official source (Ceylon, Department of Census and Statistics, Quarterly Bulletin of Statistics, June 1957). Though the methods differ, the results of the official projections for Ceylon are fairly similar to the ones obtained in the present study.
 ${ }^{5}$ The last censuses for which detailed results have been published were taken in 1947 and 1951 in the territories of British Borneo, in 1931 in Burma, in 1953 in Ceylon, in 1940 in China (Taiwan), in 1930 in Indonesia, in 1947 in Malaya, in 1948 in the Philippines, in 1950 in Portuguese Timor, in 1947 in Singapore and in 1947 in Thailand. Other censuses, with less detailed results published so far, are those of 1941 in Burma, 1956 in China (Taiwan), 1957 in Malaya, and in 1957 in Singapore. Partial censuses have been taken in Burma during 1953-1954, and household surveys in the Philippines and Thailand since 1956.
 - The dates for which future censuses are tentatively planned are: 1958 (Laos), 1959 (Cambodia), 1960 (Philippines, Portuguese Timor, Thailand and Viet-Nam), and 1963 (Ceylon).

[^3]: ${ }^{7}$ It is admitted, however, that population growth in Singapore can be substantially affected by possible future migration. Separate consideration is also given to the subject of internal migration.
 ${ }^{8}$ The methods of projection are described in Manual III. Methods for Population Projections by Sex and Age, United Nations publication, Sales No.: 1956.XIII.3.

[^4]: ${ }^{1}$ South-East Asia being defined to include Netherlands New Guinea, but to exclude Ceylon and China (Taiwan).
 ${ }^{2}$ The Future Growth of World Population, United Nations publication, Sales No.: 58.XIII.3. In that report, rough calculations were carried out by assimilating the population of each world region with a fictitious population model having similar demographic characteristics. Tested with more detailed statistics available, the model used for South-East Asia seemed to imply a probable overestimate of the level of mortality (ibid., p. 61).

[^5]: ${ }^{5}$ The derivation of this standard assumption for population projections is presented in Manual III. Methods for Population Projections by Sex and Age (United Nations publication, Sales No.: 1956.XIII.3), p. 28.
 ${ }^{6}$ The fertility measure employed in the projections relates births to women of age groups 15-19 to 40-44 years, the age-specific rates remaining in fixed proportions corresponding to an average of observations. The method is explained in Manual III. Methods for Population Projections by Sex and Age op. cit., p. 28.
 ${ }^{7}$ This "normal" progress corresponds to the sequence of model life tables constructed for the purpose of population projections and presented in Manual III. Methods for Population Projections by Sex and Age, op. cit.
 ${ }^{8}$ This latter possibility forms the basis for alternative projections presented in Section II.

[^6]: ${ }^{6}$ In this report Yiet
 ${ }^{6}$ In this report Viet-Nam is understood to comprise both the northern and south-

[^7]: - In particular it was assumed that the non-indigenous population of British Borneo would develop like the population of Malaya and that population trends in Cambodia would parallel those in Thailand. For Laos, Portuguese Timor and the indigenous population of British Borneo, the projections are those of a model.
 ${ }^{10}$ Lower mortality in Burma than estimated here implies that, already in 1950, Burma's population may have been considerably larger than officially estimated. This possibility is taken into account in the alternative projection presented in Section II and in the special projection shown in Section IV.
 ${ }^{11}$ There is, however, some uncertainly in the case of Viet-Nam. Hence, special alternative projections are presented in Section IV.

[^8]: ${ }^{12}$ Except up to the year 1955. For the effect of migration continuing beyond 1955, see the projection presented in Section IV.
 ${ }^{13}$ Account had to be taken of the probable effects of disturbances during 1940-1950 in Indonesia, and during 1945-1955 in Viet-Nam on fertility and mortality.

[^9]: ${ }^{14}$ During the 1960's women born in the 1940's will be in the midst of childbearing ages. The number of potential mothers in the 1960's is somewhat reduced by comparatively low birth rates in the 1940's. For this reason, despite declining mortality, population growth in some countries will not be accelerated in the 1960's. In the 1970's acceleration will be the more conspicuous.

[^10]: ${ }^{15}$ In countries of high mortality, there is often a greater mortality of adult women than of adult men, partly owing to maternal deaths. The mortality of women usually declines more rapidly than the mortality of men, as a result of which the excess of males in the population tends to be reduced. In addition, it is possible that in some censuses the enumeration of women has been less complete than the enumeration of men.

[^11]: ${ }^{16}$ See, however, the special alternative projections for Singapore presented in Section IV.
 ${ }^{17}$ In the Philippines, however, the estimate for 1950 is affected by over-statement of ages.

[^12]: ${ }^{18}$ Special alternative projections, however, have also been made both for Singapore and for Viet-Nam. See Section IV.

[^13]: a Projections based on models, or analogy : comparison of estimated crude rates within short time intervals is not meaningful.
 ${ }^{b}$ Rates according to official vital statistics. These rates are affected partly by immigration in that period and partly by deficiencies of registration. They are therefore not entirely comparable with the rates implied in the population projections for deficiencies of registration
 e Estimates for this disturbed period have been assumed somewhat arbitrarily.

[^14]: ${ }^{1}$ For Ceylon, China (Taiwan), Malaya and Singapore, the evidence of vital statistics for the 1950-1955, period has been taken into account, it being assumed that, after 1955, further mortality declines will occur at the normal rates. In the case of Viet-Nam (both north and south), conditions during 1950-1955 were abnormal; normal trends were assumed for periods after 1955.
 ${ }^{2}$ Except for Ceylon, China (Taiwan) and Singapore, as discussed further on.
 ${ }^{3}$ A fuller treatment of this topic is found in The Determinants and Consequences of Population Trends, United Nations publication, Sales No.: 1953. XIII. 3.

[^15]: ${ }^{4}$ In times of war, when adequate relief measures cannot be supplied, famines and epidemics can exact huge tolls of lives, often far in excess of numbers of military casualties. However, the above argument is intended to apply in times of peace.
 ${ }^{5}$ A more detailed account of methods used for estimating population trends in South-East Asian countries will be presented in a forthcoming publication dealing with future population estimates for this and other regions of Asia, now being prepared. Mortality trends from 1940 to 1950, in most countries, can be presumed to have been irregular. In Viet-Nam, irregular conditions prevailed until about 1955.

 - Death rates have also been recorded in parts of British Borneo, Portuguese Timor and Viet-Nam, but not over sufficiently long periods for useful comparison with the series shown in this table.
 ${ }^{7}$ As borne out by arithmetical tests, see G. W. Barclay, Colonial Development and Population Trends in Taiwan, Princeton, 1954.

[^16]: - Ceylon, Department of Census and Statistics, Post-Enumeration Survey, 1953. Our experimental calculations have shown virtually the same results.

[^17]: - Where possible, the birth rate has been estimated from indications of age composition of the population obtained at a census: the death rate has then been estimated as the difference between this birth rate and the rate of population growth, in an inter-censal period. Both the independent estimate of the death rate and the assumption of constant completeness of registration may be in error.

[^18]: ${ }^{10}$ As compared with the first, this method has two advantages and two drawbacks. The independent estimate of the birth rate is likely to be more reliable than that of the death rate; and though completeness of death registration may vary with time, completeness of birth registration is likely to vary in similar fashion. On the other hand, the assumptions of a constant birth rate, and of equal completeness in the registration of both births and deaths, are not likely to be accurate.

[^19]: ${ }^{11}$ Corrected on the basis of detailed arithmetic tests, the corrections being more refined than those obtained with the rough methods (I and II, above) used here.
 ${ }^{12}$ In particular, adjustments were made for seemingly incomplete registration of infant deaths. A complete system of balancing equations, providing checks on the accuracy of data on population, births, and deaths, could be worked out for Ceylon.
 ${ }^{13}$ These areas comprise most of Java, of which they are fairly representative. But conditions in other Indonesian islands may be different.

[^20]: Years 1950 to 1955 inclusive.
 ${ }^{6}$ Mid-year 1950 to mid-year 1955.
 ε Method depends on an independent estimate of death rate in an earlier period, and an assumption that deaths have been registered with a constant degree of completeness.
 d Method depends on an independent estimate of birth rate, assumed to be constant, and the assumption that births and deaths are being registered with the same degree of completeness.
 c 1953-1955. Registration in certain towns only.
 f Rates obtained by reversing the procedure of population projections from 1955 backward to 1950. Actually, because of availability of more detailed statistics estimates for these three areas in 1950 and 1955 presented elsewhere in this report have been arrived at with different procedures.
 s 1952-1955. Variable registration area.

[^21]: ${ }^{14}$ Beginning with 1955 in Viet-Nam, where disturbed conditions have prevailed until that year.
 ${ }^{15}$ Vital statistics for the years 1949-1951 are not available for Burma and Indonesia.
 ${ }^{16}$ Though apparently not in Ceylon, where a particularly sharp decline in mortality has occurred in the years preceding 1950.

[^22]: ${ }^{17}$ See discussion on p. 12.

[^23]: ${ }^{18} 1955$ in Viet-Nam, conditions in the country having been severely disturbed until then, 1955 also in Malaya, where available vital statistics have been used for the 1950-1955 period.
 ${ }^{19}$ Equality with Ceylon, on the modified assumptions, will be attained in 1955 by the non-indigenous population of British Borneo and the population of Malaya; in 1965 by the Philippines; in 1970 by Burma, Cambodia and Thailand, except for an assumed relative lag of adult male mortality in these three countries; and in 1975 by Indonesia and Viet-Nam. The populations of Laos and Portuguese Timor, and the indigenous population of British Borneo, on these assumptions, will not attain the mortality level of Ceylon prior to 1980.
 ${ }^{10}$ The statistical evidence, in the case of Burma, is still rather ambiguous. Hence, Thailand mortality was assumed by simple analogy, there being no obvious reasons why mortality levels in two neighbouring countries of similar culture and similar modes of living should differ.

[^24]: ${ }^{21}$ A conservative projection for Burma, comparable with the modified projection examined here, is presented in Section IV.

[^25]: ${ }^{1}$ Thus, Bernadelli's analysis of Burmese census data has led to a discovery of "population waves", evidently caused by fluctuations of the birth rate, of the order of 5 per cent, or more, succeeding each other in the given instance, at intervals of about 30 years (R. M Sundrum, Population Statistics of Burma, Economic Research Project, University of Rangoon, Statistical Paper No. 3, December 1957). Recent census statistics for China (Taiwan), Malaya, the Philippines and Thailand indicate relative deficits of births during the Second World War.

[^26]: ${ }^{2}$ For more detailed treatment of the topic, the reader may consult: G. W. Skinner, "Cultural Values, Social Structure and Population Growth", Population Bulletin of the United Nations, No. 5, July 1956, pp. 5-12; and UNESCO, Culture and Human Fertility, Paris 1954. A technical analysis of the quantitative components is that of L. Henry, "Analysis and Calculation of the Fertility of Populations in Under-developed Countries", Population Bulletin of the United Nations, No. 5, July 1956, pp. 51-58.
 ${ }^{3}$ The unusual combinations of marriage frequencies and rates of marital fertility, by age groups of women, for each of the major ethnic groups inhabiting Singapore, have been analyzed by You Poh Seng in "Fertility and the Increase of Population in Singapore", Proceedings of the World Population Conference, 1954 (United Nations publication, Sales No.: 1955.XIII. 8 (Vol. I)), pp. 989-1,000.

[^27]: ${ }^{4}$ Other factors might be the birth of children to unwed mothers, polygamy and the practice of infanticide. In South-East Asia, these latter factors are probably not of much significance.
 ${ }^{5}$ In South-East Asian countries, marriage registration is very incomplete, with the possible exception of China (Taiwan); here, the marriage rate was 8.9 per 1,000 in 1935-1939, fell to 7.7 in 19401943, rose to 9.4 in 1948-1951 and reverted to 8.8 in 1952-1954, there being no data for 1944-1947. Statistics for 1956 in Viet-Nam show surprisingly high average ages of brides and grooms at marriage, no doubt largely a result of postponement of marriages in years preceding 1955.
 -The "baby boom" resulting from such a development can largely compensate for a relative birth deficit in preceding years when marriage was postponed, except that, with more advanced ages of brides, a shorter period of reproductive life eventually remains to women who have postponed marriage. If heavy war casualties have reduced the supply of young men eligible for marriage, some women may have to wait longer before they find a suitable mate, and some women may remain single.

[^28]: ${ }^{7}$ From 1900 to 1950, the mean age of women at marriage rose by 1.6 years. N. K. Sarkar, The Demography of Ceylon (Ceylon, Government Press, 1957), p. 68.
 ${ }^{8}$ S. N. Agarwala, "The Age at Marriage in India", Population Index, vol. 23. No. 2, April 1957. Because of previously prevalent child-marriage, the mean age of women at marriage has risen in every part of India. From 1891 to 1951, the largest rise, by 4.7 years, occurred in the State of Bombay.

 - According to Japanese census data, the age at which one-half of the women are married rose by 2 years from 1920 to 1940.
 ${ }^{10}$ It was assumed that the average of the proportion of women married at various ages, according to censuses of Ceylon (1946), China (Taiwan) (1930), the Philippines (1948), Singapore (1947) and Thailand (1947) would change within 30 years to attain the proportions noted in Japan in 1940. For age groups above 20 years, rates of marital fertility were assumed constant. A rise in the average fertility of the 15-19 year age group had to be assumed since, with a rise in the average age at marriage, a majority of the married women aged 15-19 years would then be near the upper limit of this age group.

[^29]: ${ }^{11}$ A decline of the Japanese birth rate had already been noted at an earlier time, from 35.0 in 1920-1924, to 29.2 in 1935-1939; a sharp decrease in the rate occurred during the Second World War. The high rate of 1947 partly compensated for this temporary postponement. Since then, changes in legislation and economic conditions and the government programme encouraging family limitation, have combined to bring about an extraordinarily sharp reduction of fertility in a highly literate and culturally homogeneous population; it is obvious that the Japanese birth rate cannot continue decreasing at the same pace for many more years.
 ${ }^{12}$ The Soviet birth rate of 1926 is high for that period, having partly resulted from a compensation of births postponed during the preceding years of international and civil wars.

[^30]: ${ }^{13}$ The rapid decline in Puerto Rico has been associated with much emigration and intensified contacts with the industrial economy of the United States.
 ${ }^{14}$ The decline in the Ceylonese birth rate from a recorded 39.8 in 1951 to a recorded 36.4 in 1956 is merely a return to the pre-war level, following a temporary rise. Thus, the birth rate recorded in Ceylon averaged 36.2 in 1938-1942, 38.4 in 1943-1947, and 39.4 in 1948-1952, reverting to 37.0 in 1953-1956. The precise reasons for the temporary rise are not known, but there is as yet no cause to interpret the rates recorded recently as part of a trend towards a decline.
 ${ }^{15} \mathrm{~A}$ small number of births in 1975-1980 will be by women attaining ages $15-19$ by 1980, i.e., by women born in 1960-1965 when the birth rate is already declining. The effect, however, is so slight that it can be disregarded for present purposes. After 1980, on the other hand, the reduction in the number of potential mothers will contribute more substantially to the further fall in birth rates.
 ${ }^{16}$ Except for the small error referred to in the preceding footnote, disregarded for the present purposes.

[^31]: - Disregarding the slight effect of the reduction of the number of women aged 15-19 in 1980.

[^32]: ${ }^{1}$ In this report Viet-Nam is understood to comprise both the northern and southern parts of the country.

[^33]: ${ }^{2}$ In this report Viet-Nam is understood to comprise both the northern and southern parts of the country.

[^34]: ${ }^{1}$ For the female segment, useful comparison is rendered difficult by variations in census definitions relating to housewives, especially in peasant households; the customary distinctions between "economic" activities and "household" activities are also subject to variations. For children aged less than 10 years, little contribution to economic output can be expected in any case.

[^35]: ${ }^{2}$ Excluding " family helpers", enumerated as a separate category. The relevance of conventional census definitions of occupational status to South-East Asian conditions may, however, be questioned.

[^36]: ${ }^{3} 68$ per cent in Indonesia in 1930 (64 per cent in Java and Madura, and 76 per cent in other islands), according to the FAO Yearbook of Food and Agricultural Statistics, 1948, vol. 1, p. 212.

 - In no other country has such a large proportion of tertiary activities been noted in conjunction with such a small proportion of secondary activities.

[^37]: ${ }^{5}$ Since populations have been increasing rapidly, a constant or slowly declining proportion of agriculturists implies considerable increases in their absolute numbers.

[^38]: - Combining these several figures, series of total cropped areas were obtained. But these series are somewhat short of the facts since a variety of relatively less important crops had to be left out of account. In instances where more comprehensive statistics on cropped land were also available, the figures compiled from the detailed crops could be compared and the extent of their deficiency could be examined. On the whole, those areas have been omitted which are planted under fodder crops, and certain pulses and vegetables. Despite this deficiency, the series which have been calculated appear to be fully comparable in time, and from country to country. The comparison is mainly one of areas in which cereal and commercial crops have been harvested.
 ${ }^{7}$ With the exception of Malaya, where under the influence of rapidly changing economic conditions, the ratio rose from 1.42 in 1921-1925 to 1.94 in 1931-1935.

[^39]: a From: International Institute of Agriculture, International Agricultural Statistics, Rome. 1926.
 ${ }^{6}$ From: FAO Yearbook of Food and Agricultural Statistics, 1956, vol. X, Part I.
 e J. R. Andrews, Burmese Economic Life (Stanford (California) and London (England), 1947), p. 43.
 ${ }^{1}$ Statistical Abstract of Ceylon, 1957.
 e 1931-1937.
 f Irrigated area only.
 E Federated States only, 1918.
 ${ }^{\text {a }}$ 1922-1924.
 i 1910-1913.
 j 1911-1913.
 ${ }^{k}$ Cambodia, Laos and Viet-Nam.
 ${ }^{l}$ The Republic of Viet-Nam.

[^40]: ${ }^{3}$ The following 1954-1955 averages are taken from the FAO Yearbook of Food and Agricultural Statistics, 1956, vol. X, Part 1;

 India 12.4 Spain 57.4
 ${ }^{-}$See the preceding footnote.

[^41]: ${ }^{10}$ Figures for 1878-1930 from Crop Statistics for Japan, 1878 1946, General Headquarters Supreme Commander for the Allied Powers, Natural Resources Section, Report No. 108, Tokyo, 1948. Figures for 1931-1956 from Japan Statistical Yearbook 1957, Japan, Bureau of Statistics, Office of the Prime Minister, Tokyo, 1957.
 ${ }^{11}$ W. Rhynsburger, Area and Resources Survey, Taiwan (Tapei, Taiwan, International Co-operation Administration, Mutual Security Mission to China, December 1956), p. 67.

[^42]: ${ }^{12}$ Philip M. Hauser, "World and Asian Urbanization in Relation to Economic Development and Social Change", in Urbanization in Asia and the Far East-Proceedings of the Joint UN/UNESCO Seminar, Bangkok, 8-18 August 1956 (Calcutta, 1957), p. 87.

[^43]: ${ }^{13}$ Report on the World Social Situation (United Nations publication, Sales No.: 1957.IV.3), p. 124.

[^44]: ${ }^{14}$ Report on the world Social Situation (United Nations publication, Sales No.: 1957.IV.3), p. 124.

[^45]: ${ }^{a}$ Sources: United Nations Statistical Yearbook, 1957, and Japan Bureau of Statistics, Statistical Yearbook, 1954.
 ${ }^{b}$ Between one-tenth and one-twentieth of exports in individual years consist of re-exports.

 - 1929: 22 per cent; 1937: 17 per cent.
 ${ }^{d}$ 1951-1952 average.
 c 1929: 29 per cent; 1937: 36 per cent.
 f Data include a large volume of trans-shipments, notably at the port of Singapore.

[^46]: ${ }^{16}$ UNESCO, World Illiteracy at Mid-century, Monographs on Fundamental Education, No. XI. Paris, 1957.

[^47]: ${ }^{16}$ Low population densities in the mountainous interior of the island correspond to those portions of each prefecture which are administratively defined as "aborigine territory".
 ${ }^{17}$ The divisions selected are the major administrative divisions (provinces, etc.), except in the following instances:

 In Burma, the boundaries of the large provinces bear little relation to the greatly varying features of the terrain; minor divisions, therefore, had to be taken into account.
 In China (Taiwan), each of the island's prefectures comprises part of the "aborigine territory"; a distinction was made between those portions, and the remainder, of each prefecture.

 Portuguese Timor and Singapore, of small territorial extent, have each been treated as one unit only. British Borneo has been divided into the three separate territories of Brunei, North Borneo and Sarawak, without further sub-division.
 In Indonesia, contrasts in population densities of the major islands are so sharp as to be fully revealed by a broad division of the national territory into eight units only.
 The average size of the divisions selected for Table 45 is greater than $\mathbf{1 2 , 0 0 0}$ square kilometres only in the cases of British Borneo, Indonesia and Laos. In British Borneo and Laos areas of high population density are so small as to be of little importance in relation to those of other countries; In Indonesia, they are so large and well-defined as to be clearly revealed for the large divisions which

[^48]: ${ }^{18}$ No exact meaning can be attached to these comparisons. The divisions selected for each of the several countries do not conform to any common criteria.

[^49]: ${ }^{19}$ Except for Taipei and Saigon-Cholon, the figures for these cities have been obtained by interpolation of data presented by Rhoads Murphey, "New Capitals of Asia", Economic Development and Cultural Change, vol. V., No. 3, April 1957, pp. 226-227. Figures comprise, where possible, entire conurbations, including satellite towns.

[^50]: ${ }^{1}$ The assumption of constant mortality is convenient but conflicts with the assumptions on which the population projections for individual countries have been calculated. To obtain consistency with the population projection for a given country, the migration model may have to be modified.

[^51]: ${ }^{2}$ Such a stable population has a constant crude birth rate of 45.3, a death rate of 19.2 , and a rate of natural increase of 26.1 per 1,000 . It would double in the course of 26.5 years.
 ${ }^{3}$ It is easiest to visualize the complete transfer of an entire village. Actually, the present model is equally valid in the case where a community initially dispersed among numerous villages is being brought together in another locality. It is also valid in the complete absence of any recognizable initial community, so long as it is the intention of the migrants to re-constitute groups of related households in the area of settlement which are of similar composition to the groups of households existing in their areas of origin.
 ${ }^{4}$ If the community is a segregated village, the old site of the village would then be abandoned. If the community is conceived more loosely (as in the preceding footnote), this need not happen even though the new settlement will be joined by households with members of all ages.

[^52]: ${ }^{5} \mathrm{~A}$ cohort is a group of individuals born in the same period of time, and consequently advancing jointly in age as time progresses.

 - A stable population is one in which given rates of mortality and fertility remain constant. The sex-age composition of such a population can be calculated by mathematical methods. Since this also remains invariable, future numbers in each sex-age group can be readily calculated by applying to each group a constant factor representing the rate of increase of the entire population.

[^53]: ${ }^{7}$ This assumption, though arbitrary, is not quite unrealistic. Thus, at the 1947 census of Malaya, 847,479 households were ascertained, while 814,322 women aged 20-44 years were enumerated; at the 1948 census of the Philippines, the number of households counted was 3,501,132 and the number of women aged 20-44 years was $3,207,531$.
 © Assumed to be a stable population, with gross reproduction rate equal to 3 , and an expectation of life at birth equal to 45 years.

 - See the figures of table 46 shown in parentheses.

[^54]: ${ }^{10}$ The assumption，as indicated，is a constant gross reproduction rate equal to 3 ，and a constant expectation of life at birth equal to 45 years．
 ${ }^{11}$ Cumulation results as follows．In the first step are determined the populations，by groups of sex and age，resulting at the end of a five－year period of migration，as well as $5,10,15$ ，etc．，years later， migration being discontinued．If migration continues another

[^55]: ${ }^{15}$ A projection was first carried out for an arbitrary number of pioneers, composed by sex and age according to the assumptions made. By this projection, a coefficient was determined, with which the initially arbitrary numbers had to be multiplied to result, at the end of five years, in precisely 10,000 households.
 ${ }^{16}$ This is the composition of the contingent of pioneers at the beginning of the first five-year period. If recruitment proceeds in the course of five years the recruits would on an average be ${ }^{\frac{1}{2}}$ years older and have somewhat more children, including some older children.

[^56]: ${ }^{17}$ Individual households, inevitably, experience varying difficulties as their composition changes with the passage of time. But the difficulties of individual households are aggravated when they are being experienced by most of the households at the same time; under such conditions, little help can be expected from neighbours.

[^57]: a Assumed equal to the number of women aged 20-44.

[^58]: a Assumed to equal the number of women aged 20-44.

[^59]: ${ }^{3}$ Official estimates agree very nearly with 50 million inhabitants for Java, and 25 million for the other islands in mid-year 1950, and these rounded figures were used in the projection. Here, the midyear 1950 population of Sumatra is taken at the rounded figure of 12 million though this exceeds somewhat the figure for that date according to official estimates; it is known, however, that there have recently been some obstacles in parts of Sumatra, particularly the north, to an accurate assessment of the current local population.

[^60]: " "The Population of Indonesia", Ekonomi dan Kenangan Indonesia, February 1956.

[^61]: ${ }^{5}$ It is an ironical commentary on present conditions that this extreme viewpoint has already been expressed a long time ago, when Java's population was much smaller than it is now. So long as 150 years ago, Governor Raffles voiced serious concern over Java's apparent population pressure though, in 1805, the population was assessed at only 4.5 million.

[^62]: ${ }^{6}$ Data communicated by the Gal Oya Development Board through the Ceylon Department of Census and Statistics.
 ${ }^{7}$ Settlements of Tinambac, Maramag, and Tawi-Tawi, according to data obtained from the Philippines National Resettlement and Rehabilitation Administration.

[^63]: ${ }^{8}$ In 1957, the cost per family was estimated at 5,000 rupiahs (i.e., about U.S. \$440), An Outline of the Transmigration Department in Indonesia (Republic of Indonesia, Ministry of Social Affairs, 1957), p. 23.

[^64]: - "The Population of Indonesia", Ekonomi dan Keuangan Indonesia, February 1956.

[^65]: ${ }^{10}$ If movements are assumed on a different scale, some other multiple of the calculated migratory effect is to be subtracted from the projection for Java, and added to the projection for Sumatra. Combinations of different assumptions are shown, for Java, in Table 67.

[^66]: ${ }^{11}$ I.e., an optimum corresponding to given levels of technique and organization, as well as to expected changes therein.

[^67]: ${ }^{12}$ It is probably not irrelevant, in this context, to cite the example of the United States, where population was at first concentrated along the Atlantic sea-board, but settlement of interior regions was positively stimulated by various measures, notably the Homestead Acts. Initially, settlement of the interior parts of the North American continent proceeded under conditions of considerable lawlessness involving many social hardships, but as settlers became more numerous normal administrative conditions were eventually established. This movement brought into use vast new resources and, thereby, incidentally stimulated the further growth of industries, both at the Atlantic sea-board and further inland.

[^68]: a Sources: Data for 1920-1940 from Demographic Yearbook, 1956, Tables 2 and 3. Data for 1950-1980 according to medium assumptions in The Future Growth of World Population, op. cit.
 ${ }^{\boldsymbol{b}}$ Belgium, Denmark, Finland, France, Iceland, Ireland, Luxembourg, Monaco, the Netherlands, Norway, Sweden, the United Kindgom, the Channel Islands and the Isle of Man.
 e America to the north of Mexico.
 ${ }^{d}$ Within post-1945 boundaries.

 - America to the south of the United States
 f Including Netherlands New Guinea but excluding Ceylon and China (Taiwan). The population of Netherlands New Guinea is now believed to amount to about 700000 .
 s Region as defined in the present report (including rough estimates for Ceylon and China (Taiwan) but excluding Netherlands New Guinea).

[^69]: ${ }^{6}$ If it can be assumed that the sum of the rough estimates for world regions other than South-East Asia is accurate, a figure of 3,520 million in 1975 results for all those parts of the world combined. To this the present alternative estimates of $318.8,330.10 \mathrm{r} 366.3$ million for South-East Asia in 1975 may be added to make a revised world total. Of this world total, South-East Asia (including Ceylon and China (Taiwan)) would constitute 8.3, 8.6 and possibly even 9.4 per cent.

[^70]: ${ }^{7}$ Dobby estimates at only 10 million the population of SouthEast Asia-presumably its continental part in the year 1800 (Dobby, Southeast Asia, London, 1955) but this figure, like the estimate of 4.5 million for Java in 1815, and 1.5 million for the Philippines in 1799 , appears improbably small. Little is known of the populations of areas rarely visited by westerners at that time, while in more accessible areas censuses of a modern type were generally not carried out until late in the 19th century. According to estimates assembled by Sarkar, the population of Ceylon was then still declining, from 1.1 million in 1789 to 736,000 in 1814 (N. K. Sarkar, The Demography of Ceylon, Ceylon Government Press, 1957).
 ${ }^{8}$ It is quite possible that the social and administrative changes associated with colonial plantation systems have reduced mortality from epidemics, famine and strife, and that they have loosened, to some extent, the control of villages or kinship groups over the frequency of marriage. But whether this has actually been the case has not been demonstrated.

[^71]: - Analysis of age distributions from Burmese censuses have led Bernadelli to the discovery of "population waves", caused by an apparent recurrence of relatively low birth rates once every 30 years (See R. M. Sundrum, Population Statistics of Burma, Economic Research Project, University of Rangoon, Statistical Paper No. 3, December 1957). Rough calculations suggest that similar fluctuations have also occurred in the birth rates of the Philippines and Thailand. The fluctuations are of the order of 5 or 10 per cent. The subject is one which merits further study.
 ${ }^{10}$ UNESCO, Culture and Human Fertility, Paris, 1954.

[^72]: ${ }^{11}$ In 1956 according to official estimates, China (without Taiwan) had $621,225,000$ inhabitants on $9,761,000$ square kilometres of land, or 64 inhabitants per square kilometre; but it is known that about 99 per cent of this population live on less than one-half of the land area, with an average density at least twice as high. In India, $387,500,000$ inhabitants were estimated for a land area of $3,289,000$ square kilometres, an average density of 118 per square kilometre. In South-East Asia (defined to include Netherlands New Guinea, but exclude Ceylon and China (Taiwan)), an estimated population of $190,000,000$ on $4,489,000$ square kilometres in 1956, gives an average density of 42, i.e., about one-third the density of India and of the part of China containing 99 per cent of China's population. Source: United Nations, Demographic Yearbook, 1957, Tables 1 and 2.

[^73]: ${ }^{12}$ For a long time, South-East Asia has exported large quantities of raw material and agrarian produce. With increases of the regional population, smaller amounts of produce and materials may remain available for export, but products of regional industries may increasingly enter into the balance. It is difficult to foresee whether the terms of trade will then be improved, since similar changes will also occur in other world regions. But, as the trend towards increased global economic interdependence will hardly be reversed, South-East Asia's foreign trade will probably be no less important in the future than it has been in the past.
 ${ }^{13}$ In the past, South-East Asia has been the receiving area of considerable numbers of Chinese and Indian migrants. Political conditions no longer seem favourable for much continued migration of this type. International migration, then, may remain relatively unimportant for the future of this area, especially when the indigenous population itself attains very large numbers. By contrast, internal migration in almost every South-East Asian country can be on a large scale, with important economic and social consequences, some of which have been commented on in Sections VI and VII.

[^74]: ${ }^{14}$ Jean Fourastié, "Les travaux de la Commission de l'équipement scolaire du Commissariat général au plan '", Population (Paris), 13th year, No. 2, April-June 1958, p. 226.

[^75]: ${ }^{a}$ See also footnote * on preceding page.
 ${ }^{b}$ Unless otherwise indicated, the base date is mid-year 1950. In all instances, the $0-4$ age group was estimated separately, to conform with estimated levels of fertility and mortality.

 - Unless otherwise indicated, the base period is 1950-1955.
 ${ }^{d}$ Base date mid-year 1955 and base period 1955-1960.

