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1. Primary Production1 
 

1.1 Definition and ecological significance 

Gross primary production (GPP) is the rate at which photosynthetic plants and bacteria 
use sunlight to convert carbon dioxide (CO2) and water to the high-energy organic 
carbon compounds used to fuel growth. Free oxygen (O2) is released during the process. 
Net primary production (NPP) is GPP less the respiratory release of CO2 by 
photosynthetic organisms, i.e., the net photosynthetic fixation of inorganic carbon into 
autotrophic biomass. NPP supports most life on Earth; it fuels global cycles of carbon, 
nitrogen, phosphorus and other nutrients and is an important parameter of atmospheric 
CO2 and O2 levels (and, therefore, of anthropogenic climate change). 

Global NPP is estimated to be ~105 Pg C yr-1, about half of which is by marine plants 
(Field et al., 1998; Falkowski and Raven, 1997; Westberry et al., 2008).2 Within the 
euphotic zone of the upper ocean,3 phytoplankton and macrophytes4 respectively 
account for ~94 per cent (~50 ± 28 Pg C yr-1) and ~6 per cent (~3.0 Pg C yr-1) of NPP 
(Falkowski et al., 2004; Duarte et al., 2005; Carr et al., 2006; Schneider et al., 2008; 
Chavez et al., 2011; Ma et al., 2014; Rousseaux and Gregg, 2014). All NPP is not equal in 
terms of its fate. Marine macrophytes play an important role as carbon sinks in the 
global carbon cycle, provide habitat for a diversity of animal species, and food for 
marine and terrestrial consumers (Smith, 1981; Twilley et al., 1992; Duarte et al., 2005; 
Duarte et al., 2010; Heck et al., 2008; Nellemann et al., 2009; McLeod et al., 2011, 
Fourqurean et al., 2012). Phytoplankton NPP fuels the marine food webs upon which 
marine fisheries depend (Pauly and Christensen, 1995; Chassot et al., 2010) and the 

1 Microbenthic, epiphytic and symbiotic algae can be locally important in shallow waters and corals, but 
are not addressed here. Chemosynthetic primary production is addressed elsewhere. 
2 1 Pg = 1015 g 
3 Defined here to include the epipelagic (0-200 m) and mesopelagic (200 – -1000 m) zones. The euphotic 
zone lies within the epipelagic zone. 
4 Macrophytes include sea grasses, macroalgae, salt marsh plants and mangroves. Phytoplankton are 
single -celled, photosynthetic prokaryotic and eukaryotic microorganisms growing in the euphotic zone 
(the layer between the ocean’s surface and the depth at which photosynthetically active radiation [PAR] is 
1 per cent of surface intensity). Most phytoplankton species are > 1 µm and < 1 mm in equivalent 
spherical diameter (cf. Ward et al., 2012).  
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“biological pump” which transports 2-12 Pg C yr-1 of organic carbon to the deep sea 
(Falkowski et al., 1998; Muller-Karger et al., 2005; Emerson and Hedges, 2008; Doney, 
2010; Passow and Carlson, 2012), where it is sequestered from the atmospheric pool of 
carbon for 200-1500 years (Craig, 1957; Schlitzer et al., 2003; Primeau and Holzer, 2006; 
Buesseler, et al., 2007). 

Changes in the size structure of phytoplankton communities influence the fate of NPP 
(Malone, 1980; Legendre and Rassoulzadegan, 1996; Pomeroy et al., 2007; Marañón, 
2009). In general, small cells (picophytoplankton with equivalent spherical diameters < 2 
µm) account for most NPP in subtropical, oligotrophic (< 0.3 mg chlorophyll-a m-3), 
nutrient-poor (nitrate + nitrite < 1 µM), warm (> 20°C) waters. Under these conditions, 
the flow of organic carbon to harvestable fisheries and the biological pump are relatively 
small. In contrast, larger cells (microphytoplankton > 20 μm) account for > 90 per cent of 
NPP in more eutrophic (> 5 mg chlorophyll-a m-3), nutrient-rich (nitrate + nitrite >10 
µM), cold (< 15°C) waters (Kamykowski, 1987; Agawin et al., 2000; Buitenhuis et al., 
2012). Under these conditions, diatoms5 account for most NPP during spring blooms at 
high latitudes and periods of coastal upwelling when NPP is high and nutrients are not 
limiting (Malone, 1980). The flow of organic carbon to fisheries and the biological pump 
is higher when larger cells account for most NPP (Laws et al., 2000; Finkel et al., 2010). 

 

1.2 Methods of measuring net primary production (NPP) 

1.2.1 Phytoplankton Net Primary Production 

Phytoplankton (NPP) has been estimated using a variety of in situ and remote sensing 
methods (Platt and Sathyendranath, 1993; Geider et al., 2001; Marra, 2002; Carr et al., 
2006; Vernet and Smith, 2007; Cullen, 2008a; Cloern et al., 2013). Multiplatform (e.g., 
ships, moorings, drifters, gliders, aircraft, and satellites) sampling strategies that utilize 
both approaches are needed to effectively detect changes in NPP on ecosystem to 
global scales (UNESCO-IOC, 2012). 

On small spatial and temporal scales (meters-kilometres, hours-days), several 
techniques have been used including oxygen production and the incorporation of 13C 
and 14C labelled bicarbonate (Cullen, 2008a). The most widely used and standard 
method against which other methods are compared or calibrated is based on the 
incorporation of 14C-bicarbonate into phytoplankton biomass (Steeman-Nielsen, 1963; 
Marra, 1995; Marra, 2002; Vernet and Smith, 2007; Cullen, 2008a). On large spatial 
scales (Large Marine Ecosystems6 to the global ocean), the most effective way to detect 
space-time variability is via satellite-based measurements of water-leaving radiance 
combined with diagnostic models of depth-integrated NPP as a function of depth-

5 Diatom growth accounts for roughly half of marine NPP and therefore for about a quarter of global 
photosynthetic production (Smetacek, 1999). 
6 Large marine ecosystems (200,000 km2  or larger) are coastal ecosystems characterized by their distinct 
bathymetry, hydrography, productivity and food webs (Sherman et al., 1993). 
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integrated chlorophyll-a concentration (Ψ Chl), photosynthetically active solar radiation, 
and temperature (Antoine and Morel, 1996; Perry, 1986; Morel and Berthon, 1989; Platt 
and Sathyendranath, 1993; Behrenfeld and Falkowski, 1997; Sathyendranath, 2000; 
Gregg et al., 2003; Behrenfeld et al., 2006; Carr et al., 2006; Arrigo et al., 2008; Bissinger 
et al., 2008; McClain, 2009; Westberry et al., 2008; Cullen et al., 2012; Siegel et al., 
2013). 

An overview of the latest satellite based models may be found at the Ocean Productivity 
website.7 Satellite ocean-colour radiometry (OCR) data have been used to estimate surface 
chlorophyll-a fields and NPP since the Coastal Zone Color Scanner (CZCS) mission (1978-
1986). Uninterrupted OCR measurements began with the Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS) mission (1997-2010) (Hu et al., 2012). A full accounting of current polar 
orbiting and geostationary ocean-colour sensors with their capabilities (swath width, spatial 
resolution, spectral coverage) can be found on the web site of the International Ocean-
Colour Coordinating Group.8 

The skill of model-based estimates of NPP has been improving (O’Reilly et al., 1998; Lee, 
2006; Friedrichs et al., 2009; Saba et al., 2010; Saba et al., 2011; Mustapha et al., 2012), 
but further improvements are needed through more accurate estimates of Ψ Chl. 
Chlorophyll-a fields can be estimated more accurately by blending data from remote 
sensing and in situ measurements, especially in regions where in situ measurements are 
sparse and in turbid, coastal ecosystems (Conkright and Gregg, 2003; Gregg et al., 2003; 
Onabid, 2011). An empirical approach has been developed for ocean-colour remote 
sensing called Empirical Satellite Radiance-In situ Data (ESRID) algorithm (Gregg et al., 
2009). 

1.2.2 Macrophyte Net Primary Production 

The NPP of macroalgae, sea grasses, salt marsh plants and mangroves can be estimated 
by sequentially (e.g., monthly during the growing season) measuring increases in 
biomass (including leaf litter in salt marshes and mangrove forests) using a combination 
of in situ techniques (e.g., Mann, 1972; Cousens, 1984; Dame and Kenny, 1986; 
Amarasinghe and Balasubramaniam, 1992; Long et al., 1992; Day et al., 1996; Ross et al., 
2001; Curcó et al., 2002; Morris, 2007) and satellite-based multispectral imagery (e.g., 
Gross et al., 1990; Zhang et al., 1997; Kovacs et al., 2001; Gitelson, 2004; Liu et al., 2008; 
Kovacs et al., 2009; Heumann, 2011; Mishra et al., 2012; Son and Chen, 2013). For 
remote sensing, accurate in situ measurements are critical for validating models used to 
map these habitats and estimate NPP (Gross et al., 1990; Kovacs et al., 2009; Roelfsema 
et al., 2009; Mishra et al., 2012; Jia et al., 2013; Trilla et al., 2013). These include shoot- 
or leaf-tagging techniques, measurements of 14C incorporation into leaves, and 
measurements of dissolved O2 production during the growing season (Bittaker and 

7 http://www.science.oregonstate.edu/ocean.productivity/. 
8 http://www.ioccg.org/sensors/current.html. 
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Iverson, 1976; Kemp et al., 1986; Duarte, 1989; Kaldy and Dunton, 2000; Duarte and 
Kirkman, 2001; Plus et al., 2001, Silva et al., 2009). 

1.2.3 The Phenology9 of Phytoplankton Annual Cycles  

The timing of seasonal increases in phytoplankton NPP is determined by environmental 
parameters, including day length, temperature, changes in vertical stratification, and the 
timing of seasonal sea-ice retreat in polar waters. All but day length are affected by 
climate change. Thus, phytoplankton phenology provides an important tool for 
detecting climate-driven decadal variability and secular trends. Phenological metrics to 
be monitored are the time of bloom initiation, bloom duration and time of maximum 
amplitude (Siegel et al., 2002; Platt et al., 2009). 

 

1.3 Spatial patterns and temporal trends 

Marine NPP varies over a broad spectrum of time scales from tidal, daily and seasonal 
cycles to low-frequency basin-scale oscillations and multi-decade secular trends 
(Malone, 1971; Pingree et al., 1975; Steele, 1985; Cloern, 1987; Cloern, 2001; Cloern et 
al., 2013; Duarte, 1989; Powell, 1989; Malone et al., 1996; Henson and Thomas, 2007; 
Vantrepotte and Mélin, 2009; Cloern and Jassby, 2010; Bode et al., 2011; Chavez et al., 
2011). Our focus here is on low-frequency cycles and multi-decade trends. 

1.3.1 Phytoplankton NPP 

For the most part, the global pattern of phytoplankton NPP (Figure 1) reflects the 
pattern of deep-water nutrient inputs to the euphotic zone associated with winter 
mixing and thermocline erosion at higher latitudes, thermocline shoaling at lower 
latitudes, and upwelling along the eastern boundaries of the ocean basins and the 
equator (Wollast, 1998; Pennington et al., 2006; Chavez et al., 2011; Ward et al., 2012). 
The global distribution of phytoplankton NPP is also influenced by iron limitation and 
grazing by microzooplankton in so-called High Nutrient Low Chlorophyll (HNLC) zones 
which account for ~20 per cent of the global ocean, e.g., oceanic waters of the subarctic 
north Pacific, subtropical equatorial Pacific, and Southern Ocean (Martin et al., 1994; 
Landry et al., 1997; Edwards et al., 2004). Nutrient inputs associated with river runoff 
enhance NPP in coastal waters during the growing season (Seitzinger et al., 2005; 
Seitzinger et al., 2010). Annual cycles of NPP associated with patterns of nutrient supply 
and seasonal variations in sunlight tend to increase in amplitude and decrease in 
duration with increasing latitude. Seasonal increases in NPP generally follow winter 
mixing when nutrient concentrations are high, the seasonal thermocline sets up, and 
day length increases. Annual cycles are also more pronounced in coastal waters subject 
to seasonal upwelling. 

9 Phenology is the study of the timing and duration of cyclic and seasonal natural phenomena (e.g., spring 
phytoplankton blooms, seasonal cycles of zooplankton reproduction), especially in relation to climate and 
plant and animal life cycles. 
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The boundaries and names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. 

Figure 1. Climatological map Distribution of annual marine NPP for (a) NASA Ocean Biogeochemical Model 
and (b) Vertically-Integrated Production Model (VGPM) for the period from September 1998 to 2011 
(Rousseaux – August 1999 (Blue  < 100 g C m-2, Green > 110 g C m-2 and < 400 g C m-2, Red > 400 g C m-2) 
(Rutgers Institute of Marine and Gregg, 2014). Globally, diatoms accounted for about 50 per cent of NPP 
while coccolithophores, chlorophytes and cyanobacteria accounted for about 20 per cent, 20 per cent and 
10 per cent, respectively. Diatom NPP was highest at high latitudes and in equatorial and eastern 
boundary upwelling systems. Coastal Sciences, http://marine.rutgers.edu/opp/). Coastal ecosystems (red 
– green) and the permanently stratified subtropical waters of the central gyres (blue) each account for 
~30 per cent of the ocean’s NPP, whereas the former accounts for only ~8 per cent of the ocean’s surface 
area compared to ~60 per cent for the open ocean waters of the subtropics (Geider et al., 2001; Marañón 
et al., 2003; Muller-Karger et al., 2005). 
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The global distribution of annual NPP in the ocean can be partitioned into broad 
provinces with eastern boundary upwelling systems and estuaries exhibiting the highest 
rates and subtropical central gyres the lowest rates (Figure 1, Table 1). 

 
Table 1. Ranges of phytoplankton mean daily NPP and annual NPP reported for different marine 
provinces. Estimates are based on in situ measurements and models using satellite-based observations of 
chlorophyll-a fields. Western boundaries of the ocean basins generally feature broad continental shelves 
and eastern boundaries tend to have narrow shelves with coastal upwelling. (Data sources: Malone et al., 
1983; O’Reilly and Busch, 1983; Pennock and Sharp, 1986; Cloern, 1987; Malone, 1991; Barber et al., 
1996; Karl et al., 1996; Malone et al., 1996; Pilskaln et 173 al., 1996; Smith and DeMaster, 1996; Lohrenz 
et al., 1997; Cloern, 2001; Smith et al., 2001; Steinberg et al., 2001; Marañón et al., 2003; Sakshaug, 2004; 
PICES, 2004; Teira et al., 2005; Tian et al., 2005; Pennington et al., 2006; Subramanian et al., 2008; Vernet 
et al., 2008; Bidigare et al., 2009; Sherman and Hempel, 2009; Chavez et al., 2010; 176 Saba et al., 2011; 
Brown and Arrigo, 2012; Cloern et al., 2013; Lomas et al., 2013).  

 

Province mg C m-2 d-1 g C m-2 yr-1 

Subtropical Central Gyres 20 – 1,040 150 – 170 

Western Boundaries 10 – 3,500 200 – 470 

Eastern Boundaries 30 – 7,300  460 – 1,250 

Equatorial Upwelling 640 – 900 240 

Arctic Ocean 3 – 1,100 5 – 400  

Southern Ocean 290 – 370 50 – 450 

Coastal Seas 100 – 1,400 40 – 600 

Estuaries & Coastal Plumes 100 – 8,000  70 – 1,890 

 

 

Interannual variability and multi-decadal trends in phytoplankton NPP on regional to 
global scales are primarily driven by: (1) climate change (e.g., basin-scale oscillations and 
decadal trends, including loss of polar ice cover, upper ocean warming, and changes in 
the hydrological cycle); (2) land-based, anthropogenic nutrient loading; and (3) pelagic 
and benthic primary consumers. Global-scale trends in phytoplankton NPP remain 
controversial (Boyce et al., 2010; Boyce et al., 2014; Mackas, 2011; Rykaczewski and 
Dunne, 2011; McQuatters‐Gollop et al., 2011; Dave and Lozier, 2013; Wernand et al., 
2013).). Remote sensing (sea-surface temperature and chlorophyll fields), model 
simulations and marine sediment records suggest that global phytoplankton NPP may 
have increased over the last century as a consequence of basin-scale climate forcing 
that promotes episodic and seasonal nutrient enrichment of the euphotic zone through 
vertical mixing and upwelling (McGregor et al., 2007; Bidigare et al., 2009; Chavez et al., 
2011; Zhai et al., 2013). In contrast, global analyses of changes in chlorophyll 
distribution over time suggest that annual NPP in the global ocean has declined over the 
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last 100 years (Gregg et al., 2003; Boyce et al., 2014). A decadal scale decline is 
consistent with model simulations indicating that both NPP and the biological pump 
have decreased by ~7 per cent and 8 per cent, respectively, over the last five decades 
(Laufkötter et al., 2013), trends that are likely to continue through the end of this 
century (Steinacher et al., 2010). 

Given uncertainties concerning global trends, long-term impacts of secular changes in 
phytoplankton NPP on food security and climate change cannot be assessed at this time 
with any certainty. Resolving this controversy and predicting future trends will require 
sustained, multi-decadal observations and modelling of phytoplankton NPP and key 
environmental parameters (e.g., upper ocean temperature, pCO2, pH, depth of the 
aragonite saturation horizon, vertical stratification and nutrient concentrations) on 
regional and global scales – observations that may have to be sustained for at least 
another 40-50 years (Henson et al., 2010). 

1.3.2 Macrophyte NPP 

Marine macrophyte NPP, which is limited to tidal and relatively shallow waters in 
coastal ecosystems, varies from 30-1,200 g C m-2 yr-1 (Smith, 1981; Charpy-Roubaoud 
and Sournia, 1990; Geider et al., 2001; Duarte et al., 2005; Duarte et al., 2010; 
Fourqurean et al., 2012; Ducklow et al., 2013). In contrast to the uncertainty of decadal 
trends in phytoplankton NPP, decadal declines in the spatial extent and biomass of 
macrophytes (a proxy for NPP) over the last 50-100 years are relatively well 
documented. Macrophyte habitats are being lost and modified (e.g., fragmented) at 
alarming rates (Duke et al., 2007; Valiela et al., 2009; Waycott et al., 2009; Wernberg et 
al., 2011), i.e., 2 per cent for macrophytes as a group, with total areal losses to date of 
29 per cent for seagrasses, 50 per cent for salt marshes and 35 per cent for mangrove 
forests (Valiela et al., 2001; Hassan et al., 2005; Orth et al., 2006; Waycott et al., 2009; 
Fourqurean et al., 2012). As a whole, the world is losing its macrophyte ecosystems in 
coastal waters four times faster than its rain forests (Duarte et al., 2008), and the rate of 
loss is accelerating (Waycott et al., 2009). 

 

2. Nutrient Cycles 

 

Nitrogen (N) and phosphorus (P) are major nutrients required for the growth of all 
organisms, and NPP is the primary engine that drives the cycles of N and P in the oceans. 
The cycles of C, N, P and O2 are coupled in the marine environment (Gruber, 2008). As 
discussed in section 6.1.3, the global pattern of phytoplankton NPP reflects the pattern 
of dissolved inorganic N and P inputs to the euphotic zone from the deep ocean (Figure 
1). Superimposed on this pattern are nutrient inputs associated with N fixation, 
atmospheric deposition, river discharge and submarine ground water discharge. In 
regard to the latter, ground water discharge may be a significant source of N locally in 
some parts of Southeast Asia, North and Central America, and Europe, but on the scale 
of ocean basins and the global ocean, ground water discharge of N has been estimated 

 
© 2016 United Nations  7    
 



to be on the order of 2-4 per cent of river discharge (Beusen et al., 2013). Given this, 
and challenges of quantifying ground water inputs on ocean basin to global scales (NRC, 
2004), this source is not considered herein. 

 

2.1  Nitrogen 

The ocean's nitrogen cycle is driven by complex microbial transformations, including N 
fixation, assimilation, nitrification, anammox and denitrification (Voss et al., 2013) 
(Figure 2). NPP depends on the supply of reactive N (Nr)10 to the euphotic zone. 
Although most dissolved chemical forms of Nr can be assimilated by primary producers, 
the most abundant chemical form, dissolved dinitrogen gas (N2), can only be assimilated 
by marine diazotrophs.11 Nr inputs to the euphotic zone occur via fluxes of nitrate from 
deep water (vertical mixing and upwelling), marine N2 fixation, river discharge, and 
atmospheric deposition. 12  Nr is removed from the marine N inventory through 
denitrification and anammox13 with subsequent efflux of N2 and N2O to the atmosphere 
(Thamdrup et al., 2006; Capone, 2008; Naqvi et al., 2008; Ward et al., 2009; Ward, 2013). 
Although there is no agreement concerning the oxygen threshold that defines the 
geographic extent of denitrification and anammox (Paulmier and Ruiz-Pino, 2009), these 
processes are limited to suboxic waters with very low oxygen concentrations (< 22 µM). 

10 Reactive or fixed N forms include dissolved inorganic nitrate, nitrite, ammonium and organic N 
compounds, such as urea and free amino acids. 
11 Prokaryotic, free -living and symbiotic bacteria, cyanobacteria and archaea. 
12 River discharge and atmospheric deposition include nitrate from fossil fuel burning and fixed N in 
synthetic fertilizer produced by the Haber-Bosch process for industrial nitrogen fixation. 
13 Anaerobic ammonium oxidation. 
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Figure 2. The biological nitrogen cycle showing the main inorganic forms in which nitrogen occurs in the 
ocean (PON-pariculate organic nitrogen) (adapted from Ward, 2012). 

 

Variations in the ocean’s inventory of Nr have driven changes in marine NPP and 
atmospheric CO2 throughout the Earth’s geological history (Falkowski, 1997; Gruber, 
2004; Arrigo, 2005). Marine N2 fixation provides a source of “new” N and NPP that fuel 
marine food webs and the biological pump. Thus, the rate of N2 fixation can affect 
atmospheric levels of CO2 on time-scales of decades (variability in upper ocean nutrient 
cycles) to millennia (changes in the Nr inventory of the deep sea). This makes the 
balance between the conversion of N2 to biomass (N2 fixation) and the production of N2 
(reduction of nitrate and nitrite by denitrification and anammox) particularly important 
processes in the N cycle that govern the marine inventory of Nr and sustain life in the 
oceans (Karl et al., 2002; Ward et al., 2007; Gruber, 2008; Ward, 2012). 

2.1.1 The Marine Nitrogen Budget 

Estimates of global sources and sinks of Nr vary widely (Table 2). Marine biological N2 
fixation accounts for ~50 per cent of N2 fixation globally (Ward, 2012). Most marine N2 

fixation occurs in the euphotic zone of warm (> 20°C), oligotrophic waters between 30° 
N and 30° S (Karl et al., 2002; Mahaffey et al., 2005; Stal, 2009; Sohm et al., 2011). 
Denitrification and anammox in benthic sediments and mid-water oxygen minimum 
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zones (OMZs) account for most losses of N from the marine Nr inventory (Ulloa et al., 
2012; Ward, 2013).  
Table 2. Summary of estimated sources and sinks (Tg N yr-1) in the global marine nitrogen budget. (Data 
sources: Codispoti et al., 2001; Gruber and Sarmiento, 2002; Karl et al., 2002; Galloway et al., 2004; 
Mahaffey et al., 2005; Seitzinger et al., 2005; Boyer et al., 2006; Moore et al., 2006; Deutsch et al., 2007; 
Duce et al., 2008; DeVries et al., 2012; Grosskopf et al., 2012; Luo et al., 2012; Naqvi, 2012.) 

 

Sources N fixation 60-200 

Rivers 35-80 

Atmosphere 38-96 

TOTAL 133-376 

Sinks Denitrification & anammox 120-450 

Sedimentation 25 

N2O loss 4-7 

TOTAL 149-482 

 

Assuming a C:N:P ratio of 106:16:1 (the Redfield Ratio, Redfield et al., 1963), the 
quantity of Nr needed to support NPP globally is ~8800 Tg N yr-1. Given current 
estimates, inputs of Nr from river discharge and atmospheric deposition support 2-4 per 
cent of NPP annually, i.e., most NPP is supported by recycled nitrate from deep waters 
(cf. Okin et al., 2011). 

Although the N2O flux is a small term in the marine N budget (Table 2), it is a significant 
input to the global atmospheric N2O pool. Given a total input of 17.7 Tg N yr-1 (Freing et 
al., 2012), marine sources may account for 20-40 per cent of N2O inputs to the 
atmosphere. As N2O is 200-300 times more effective than CO2 as a greenhouse gas, 
increases in N2O from the ocean may contribute to both global warming and the 
destruction of stratospheric ozone. We note that although global estimates for 
anammox have yet to be made, this anaerobic process may be responsible for most N2 
production in some oxygen minimum zones (OMZs) (Strous et al., 2006; Hamersley et al., 
2007; Lama et al., 2009; Koeve and Kähler, 2010; Ulloa et al., 2012). 

The accounting in Table 2 suggests that total sinks may exceed total sources, but the 
difference is not significant. Many scientists believe that biological N2 fixation is 
underestimated or the combined rates of denitrification and anammox are 
overestimated (Capone, 2008). On average, the Redfield Ratio approximates the C:N:P 
ratio of phytoplankton biomass, and the distribution of deviations from the Redfield 
Ratio (Martiny et al., 2013) suggests that: sources exceed sinks in the subtropical gyres; 
sources and sinks are roughly equal in upwelling systems (including their OMZs); and 
sources tend to be less than sinks at high latitudes. This pattern is consistent with the 
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known distribution of marine diazotrophs and the observation that most marine N2 
fixation occurs in warm, oligotrophic waters between 30° N and 30° S (Mahaffey et al., 
2005; Stal, 2009; Sohm et al., 2011). However, given the wide and overlapping ranges of 
current estimates of Nr sources and sinks (Table 2), the extent to which the two are in 
steady state remains controversial. 

Atmospheric deposition of iron to the oceans via airborne dust may ultimately control 
the rate of N2 fixation in the global ocean and may account for the relatively high rate of 
N2 fixation in the subtropical central gyres (Karl et al., 2002). Fe II is required for 
photosynthetic and respiratory electron transport, nitrate and nitrite reduction, and N2 
fixation. The large dust plume that extends from North Africa over the subtropical North 
Atlantic Ocean dominates the global dust field (Stier et al., 2005). Consequently, iron 
deposition is particularly high in this region (Mahowald et al., 2005) where it may 
increase phytoplankton NPP by stimulating N2 fixation (Mahowald et al., 2005; 
Krishnamurthy et al., 2009; Okin et al., 2011). Model simulations indicate that the 
distribution and rate of N2 fixation may also be influenced by non-Redfield uptake of N 
and P by non-N2 fixing phytoplankton (Mills and Arrigo, 2010). In these simulations, N2 
fixation in ecosystems dominated by phytoplankton with N:P ratios < Redfield is lower 
than expected when estimated rates are based on Redfield stoicheiometry. In contrast, 
in systems dominated by phytoplankton with N:P ratios > Redfield, N2 fixation is higher 
than expected based on Redfield stoicheiometry. 

2.1.2 Time-Space Coupling of N2 Fixation and Denitrification/Anammox  

Early measurements of N2 fixation and the geographic distribution of in situ deviations 
from the Redfield Ratio suggest that the dominant sites of N2 fixation and denitrification 
are geographically separated and coupled on the time scales of ocean circulation 
(Capone et al., 2008 and references therein). In this scenario, the ocean oscillates 
between being a net source and a net sink of Nr on time scales of hundreds to thousands 
of years (Naqvi, 2012). However, there is also evidence that N2 fixation is closely coupled 
with denitrification/anammox in upwelling-OMZ systems14, i.e., rates of N2 fixation are 
high downstream from OMZs where denitrification/anammox is high (Deutsch et al., 
2007). Their findings indicate that N2 fixation and denitrification are in steady state on a 
global scale. Results from 3-D inverse modelling (DeVries et al., 2013) and observations 
that the marine Nr inventory has been relatively stable over the last several thousand 
years (Gruber, 2004; Altabet, 2007) support the hypothesis that rates of N2 fixation and 
denitrification/anammox are closely coupled in time and space. 

At the same time, global biogeochemical modelling suggests that the negative 
feedbacks stabilizing the Nr inventory cannot persist in an ocean where N2 fixation and 
denitrification/anammox are closely coupled, i.e., spatial separation, rather than spatial 
proximity, promoted negative feedbacks that stabilized the marine N inventory and 

14 Oxygen minimum zones (OMZs) are oxygen-deficient layers in the ocean's water column (Paulmier and 
Ruiz-Pino, 2009). 
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sustained a balanced N budget (Landolfi et al., 2013). If the coupling is close as argued 
above, the budget may not be in steady state. In this scenario, increases in vertical 
stratification of the upper ocean and expansion of OMZs associated with ocean warming 
(Keeling et al., 2010) could lead to closer spatial coupling of N2 fixation and 
denitrification, a net loss of N from the marine Nr inventory, and declines in NPP and 
CO2 sequestration during this century. 

 

2.2 Phosphorus 

Phosphorus (P) is an essential nutrient utilized by all organisms for energy transport and 
growth. The primary inputs of P occur via river discharge and atmospheric deposition 
(Table 3). Biologically active P (BAP) in natural waters usually occurs as phosphate (PO4

-

3), which may be in dissolved inorganic forms (including orthophosphates and 
polyphosphates) or organic forms (organically bound phosphates). Natural inputs of BAP 
begin with chemical weathering of rocks followed by complex biogeochemical 
interactions, whose time scales are much longer than anthropogenic P inputs (Benitez-
Nelson, 2000). Primary anthropogenic sources of BAP are industrial fertilizer, sewage 
and animal wastes. 

The Marine Phosphorus Budget: River discharge of P into the coastal ocean accounts for 
most P input to the ocean (Table 3). However, most riverine P is sequestered in 
continental shelf sediments (Paytan and McLaughlin, 2007) so that only ~25 per cent of 
the riverine input enters the NPP-driven marine P cycle. Estimates of BAP reaching the 
open ocean from rivers range from a few tenths to perhaps 1 Tg P yr-1 (Seitzinger et al., 
2005; Meybeck, 1982; Sharpies et al., 2013). Mahowald et al., (2008) estimated that 
atmospheric inputs of BAP are ~0.1 Tg P yr-1. Together these inputs would support ~0.1 
per cent of NPP annually. Thus, like Nr, virtually all NPP is supported by BAP recycled 
within the ocean on a global scale. 
Table 3. Summary of estimated sources and sinks (Tg P yr-1) in the global marine phosphorus budget. 
(Data sources: Filippelli and Delaney, 1996; Howarth et al., 1996; Benitez-Nelson, 2000; Compton et al., 
2000; Ruttenberg, 2004; Seitzinger et al., 2005; Paytan and McLaughlin, 2007; Mahowald et al., 2008; 
Harrison et al., 2010; Krishnamurthy et al., 2010.) 

 

Sources River discharge 10.79 – 31.00 

Atmospheric deposition 0.54 – 1.05 

 TOTAL 11.33 – 32.05 

Sinks Open ocean sedimentation 1.30 – 10.57 

 

The primary source of P in the atmosphere is mineral dust, accounting for approximately 
80 per cent of atmospheric P. Other important sources include biogenic particles, 
biomass burning, fossil-fuel combustion, and biofuels. The P in mineral particles is not 
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very soluble, and most of it is found downwind of desert and arid regions. Only ~0.1 Tg P 
yr-1 of BAP appears to enter the oceans via atmospheric deposition (Mahowald et al., 
2008). Although a small term in the P budget (Table 3), atmospheric deposition appears 
to be the main external source of BAP in the oligotrophic waters of the subtropical gyres 
and the Mediterranean Sea (Paytan and McLaughlin, 2007; Krishnamurthy et al., 2010). 

Burial in continental shelf and deep-sea sediments is the primary sink, with most 
riverine input being removed from the marine P cycle by rapid sedimentation of 
particulate inorganic (non-reactive mineral lattices) P in coastal waters (Paytan and 
McLaughlin, 2007). Burial in deep-sea sediments occurs after transformations from 
dissolved to particulate forms in the water column. Of the riverine input, 60-85 per cent 
is buried in continental shelf sediments (Slomp, 2011). Assuming that inputs from river 
discharge and atmospheric deposition are, respectively, ~15 Tg P yr-1 and 1 Tg P yr-1, and 
that 11 Tg P yr-1 and 5 Tg P yr-1, respectively, are buried in shelf and open-ocean 
sediments, the P budget appears to be roughly balanced on the scale of P turnover 
times in the ocean (~1500 years, Paytan and McLaughlin, 2007). 

 

3. Variability and Resilience of Marine Ecosystems 

 

3.1  Phytoplankton species diversity and resilience 

Biodiversity enhances resilience by increasing the range of possible responses to 
perturbations and the likelihood that species will functionally compensate for one 
another following disturbance (functional redundancy) (McCann, 2000; Walker et al., 
2004; Hooper et al., 2005; Haddad et al., 2011; Appeltans et al., 2012; Cleland, 2011). 
Annually averaged phytoplankton species diversity of the upper ocean tends to be 
lowest in polar and subpolar waters, where fast-growing (opportunistic) species account 
for most NPP, and highest in tropical and subtropical waters, where small phytoplankton 
(< 10 µm) account for most NPP (Barton et al., 2010).  Phytoplankton species diversity is 
also a unimodal function of phytoplankton NPP, with maximum diversity at intermediate 
levels of NPP and minimum diversity associated with blooms of diatoms, dinoflagellates, 
Phaeocystis sp., and coccolithophores (Irigoien et al., 2004). This suggests that pelagic 
marine food webs may be most resilient to climate and anthropogenic forcings at 
intermediate levels of annual phytoplankton NPP. 

 

3.2  Events, phenomena and processes of special interest 

Zooplankton grazing: Zooplankton populations play key roles in both microbial food 
webs15 supported by small phytoplankton (< 10 µm) and metazoan food webs16 

15 The microbial food web (or microbial loop) consists of small phytoplankton (mean spherical diameter < 
10 µm), heterotrophic bacteria, archaea and protozoa (flagellates and ciliates).  
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supported by large phytoplankton (> 20 µm). As such, they are critical links in nutrient 
cycles and the transfer of NPP to higher trophic levels of metazoan consumers. They fuel 
the biological pump and they limit excessive increases in NPP (e.g., Corten and Linley, 
2003; Greene and Pershing, 2004; Steinberg et al., 2012). Microbial food webs dominate 
the biological cycles of C, N and P in the upper ocean and feed into metazoan food webs 
involving zooplankton, planktivorous fish, and their predators (Pomeroy et al., 2007; 
Moloney et al., 2011; Ward et al., 2012). Zooplankton in microbial food webs are 
typically dominated by heterotrophic and mixotrophic flagellates and ciliates. Metazoan 
food webs dominate the flow of energy and nutrients to harvestable fish stocks and to 
the deep sea (carbon sequestration). Zooplankton in metazoan food webs are typically 
dominated by crustaceans (e.g., copepods, krill and shrimp) and are part of relatively 
short, efficient, and nutritionally rich food webs supporting large numbers of 
planktivorous and piscivorous fish, seabirds, and marine mammals (Richardson, 2008; 
Barnes et al., 2010; Barnes et al., 2011). 

Microbial food webs support less zooplankton biomass than do metazoan food webs, 
and a recent analysis suggests that zooplankton/phytoplankton ratios range from a low 
of ~0.1 in the oligotrophic subtropical gyres to a high of ~10 in upwelling systems and 
subpolar regions (Ward et al., 2012). Such a gradient is consistent with a shift from 
“bottom-up”, nutrient-limited NPP in the oligotrophic gyres, where microflagellates are 
the primary consumers of NPP (Calbet, 2008), to “top-down”, grazing control of NPP by 
zooplankton in more productive high-latitude and upwelling ecosystems, where 
planktonic crustaceans are the primary grazers of NPP (Ward et al., 2012). Thus, 
zooplankton grazing on phytoplankton is an important parameter of spatial patterns and 
temporal trends in NPP, particularly at high latitudes and in coastal upwelling systems 
(section 6.1.4). 

3.2.1 NPP and Fisheries 

Fish production depends to a large extent on NPP but the relationship between NPP and 
fish landings is complex. For instance, Large Marine Ecosystems (LMEs) of the coastal 
ocean account for ~30 per cent of marine phytoplankton NPP and ~80 per cent of 
marine fish landings globally (Sherman and Hempel, 2009). They are also “proving 
grounds” for the development of ecosystem-based approaches (EBAs) to fisheries 
management (McLeod and Leslie, 2009; Sherman and Hempel, 2009; Malone et al., 
2014b). EBAs are guided in part by the recognition that the flow of energy and nutrients 
from NPP through marine food webs ultimately limits annual fish landings (Pauly and 
Christensen, 1995; Pikitch et al., 2004). 

Both mean annual and maximum fish landings have been shown to be related to NPP on 
regional scales, with increases in potential landings at high latitudes (> 30 per cent) and 
decreases at low latitudes (up to 40 per cent) (Pauly and Christensen, 1995; Ware, 2000; 

16 The so-called “classical” food web is dominated by larger phytoplankton, metazoan zooplankton and 
nekton. 
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Ware and Thomson, 2005; Frank et al., 2006; Chassot et al., 2007; Sherman and Hempel, 
2009; Blanchard et al., 2012). However, the NPP required to support annual fish 
landings (PPR) varies among LMEs, e.g., fisheries relying on NPP at the Eastern Boundary 
Upwelling Systems require substantially higher levels of NPP than elsewhere (Chassot et 
al., 2010). Variations in PPR/NPP are related to a number of factors, including the 
relative importance of microbial and metazoan food webs and differences in the 
efficiencies of growth and transfer efficiencies among trophic levels. The level of 
exploitation (PPR/NPP) increased by over 10 per cent from 2000 to 2004, and the NPP 
appropriated by current global fisheries is 17-112 per cent higher than that 
appropriated by sustainable fisheries. Temporal and spatial variations in PPR/NPP call 
into question the usefulness of global NPP per se as a predictor of global fish landings 
(Friedland et al., 2012). Friedland et al. (2012) found that NPP is a poor predictor of fish 
landings across 52 LMEs, with most variability in fish landings across LMEs accounted for 
by chlorophyll-a concentration, the fraction of NPP exported to deep water, and the 
ratio of secondary production to NPP. Given these considerations and uncertainties 
concerning the effects of climate change on fluxes of nutrients to the euphotic zone, it is 
not surprising that there is considerable uncertainty associated with projections of how 
changes in NPP will affect fish landings over the next few decades. 

3.2.2 NPP Fisheries and zooplankton 

Zooplankton is a critical link between NPP and fish production (Cushing, 1990; 
Richardson, 2008). Efficient transfer of phytoplankton NPP to higher trophic levels 
ultimately depends on the relative importance of microbial and metazoan foods webs 
and the coherence between the timing of phytoplankton blooms (initiation, amplitude, 
duration) and the reproductive cycles of zooplankton and planktivorous fish (Cushing, 
1990; Platt et al., 2003; Koeller et al., 2009; Jansen et al., 2012). Energy transfer to 
higher trophic levels via microbial food webs is less efficient than for metazoan food 
webs (e.g., Barnes et al., 2010; Barnes et al., 2011; Suikkanen et al., 2013). Coherence in 
time and space is especially important in higher-latitude ecosystems (Sherman et al., 
1984; Edwards and Richardson, 2004; Richardson, 2008; Ohashia et al., 2013), where 
seasonal variations in NPP are most pronounced and successful fish recruitment is most 
dependent on synchronized production across trophic levels (Cushing, 1990; Beaugrand 
et al., 2003). The phenological response to ocean warming differs among functional 
groups of plankton, resulting in predator-prey mismatches that may influence PPR/NPP 
in marine ecosystems. For example, phytoplankton blooms in the North Atlantic begin 
earlier south of 40°N (autumn – winter) and in spring north of 40°N (Siegel et al., 2002; 
Ueyama and Monger, 2005; Vargas et al., 2009). Likewise, a 44-year time series (1958-
2002) revealed progressively earlier peaks in abundance of dinoflagellates (23 days), 
diatoms (22 days) and copepods (10 days) under stratified summer conditions in the 
North Sea (Edwards and Richardson, 2004). Such differential responses in phytoplankton 
and zooplankton phenology lead to mismatches between successive trophic levels and, 
therefore, a decline in PPR/NPP, i.e., a decrease in carrying capacity for harvestable fish 
stocks. 
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3.2.3 Coastal Eutrophication and “Dead Zones” 

Excess phytoplankton NPP in coastal ecosystems can lead to accumulations of 
phytoplankton biomass and eutrophication. Anthropogenic N and P loading to estuarine 
and coastal marine ecosystems has more than doubled in the last 100 years (Seitzinger 
et al., 2010; Howarth et al., 2012),17 leading to a global spread of coastal eutrophication 
and associated increases in the number of oxygen-depleted “dead zones” (Duarte, 1995; 
Malone et al., 1999; Diaz and Rosenberg, 2008; Kemp et al., 2009), loss of sea grass beds 
(Dennison et al., 1993; Kemp et al., 2004; Schmidt et al., 2012), and increases in the 
occurrence of toxic phytoplankton blooms (see below). Current global trends in coastal 
eutrophication and the occurrence of “dead zones” and toxic algal events indicate that 
phytoplankton NPP is increasing in many coastal ecosystems, a trend that is also likely to 
exacerbate future impacts of over-fishing, sea-level rise, and coastal development on 
ecosystem services (Dayton et al., 2005; Koch et al., 2009; Waycott et al., 2009). 

3.2.4 Oxygen minimum zones (OMZs) 

OMZs, which occur at midwater depths (200-1000 m) in association with eastern 
boundary upwelling systems, are expanding globally as the solubility of dissolved O2 
decreases and vertical stratification increases due to upper ocean warming (Chan et al., 
2008; Capotondi et al., 2012; Bijma et al., 2013). Currently, the total surface area of 
OMZs is estimated to be ~30 x 106 km2 (~8 per cent of the ocean’s surface area) with a 
volume of ~10 x 106 km3 (~0.1 per cent of the ocean’s volume). It is expected that the 
spatial extent of OMZs will continue to increase (Oschlies et al., 2008), a trend that is 
likely to affect nutrient cycles and fisheries – especially when combined with the spread 
of coastal dead zones associated with coastal eutrophication. 

3.2.5 Toxic Algal Blooms  

Toxin-producing algae are a diverse group of phytoplankton species with only two 
characteristics in common: (1) they harm people and ecosystems; and (2) their 
initiation, development and dissipation are governed by species-specific population 
dynamics and oceanographic conditions (Cullen, 2008b). Negative impacts of algal toxins 
include illness and death in humans who consume contaminated fish and shellfish or are 
exposed to toxins via direct contact (swimming, inhaling noxious aerosols); mass 
mortalities of wild and farmed fish, marine mammals and birds; and declines in the 
capacity of ecosystems to support goods and services (Cullen, 2008b; Walsh et al., 
2008). Impacts associated with toxic algal blooms are global and appear to be increasing 
in severity and extent in coastal ecosystems as a consequence of anthropogenic 
nutrients, introductions of non-native toxic species with ballast water from ships, and 
climate-driven increases in water temperature and vertical stratification of the upper 
ocean (Glibert et al., 2005; Glibert and Bouwman, 2012; Cullen, 2008b; Franks, 2008; 
Malone, 2008; Hallegraeff, 2010; Moore et al., 2008, Babin et al., 2008). 

17 Primarily due to the rapid rise in fertilizer use in agriculture, production of manure from farm animals, 
domestic sewage, and atmospheric deposition associated with fossil-fuel combustion. 
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3.2.6 Nanoparticles 

Nanoparticles have dimensions of 1-100 nm and are produced both naturally and 
anthropogenically. Of concern here are anthropogenic nanoparticles, such as titanium 
dioxide (TiO2)18 and nanoplastics19. Nanoparticulate TiO2 is highly photoactive and 
generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UV). 
Consequently, TiO2 has been used for antibacterial applications, such as wastewater 
treatment. It also has the potential to affect NPP. For example, it has been found that 
ambient levels of UV from the sun can cause TiO2 nanoparticles suspended in seawater 
to kill phytoplankton, perhaps through the generation of ROS (Miller et al., 2012). 
Recent work has also highlighted the potential environmental impacts of microplastics 
(cf. Depledge et al., 2013; Wright et al., 2013). Experimental evidence suggests that 
nanoplastics may reduce grazing pressure on phytoplankton and perturb nutrient cycles. 
For example, Wegner et al., (2012) found that mussels (Mytilus edulis) exposed to 
nanoplastics consume less phytoplankton and grow slower than mussels that have not 
been exposed. In addition, microplastics contain persistent organic pollutants, and both 
mathematical models and experimental data have demonstrated the transfer of 
pollutants from plastic to organisms (Teuten et al., 2009). 

Understanding the ecotoxicology of anthropogenic nanoparticles in the marine 
environment is an important challenge, but as of this writing there is no clear consensus 
on environmental impacts in situ (cf. Handy et al., 2008). We know so little about the 
persistence and physical behaviour of anthropogenic nanoparticles in situ that 
extrapolating experimental results, such as those given above, to the natural marine 
environment would be premature. We urgently need to develop the means to reliably 
and routinely monitor nanoparticles of anthropogenic origin and their impacts on 
production and fate of phytoplankton biomass. A first step towards risk assessment 
would be to establish and set limits based on their intrinsic toxicity to phytoplankton 
and the consumers of plankton biomass. The provision of such information is part of the 
mission of Working Group 40 of the Joint Group of Experts on the Scientific Aspects of 
Marine Environmental Protection (GESAMP). WG 40 was established to assess the 
sources, fate and effects of micro-plastics in the marine environment globally.20 

3.2.7 Ultraviolet Radiation and the Ozone Layer  

The Sun emits ultraviolet radiation (UV, 400-700 nanometers), with UV-B (280-315 nm) 
having a wide range of potentially harmful effects, including inhibition of primary 

18 The world production of nanoparticulate TiO2 is an order of magnitude greater than the next most 
widely produced nanomaterial, ZnO. About 70 per cent of all pigments use TiO2, and it is a common 
ingredient in products such as sunscreen and food colouring. Titanium dioxide is therefore likely to enter 
estuaries and oceans, for example, from industrial discharge. 
19 Plastic nanoparticles are released when plastic debris decomposes in seawater. Nanoparticles are also 
released from cosmetics and from clothes in the wash, and enter sewage systems where they are 
discharged into the sea. 
20 http://www.gesamp.org/work-programme/workgroups/working-group-40. 
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production by phytoplankton and cyanobacteria (Häder et al., 2007; Villar-Argaiz et al., 
2009; Ha et al., 2012), changes in the structure and function of plankton communities 
(Ferreyra et al., 2006; Häder et al., 2007; Fricke et al., 2011; Guidi et al., 2011; Santos et 
al., 2012a; Ha et al., 2014), and alterations of the N cycle (Goes et al., 1995; Jiang and 
Qiu, 2011). The ozone layer in the Earth’s stratosphere blocks most UV-B from reaching 
the ocean’s surface. Consequently, stratospheric ozone depletion since the 1970s has 
been a concern, especially over the South Pole, where a so-called ozone hole has 
developed.21 However, the average size of the ozone hole declined by ~2 per cent 
between 2006 and 2013 and appears to have stabilized, with variation from year to year 
driven by changing meteorological conditions.22 It has even been predicted that there 
will be a gradual recovery of ozone concentrations by ~2050 (Taalas et al., 2000). Given 
these observations and variations in the depths to which UV-B penetrates in the ocean 
(~1-10 m), a consensus on the magnitude of the ozone-depletion effect on NPP and 
nutrient cycling has yet to be reached. 

 

4. Socioeconomic importance 

 

Marine NPP supports a broad range of ecosystem services valued by society and 
required for sustainable development (Millennium Ecosystem Assessment, 2005; Worm 
et al., 2006; Conservation International, 2008; Perrings et al., 2010; Schlitzer et al., 2012; 
Malone et al., 2014b; Chapter 3 in this assessment). These include: 

(1)  food security through the production of harvestable fish, shellfish and 
macroalgae (Sherman and Hempel, 2009; Chassot et al., 2010; Barbier et al., 
2011); 

(2)  climate regulation through carbon sequestration (Twilley et al., 1992; Cebrian, 
2002; Schlitzer et al., 2003; Duarte et al., 2005; Bouillon et al., 2008; Mitsch and 
Gosselink, 2008; Schneider et al., 2008; Subramaniam et al., 2008; Laffoley and 
Grimsditch, 2009; Nellemann et al., 2009; Chavez et al., 2011; Crooks et al., 
2011; Henson et al., 2012); 

(3)  maintenance of water quality through nutrient recycling and water filtration 
(Falkowski et al., 1998; Geider et al., 2001; Dayton et al., 2005; Howarth et al., 
2011); 

(4)  protection from coastal erosion and flooding through the growth of macrophyte 
habitats (Danielsen et al., 2005; UNEP-WCMC, 2006; Davidson and Malone, 

21 Ozone can be destroyed by reactions with by-products of man-made chemicals, such as chlorine from 
chlorofluorocarbons (CFCs). Increases in the concentrations of these chemicals have led to ozone 
depletion. 
22 http://www.nasa.gov/content/. 
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2006/2007; Braatz et al., 2007; Koch et al., 2009; Titus et al., 2009; Barbier et al., 
2011), and 

(5)  development of biofuels and discovery of pharmaceuticals through the 
maintenance of biodiversity (Chynoweth et al., 2001; Orhan et al., 2006; Han et 
al., 2006; Yusuf, 2007; Negreanu-Pîrjol et al., 2011; Vonthron-Sénécheau et al., 
2011; Pereira et al., 2012; Sharma et al., 2012). 

On a global scale, the value of these services in coastal marine and estuarine ecosystems 
has been estimated to be > 25 trillion United States dollars annually, making the coastal 
zone among the most economically valuable regions on Earth (Costanza et al., 1997; 
Martínez et al., 2007). The global loss of macrophyte ecosystems threatens the ocean’s 
capacity to sequester carbon from the atmosphere (climate control), support 
biodiversity (Part V of this Assessment) and living marine resources (Part IV of this 
Assessment), maintain water quality, and protect against coastal erosion and flooding 
(Boesch and Turner, 1984; Dennison et al., 1993; Duarte, 1995; CENR, 2003; Scavia and 
Bricker, 2006; Davidson and Malone, 2006/07; Diaz and Rosenberg, 2008; MacKenzie 
and Dionne, 2008; Nellemann et al., 2009). Estimates of the value of these services by 
Koch et al., (2009) and Barbier et al., (2011) suggest that the socioeconomic impact of 
the degradation of marine macrophyte ecosystems is on the order of billions of US 
dollars per year. 

 

5. Anthropogenic Impacts on Upper Ocean Plankton and Nutrient Cycles 

 

5.1  Nitrogen loading 

The rate of industrial Nitrogen gas (N2) fixation increased rapidly during the 20th century 
and is now about equal to the rate of biological N2 fixation, resulting in a two- to 
threefold increase in the global inventory of Reactive nitrogen (Nr) (Galloway et al., 
2004; Howarth, 2008), a trend that has accelerated the global N cycle (Gruber and 
Galloway 2008). Today, anthropogenic Nr inputs to surface waters via atmospheric 
deposition and river discharge are now roughly equivalent to marine N2 fixation (Table 
2) and are expected to exceed marine N2 fixation in the near future as a result of 
increases in emissions from combustion of fossil fuels and use of synthetic fertilizers. 
This trend is expected to continue (Duce et al., 2008; Seitzinger et al., 2010). 

Atmospheric deposition of anthropogenic Nr increased by an order of magnitude during 
the 20th century to ~54 Tg N y−1 (80 per cent of total deposition), an amount that could 
increase NPP by ~0.06 per cent. Estimates of anthropogenic emissions for 2030 indicate 
a 4-fold increase in total atmospheric Nr deposition to the ocean and an 11-fold increase 
in AAN deposition (Duce et al., 2008). However, Lamarque et al., (2013) suggest that 
oxidized Nr may decrease later this century because of increased control of the emission 
of oxidized N compounds. At the same time, the geographic distribution of atmospheric 
deposition has also changed (Suntharalingam et al., 2012). In the late 1800s, 
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atmospheric deposition over most of the ocean is estimated to have been < 50 mg N m−2 
y−1. By 2000, deposition over large ocean areas exceeded 200 mg N m−2 y−1 with intense 
deposition plumes (> 700 mg N m−2 y−1) extending downwind from Asia, India, North and 
South America, Europe and West Africa. Predictions for 2030 indicate similar patterns, 
but with higher deposition rates extending farther offshore into the oligotrophic, 
subtropical central gyres. Likewise, marine N2O production has increased compared to 
pre-industrial times downwind of continental population centres (in coastal and inland 
seas by 15-30 per cent, in oligotrophic regions of the North Atlantic and Pacific by 5-20 
per cent, and in the northern Indian Ocean by up to 50 per cent). These regional 
patterns reflect a combination of high Nr deposition and enhanced N2O production in 
suboxic zones. 

The major pathway of anthropogenic Nr loading to the oceans is river runoff. 
Anthropogenic Nr input to the coastal ocean via river discharge more than doubled 
during the 20th century due to increases in fossil-fuel combustion, discharges of human 
and animal wastes, and the use of industrial fertilizers in coastal watersheds (Peierls et 
al., 1991; Galloway et al., 2004; Seitzinger et al., 2010). Riverine input of Nr to the 
coastal ocean is correlated with human population density in and net anthropogenic 
inputs (NANI)23 to coastal watersheds (Howarth et al., 2012). NPP in coastal marine and 
estuarine ecosystems increases with increasing riverine inputs of Nr (Nixon, 1992). Given 
predicted increases in population density in coastal watersheds and climate-driven 
changes in the hydrological cycle, global nutrient-export models predict that riverine 
inputs of Nr to coastal waters will double again by 2050 (Seitzinger et al., 2010). In this 
context, it is noteworthy that anthropogenic perturbations of the N-cycle caused by 
NANI already exceed the estimated “planetary boundary” (35 x 103 kg yr-1) within which 
sustainable development is possible (Rockstram et al., 2009). 

Ocean warming and associated increases in vertical stratification are likely to exacerbate 
the effects of increases in NANI on phytoplankton NPP in coastal waters (Rabalais et al., 
2009). As a consequence, excess NPP and the global extent of coastal eutrophication are 
likely to continue increasing, especially in coastal waters near large watersheds, 
population centres and areas of industrial agriculture (Kroeze and Seitzinger, 1998; 
Dayton et al., 2005; Seitzinger et al., 2005; UNESCO, 2008; Kemp et al., 2009; Rabalais et 
al., 2009; Sherman and Hempel, 2009). 

 

5.2  Ocean warming 

5.2.1 Global impacts on NPP 

Henson et al., (2013) used the results of six global biogeochemical models to project the 
effects of upper ocean warming on the amplitude and timing of seasonal peaks in 

23 Net anthropogenic nitrogen input (NANI) is the sum of synthetic N fertilizer used, N fixation associated 
with agricultural crops, atmospheric deposition of oxidized N, and the net movement of N into or out of 
the region in human food and animal feed. 
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phytoplankton NPP. Amplitude decreased by 1-2 per cent over most of the ocean, 
except in the Arctic, where an increase of 1 per cent by 2100 is projected. These results 
are supported by the response of phytoplankton and zooplankton to global climate-
change projections carried out with the IPSL Earth System Model (Chust et al., 2014). 
Projected upper ocean warming by the turn of the century led to reductions in 
phytoplankton and zooplankton biomass of 6 per cent and 11 per cent, respectively. 
Simulations suggest such declines are the predominant response over nearly 50 per cent 
of the ocean and prevail in the tropical and subtropical oceans while increasing trends 
prevail in the Arctic and Antarctic oceans. These results suggest that the capacity of the 
oceans to regulate climate through the biological carbon pump may decrease over the 
course of this century. The model runs also indicate that, on average, a 30-40 year time 
series of observations will be needed to validate model results. 

Regardless of the direction of global trends in NPP, climate change may be causing shifts 
in phytoplankton community size spectra toward smaller cells which, if confirmed, will 
have profound effects on the fate of NPP and nutrient cycling during this century 
(Polovina and Woodworth, 2012). The size spectrum of phytoplankton communities in 
the upper ocean’s euphotic zone largely determines the trophic organization of pelagic 
ecosystems and, therefore, the efficiency with which NPP is channelled to higher trophic 
levels, is exported to the deep ocean, or is metabolized in the upper ocean (Malone, 
1980; Azam et al., 1983; Cushing, 1990; Kiørboe, 1993; Legendre and Rassoulzadegan, 
1996; Shurin et al., 2006; Pomeroy et al., 2007; Marañón, 2009; Barnes et al., 2010; 
Finkel et al., 2010; Suikkanen et al., 2013; and section 6.3.2). 

In today’s ocean, the proportion of NPP accounted for by small phytoplankton (cells 
with an equivalent spherical diameter < 10 µm) generally increases with increasing 
water temperature in the ocean (Atkinson et al., 2003; Daufresne et al., 2009; Marañón, 
2009; Huete-Ortega et al., 2010; Morán et al., 2010; Hilligsøe et al., 2011) and with 
increasing vertical stratification of the euphotic zone (Margalef, 1978; Malone, 1980; 
Kiørboe, 1993). Small cells also have a competitive advantage over large cells in 
nutrient-poor environments (Malone, 1980a; Chisholm, 1992; Kiørboe, 1993; Raven, 
1998; Marañón, 2009). Thus, as the upper ocean warms and becomes more stratified, it 
is likely that the small phytoplankton species will account for an increasingly large 
fraction of NPP (Morán et al., 2010) resulting in increases in energy flow through 
microbial food webs and decreases in fish stocks and organic carbon export to the deep 
sea (see section 6.1.1 and references therein). 

This trend may be exacerbated by increases in temperature that are likely to stimulate 
plankton metabolism, enhancing both NPP and microbial respiration. Recent studies 
(Montoya and Raffaelli, 2010; Sarmento et al., 2010; Behrenfeld, 2011; Taucher and 
Oschlies, 2011; Taucher et al., 2012) suggest that predicted climate-driven increases in 
the temperature of the upper ocean will stimulate the NPP of smaller 
picophytoplankton cells (equivalent spherical diameter < 2µm), despite predicted 
decreases in nutrient inputs to the euphotic zone from the deep sea in permanently 
stratified regions of the ocean (e.g., the oligotrophic, subtropical central gyres). 
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However, if this does occur, it will not result in an increase in fishery production or in 
the ocean’s uptake of atmospheric CO2, because increases in picophytoplankton NPP 
will be accompanied by equivalent increases in the respiratory release of CO2 by 
bacterioplankton and other heterotrophic microbial consumers in the upper ocean 
(Sarmento et al., 2010; Behrenfeld, 2011). 

5.2.2 Regional impacts on NPP 

Regional trends in phytoplankton NPP are less controversial. The area of low NPP in the 
subtropical central gyres increased by 1-4 per cent yr-1 from 1998 through 2006 
(Polovina et al., 2008; Vantrepotte and Mélin, 2009), a trend that is likely to continue 
through this century (Polovina et al., 2011). Decreasing NPP has been attributed to 
climate-driven (ocean warming) increases in vertical stratification and associated 
decreases in nutrient fluxes from deep water to the euphotic zone in the permanently 
stratified subtropical gyres (Rost et al., 2008; Jang et al., 2011; Polovina et al., 2011; 
Capotondi et al., 2012; Moore et al., 2013). In the North Atlantic, upper ocean warming 
and increases in stratification have been accompanied by decreasing NPP in waters 
south of ~50°N, whereas warming and increases in stratification to the north have been 
accompanied by increasing NPP (Richardson and Shoeman, 2004; Bode et al., 2011). 
These divergent responses to stratification reflect increases in the availability of sunlight 
in nutrient-rich, well-mixed subpolar waters and increases in nutrient limitation in 
nutrient-poor, permanently stratified24 subtropical waters (Richardson and Shoeman, 
2004; Steinacher et al., 2010; Bode et al., 2011; Capotondi et al., 2012). 

Polar ecosystems are particularly sensitive to climate change (Smith et al., 2001; 
Anisimov et al., 2007; Bode et al., 2011; Doney et al., 2012; Engel et al., 2013), and the 
impacts of shrinking ice cover on NPP are expected to be especially significant in the 
Arctic Ocean (Wang and Overland, 2009). Loss of Arctic sea ice has accelerated in recent 
years (with a record low in 2012),25 a trend that is correlated with an increase in annual 
NPP by an average of 27.5 Tg C yr-1 since 2003, with an overall increase of 20 per cent 
from 1998 to 2010 (Arrigo et al., 2008; Arrigo and van Dijken, 2011; Brown and Arrigo, 
2012). Of this increase, 30 per cent has been attributed to a decrease in the spatial 
extent of summer ice and 70 per cent to a longer growing season (the spring bloom is 
occurring earlier). The change in NPP is not spatially homogeneous. Positive trends are 
most pronounced in seasonally ice-free regions, including the eastern Barents shelf, 
Siberian shelves (Kara and east Siberian seas), western Mackenzie shelf, and the Bering 
Strait. NPP is expected to continue increasing during this century due to continued sea-
ice retreat and the associated increase in available sunlight. However, this trend may be 
short-lived if nitrate supplies from deep water are insufficient (Tremblay and Gagnon, 
2009). Neglecting the latter, Arrigo and van Dijken (2011) project a > 60 per cent 
increase in NPP for a summer ice-free Arctic using a linear extrapolation of the historical 

24 The permanent or main thermocline extends from ~50° N to ~50° S. North Atlantic Deep Water and 
Antarctic Bottom Water formation take place at higher latitudes.  
25 http://nsidc.org/arcticseaicenews//. 
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trend. Should these trends continue, additional loss of ice during Arctic spring could 
boost NPP more than three-fold above 1998-2002 levels and alter marine ecosystem 
structure and the degree of pelagic-benthic coupling. However, predictions of future 
trends in Arctic NPP are uncertain, given the possibility of nitrate limitation 
(Vancoppenolle et al., 2013). Reducing uncertainty for both nitrate fields and rates of 
biogeochemical processes in the sea-ice zone should improve the skill of projected 
changes in NPP needed to anticipate the impact of climate change on Arctic food webs 
and the carbon cycle. 

The coastal marine ecosystem of the West Antarctic Peninsula supports massive spring-
summer phytoplankton blooms upon which the production of Antarctic krill depends. 
NPP associated with these blooms is correlated with the spatial and temporal extent of 
ice cover during the previous winter. Air temperatures over the West Antarctic 
Peninsula have warmed by 7°C since the 1970s, resulting in a 40 per cent decline in 
winter sea-ice cover and a decrease in phytoplankton NPP (Flores et al., 2012; Ducklow 
et al., 2013; Henley, 2013). Continued declines in the extent of winter sea-ice cover is 
likely to drive decadal-scale reductions in NPP and the production of krill, reducing the 
food supply for their predators (marine mammals, seabirds and people). 

5.2.3 Distribution and abundance of toxic phytoplankton species  

The socioeconomic impacts of toxic dinoflagellate species are increasing globally (Van 
Dolah, 2000; Glibert et al., 2005; Hoagland and Scatasta, 2006; Babin et al., 2008; 
UNESCO, 2012), and their distribution and abundance are sensitive indicators of the 
impacts of anthropogenic nutrient inputs and climate-driven increases in water 
temperature and vertical stratification on ecosystem services (see section 6.3.2). 

Alexandrium tamarense represents a group of species that cause paralytic shellfish 
poisoning (PSP) (Alexandrium catenella, A. fundyense, Pyrodinium bahamense and 
Gymnodinium catenatum) globally (Boesch et al., 1997). Since the 1970s, PSP episodes 
have spread from coastal waters of Europe, North America and Japan to coastal waters 
of South America, South Africa, Australia, the Pacific Islands, India, all of Asia and the 
Mediterranean (Lilly et al., 2007). Climate-driven shifts in the geographic ranges of 
Ceratium furca and Dinophysis spp. in the NE Atlantic have also occurred (Edwards et al., 
2006), and the abundance of dinoflagellates in the North Sea have been positively 
correlated with the North Atlantic Oscillation (NAO) and sea surface temperature 
(Edwards et al., 2001). 

5.2.4 Distribution and abundance of indicator zooplankton species 

The distribution and abundance of calanoid copepods are also sensitive indicators of 
climate-driven increases in upper ocean temperature and basin-scale oscillations (Hays 
et al., 2005; Burkill and Reid, 2010; Edwards et al., 2010) including poleward shifts in 
species distributions (Beaugrand et al., 2002; Beaugrand et al., 2003; Cheung et al., 
2010; Chust et al., 2014), decreases in size, and higher growth rates (e.g., Beaugrand et 
al., 2002; Richardson, 2008; Mackas and Beaugrand, 2010). There have also been 
phenological changes, with the seasonal peak in abundance advancing to earlier in the 
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year for some species and being delayed for others (Edwards and Richardson, 2004, 
section 6.3.2). In the North Pacific, there is a strong correlation between sea-surface 
temperature in the spring and the latitude at which subtropical species reach their 
seasonal peak in abundance.26 Water temperature also influences the annual cycle of 
Neocalanus plumchrus biomass in the Northeast Pacific, where decadal-scale variations 
include a shift to an earlier occurrence of the seasonal biomass peak, as well as a 
decrease in the duration of the bloom under warm ocean conditions (Mackas et al., 
2007; Batten and Mackas, 2009). 

The frequency and magnitude of gelatinous zooplankton blooms may be important 
indicators of the status and performance of marine ecosystems (Hay, 2006; Graham et 
al., 2014). Both predators (medusa and ctenophores) and herbivores (tunicates) can 
affect the fate of NPP (Pitt et al., 2009; Lebrato and Jones, 2011). Predators disrupt 
metazoan food webs by consuming copepods and small fish (Richardson et al., 2009). 
Tunicates reduce the transfer of NPP to upper trophic levels and to the deep sea as their 
gelatinous remains are degraded via microbial food webs (Lebrato and Jones, 2011). 

Although, there is no evidence for an increase in the frequency and magnitude of 
gelatinous zooplankton on a global scale (Condon et al., 2012), decadal scale increases 
have been reported in several coastal marine ecosystems (Brodeur et al., 2002; Kideys, 
2002; Lynam et al., 2006; Uye, 2008; Licandro et al., 2010). A rigorous analysis of multi-
decadal (using a 1950 baseline) abundance data for 45 Large Marine Ecosystems, Brotz 
et al., 2012 found that 28 (62 per cent) exhibited increasing trends while 3 (7 per cent) 
exhibited decreasing trends. Thus, while increases of jellyfish populations may not be 
globally universal, they are both numerous and widespread. The most likely causes of 
these trends include ocean warming, overfishing, coastal eutrophication, habitat 
modification, aquaculture, and introductions of non-indigenous gelatinous species 
(Brotz et al., 2012; Purcell, 2012). While direct evidence is lacking for most of these 
pressures, jellyfish tend to be most abundant in warm waters with low forage fish 
populations, and it is likely that ocean warming will provide a rising baseline of 
abundance leading to increases in the magnitude of jellyfish blooms and associated 
impacts on ecosystem services (Graham et al., 2014). 

 

5.3  Ocean acidification 

The oceans are becoming more acidic due to increases in uptake of atmospheric CO2 
(Calderia and Wickett, 2003; Calderia and Wickett, 2005; Doney et al., 2009; Beardall et 
al., 2009), and most of the upper ocean is projected to be undersaturated with respect 
to aragonite within 4-7 decades (Orr et al., 2005) with undersaturation expected to 
occur earliest at high latitudes (> 40°) and in upwelling systems where the aragonite 
saturation horizon is expected to shoal most rapidly (Feely et al., 2009, Gruber et al., 
2009). These chemical changes in turn affect marine plankton via several mechanisms 

26 http://www.pices.int/publications/pices_press/volume16/v16_n2/pp_19-21_CPR_f.pdf. 
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including the following: (1) decreases in the degree of aragonite saturation makes it 
harder for calcifying organisms (e.g., coccolithophores, foraminifera, and pteropods) to 
precipitate their mineral structures; (2) decreases in pH alters the bioavailability of 
essential algal nutrients such as iron and zinc; and (3) increases in CO2 decrease the 
energy requirements for photosynthetic organisms to synthesize biomass. Such 
biological effects are likely to perturb marine biogeochemical cycles including carbon 
export to the deep sea via the biological pump which may have a positive feedback on 
the buildup of CO2 in the upper ocean and atmosphere. However, assessments of the 
impacts of ocean acidification on NPP and nutrient cycling remain controversial and are 
a subject of much research (cf., Delille et al., 2005; Doney et al., 2009; Shi et al., 2009; 
Shi et al.,2010; Shi et al., 2012; Moy et al., 2009; Kristy et al., 2010). For example, 
increases in CO2 may stimulate N2 and carbon fixation by colonial cyanobacterial 
diazotrophs (Barcelos e Ramos et al., 2007). In addition, as the upper ocean warms, the 
geographic range of diazotrophs will expand. These effects may combine to enhance N2 
fixation by as much as 35-65 per cent by the end of this century (Hutchins et al., 2009). 
It is noteworthy interesting that projected increases in N2 fixation are about the same 
magnitude as increases in denitrification projected by Oschlies et al., (2008). Although 
both of these estimates have large uncertainties, if input and output fluxes accelerate at 
about the same rate, the ocean’s global inventory of Nr would not change, whereas NPP 
could increase (Sarmento et al., 2010; Behrenfeld, 2011). 

In regard to macrophytes, photosynthetic rates of calcifying macroalgae do not appear 
to be stimulated by elevated CO2 conditions, i.e., the majority of studies to date have 
shown a decrease or no change in photosynthetic rates under elevated CO2 conditions 
(Hofmann and Bischof, 2014). On the other hand, there is clear evidence that ocean 
acidification (higher pCO2) stimulates seagrass NPP resulting in increases in above- and 
below-ground biomass suggesting that the capacity of seagrasses to sequester carbon 
may be significantly increased (Garrard and Beaumont, 2014). 

 

5.4  Sea-level rise, coastal development and macrophyte NPP 

Sea levels have increased globally since the 1970s, mainly as a result of global mean sea-
level rise due in part to anthropogenic warming causing ocean thermal expansion and 
glacier melting (Chapter 4 of this Assessment). Sea-level rise will not be uniform 
globally. Regional differences in sea-level trends will be related to changes in prevailing 
winds, ocean circulation, gravitational pull of polar ice sheets, and subsidence, so that 
sea-level rise will exceed the global mean in some regions and will actually fall in 
others.27 

To date, the global decline in macrophyte habitats has been primarily due to coastal 
development, artificially hardened shorelines, aquaculture operations, dredging and 
eutrophication. This will change with sea-level rise (Short and Neckles, 1999; Nicholls 

27 http://tidesandcurrents.noaa.gov/sltrends//. 
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and Cazenave, 2010). Macrophyte habitats are projected to be negatively affected by 
sea-level rise and subsidence, especially where distributions are constrained on their 
landward side by geomorphology and human activities along the shoreline (Pernetta, 
1993; Short and Neckles, 1999; Orth et al., 2006; Alongi, 2008; Gilman et al., 2008; 
Silliman et al., 2009; Waycott et al., 2009; Donato et al., 2011). Together, sea-level rise, 
subsidence, coastal development and aquaculture operations are destroying mangrove 
forests, tidal marshes and seagrass beds at an alarming rate. The combination of sea-
level rise and the loss of these coastal habitats will decrease the capacity of coastal 
ecosystems to provide services, including climate regulation (carbon sequestration), 
protection against coastal flooding and erosion, and the capacity to support biodiversity 
and living marine resources. 

 

5.5  Regions of special interest 

5.5.1 Coastal river plumes 

Increases in land-based anthropogenic inputs of N and P to coastal waters is driving 
increases in annual phytoplankton NPP in estuaries and coastal marine ecosystems near 
population centres and areas of industrial agriculture in large river basins (sections 6.2.1 
and 6.2.2). This may lead to further increases in the spatial extent and/or number of 
coastal ecosystems experiencing eutrophication and oxygen-depleted dead zones 
associated with the coastal plumes of major river-coastal systems, including the Yangtze 
(E. China Sea), Mekong (S. China Sea), Niger (Gulf of Guinea), Nile (Mediterranean Sea), 
Parana (Atlantic Ocean), Mississippi (Gulf of Mexico), and Rhine (North Sea) (UNESCO, 
2012). 

5.5.2 Polar waters and subtropical gyres 

Ocean warming appears to be driving opposing trends in phytoplankton NPP in polar 
waters (interannual increases in NPP) and subtropical gyres (interannual decreases in 
NPP) and a global expansion of oxygen minimum zones associated with upwelling 
systems. Regions of special interest include the Arctic Ocean, coastal waters of the 
western Antarctic Peninsula, permanently stratified subtropical gyres of the North 
Pacific and North Atlantic, and major coastal upwelling centers (Cariaco Basin and 
California, Humboldt, Canary, Benguela and Somali Currents). 

5.5.3 Subpolar waters 

Early expressions of the impacts of ocean acidification on upper ocean plankton are 
most likely to occur at high latitudes. Pteropods and foraminifera (dominated by 
Globigerina bulloides) are most abundant at high latitudes 
 (> 40°N) in surface waters of the North Atlantic (Barnard et al., 2004; Fraile et al., 2008; 
Bednaršek et al., 2012), whereas the coccolithophore E. huxleyi is most abundant in the 
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“Great Southern Coccolithophore Belt” of the Southern Ocean28 and at high latitudes in 
the NE Atlantic (Barnard et al., 2004; Balch et al., 2011; Sadeghi et al., 2012). If the 
abundance of these functional groups declines in these regions, likely impacts will be to 
reduce the capacity of the oceans to take up CO2, export carbon to the deep sea, and 
support fisheries (Cooley et al., 2009). 

 

6. Information needs 

 

As shown above, anthropogenic nutrient-loading of coastal waters and climate-change 
pressures on marine ecosystems (ocean warming and acidification, sea-level rise) are 
driving changes in NPP and nutrient cycles that are affecting the provision of ecosystem 
services and, therefore, sustainable development. However, although changes in 
macrophyte NPP and their impacts are relatively well documented (and must continue 
to be), a consensus on the magnitude of changes and even the direction of change in 
phytoplankton NPP and upper ocean nutrient cycles has yet to be reached. 

Documenting spatial patterns and temporal trends in NPP and nutrient cycles (and their 
causes and socioeconomic consequences) will rely heavily on the accuracy and 
frequency with which changes in NPP and nutrient cycling can be detected over a broad 
range of scales (cf. deYoung et al., 2004; UNESCO, 2012; Mathis and Feeley, 2013). 
Given the importance of marine NPP and the species diversity of primary producers to 
sustaining ecosystem services, rapid detection of changes in time-space patterns of 
marine NPP and in the diversity of primary producers that contribute to NPP is an 
important dimension of the Regular Process29 for global reporting and assessment of 
the state of the marine environment, including socioeconomic aspects. 

Data requirements for the Regular Process have been used to help guide the 
development of the Global Ocean Observing System and an implementation strategy for 
its coastal module (UNESCO, 2012; Malone et al., 2014a; Malone et al., 2014b). The 
essential variables required to compute key indicators of ecosystem health include 
species richness, chlorophyll-a, dissolved Nr, and dissolved BAP (UNESCO, 2012). Routine 
and sustained measurements of these variables over a range of temporal and spatial 
scales are required for rapid and timely detection of changes in NPP and nutrient cycles 
and the impacts of these changes on ecosystem services on regional (e.g., Large Marine 
Ecosystems) to global scales. Although satellite imagery, limited in situ measurements 
and numerical models are making it possible to detect interannual and decadal changes 
in NPP on these scales, the same cannot be said for observations of species richness and 
nutrient distributions (UNESCO, 2012). 

28 The belt is centered around the sub-Antarctic front and has a spatial extent of 88 x 106 km2 (~25 per 
cent of the global ocean).  
29 http://www.un.org/Depts/los/global_reporting/global_reporting.htm. 
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6.1  Net primary production 

Sustained observations of chlorophyll, irradiance and temperature fields are required 
for model-based estimates of phytoplankton NPP (see section 6.1.2). An integrated 
approach using long term data streams from both remote sensing and frequent in situ 
observations is needed to capture the dynamics of marine phytoplankton NPP and to 
detect decadal trends. Remote sensing provides a cost-effective means to observe 
physical and biological variables synoptically in time and space with sufficient resolution 
to elucidate linkages between climate-driven changes in the NPP of ecosystems and the 
dynamic relationship between phytoplankton NPP and the provision of ecosystem 
services (Platt et al., 2008; Forget et al., 2009). For details on requirements, advantages 
and limitations of satellite-based remote sensing of ocean colour, see IOCCG (1998), 
Sathyendranath (2000), and UNESCO (2006, 2012). 

Two related activities, both contributions to the Global Ocean Observing System, 
provide the core of an integrated observing system needed to provide data required to 
assess the state of the marine environment in terms of both time-space variations in 
phytoplankton NPP and the impacts of these variations on ecosystem services: the 
Chlorophyll Global Integrated Network (ChloroGIN)30 (Sathyendranath et al., 2010) and 
Societal Applications in Fisheries and Aquaculture using Remotely-Sensed Imagery 
(SAFARI) (Forget et al., 2010). FARO (Fisheries Applications of Remotely Sensed Ocean 
Colour) has recently been initiated to coordinate the development of ChloroGIN and 
SAFARI for the provision of ocean-colour data and data products for use in fisheries 
research and ecosystem-based management of living marine resources.31 Likewise, the 
GEO Biodiversity Observation Network, the Global Biodiversity Information Facility 
(GBIF), and the Ocean Biogeographical Information System (UNESCO, 2012) provide 
data and information on the species richness of marine primary producers. 

 

6.2  Nitrogen and phosphorus cycles 

The N cycle is more dynamic32 and less well understood than previously thought 
(Codispoti et al., 2001; Capone and Knapp, 2007; Zehr and Kudela, 2011; Landolfi et al., 
2013; Voss et al., 2013). Major impediments to detecting and understanding decadal 
changes in the marine N cycle are: current uncertainties about the rates 
(undersampling); distribution and coupling of sources and sinks; sensitivity of N2 fixation, 
denitrification, and anammox to anthropogenic inputs of Nr; and changes in the marine 
environment associated with climate change (warming and increases in stratification of 
the upper ocean, ocean acidification, oxygen depletion, and sea-level rise). 

30 http://www.chlorogin.org/. 
31 http://www.faro-project.org/index.html. 
32 Estimates of turnover times of Nr have decreased from 10,000 years to 1,500 years (Codispoti et al., 
2001). 
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Quantifying inputs of N and P to coastal ecosystems and the open ocean requires a 
network of coordinated and sustained observations on local to global scales. For 
atmospheric deposition, monitoring should focus on regions that have intense 
deposition plumes downwind of major population centres in West Africa, East Asia, 
Europe, India, North and South America (section 6.2.1 and Schulz et al., 2012). This is a 
major goal of the SOLAS programme 33 . Shipboard time-series observations of 
biogeochemical variables that are being established globally34 should provide deposition 
data for these plumes. For riverine inputs, rivers that are part of the Global Terrestrial 
Network for River Discharge (GTN-R)35 and that represent a broad range of volume 
discharges and catchment-basin population densities are high priorities for monitoring 
land-based inputs and associated land-cover/land-use practices in their watersheds 
(UNESCO, 2012). 

All global ocean biogeochemistry models require oceanographic data on physical and 
chemical variables, including temperature, salinity, mixed-layer depth, and the 
concentration of macro-nutrients (N, P, Si) (Le Quéré et al., 2010). Over the last decade, 
autonomous technologies for measuring essential physical variables (including 
temperature, salinity and mixed-layer depth) have revolutionized our ability to observe 
the sea surface and the ocean’s interior. By integrating data from both remote sensing 
(satellite-based sensors and land-based HF radar) and in situ measurements (from ships 
of opportunity, research vessels and automated moorings, profiling floats, gliders, 
surface drifters and large pelagic predators), observations of atmospheric and upper 
ocean geophysics are now made continuously in four dimensions; data are transmitted 
to data assembly centers in near-real time via satellites, fiber-optic cables, and the 
internet; and predictions (nowcasts and forecasts) of atmospheric and upper ocean 
“weather” are made routinely using data assimilation techniques and coupled 
atmospheric-hydrodynamic models (Hall et al., 2010). 

Over the last decade, autonomous technologies have revolutionized our ability to 
measure nitrate, nitrite, ammonium and reactive phosphate in situ (Johnson and Coletti, 
2002; ACT, 2003; Sakamoto et al., 2004; Adornato et al., 2010). Efforts are also 
underway to expand sampling programmes such Repeat Hyrdrography (Hood 2009), 
Argo (Rudnick et al., 2004; Testor et al., 2010), and OceanSites36 to incorporate in situ 
nutrient sensors. 

 

 

33 http://www.solas-int.org/. 
34 e.g., For example,  http://www.unesco.org/new/en/natural-sciences/ioc-oceans/sections-and- 
programmes/ocean-sciences/biogeochemical-time-series/. 
35 http://www.fao.org/gtos/gt-netRIV.html; http://gtn-r.bafg.de, 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html. 
36 http://www.whoi.edu/virtual/oceansites/ 
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6.3  Plankton species diversity 

Sustaining marine species richness37 is the single most important indicator of the 
capacity of ecosystems to support services valued by society (Worm et al., 2006). A 
biodiversity observation network (GEO BON) 38 has been established to document 
changes in species biodiversity, and the Ocean Biogeographic Information System 
(OBIS)39 documents the species diversity, distribution and abundance of life in the 
oceans. Both are contributions to GEOSS.40 A set of sentinel sites should be targeted for 
sustained observations of species richness including Large Marine Ecosystems and the 
emerging network of marine protected areas that is nested within them (Malone et al., 
2014a). As a group, these sites represent a broad range of species diversity, climate-
related changes in the marine environment, and anthropogenic nutrient inputs. Here we 
underscore the importance of rapid detection of changes in plankton diversity and early 
warnings of impacts on marine ecosystem services. 
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