

Commission on the Limits of the Continental Shelf

SUMMARY OF RECOMMENDATIONS OF THE COMMISSION ON THE LIMITS OF THE CONTINENTAL SHELF IN REGARD TO THE PARTIAL JOINT SUBMISSION MADE BY THE FRENCH REPUBLIC AND THE REPUBLIC OF SOUTH AFRICA IN RESPECT OF THE AREA OF THE CROZET ARCHIPELAGO AND THE PRINCE EDWARD ISLANDS ON 6 MAY 2009*

Recommendations prepared by the Subcommission established for the consideration of the partial Joint Submission made by France and South Africa

Adopted by the Subcommission on 17 November 2022
Approved by the Commission, with amendments, on 7 March 2023

[^0](page left intentionally blank)

TABLE OF CONTENTS

GLOSSARY OF TERMS V
I. INTRODUCTION 1
II. CONTENTS OF THE SUBMISSION. 4
A. Original Submission 4
B. Addendum to the Submission 5
C. Communications and additional material 6
III. EXAMINATION OF THE SUBMISSION BY THE SUBCOMMISSION 6
A. Examination of the format and completeness of the Submission. 6
B. Preliminary analysis of the Submission 7
C. Main scientific and technical examination of the Submission 9
IV. RECOMMENDATIONS OF THE COMMISSION WITH RESPECT TO THE AREA OF THE CROZET ARCHIPELAGO AND THE PRINCE EDWARD ISLANDS 10

1. Geographical and geological description of the region 10
2. The determination of the FOS (article 76, paragraph 4(b)) 12
2.1 Southern Section 16
2.1.1 Considerations. 16
2.1.2 Recommendations 16
2.2 Eastern Section 17
2.2.1 Considerations. 17
2.2.2 Recommendations 18
2.3 Northeastern Section 19
2.3.1 Considerations 19
2.3.2 Recommendations 21
2.4 Northwestern and Western Sections 21
2.4.1 Considerations. 21
2.4.2 Recommendations 36
3. The establishment of the outer edge of the continental margin (article 76, paragraph 4(a)) 36
3.1 Southern Section (Southern Segment) 36
3.1.1 The application of the 60 M distance formula (article 76, paragraph 4(a)(ii)) 36
3.1.2 Configuration of the Outer Edge of the Continental Margin 36
3.1.3 Recommendations 37
3.2 Eastern and Northeastern Sections (Northern Segment) 38
3.2.1 The application of the 60 M distance formula (article 76, paragraph 4(a)(ii)) 38
3.2.2 Configuration of the Outer Edge of the Continental Margin 38
3.2.3 Recommendations 38
4. The application of the constraint criteria (article 76, paragraphs 5 and 6). 38
4.1 The construction of the distance constraint line 38
5. The outer limits of the continental shelf (article 76, paragraph 7) 39
5.1 Southern Section (Southern Segment) 39
5.2 Eastern and Northeastern Sections (Northern Segment) 40
6. Recommendations for the area of the Crozet Archipelago and the Prince Edward Islands (article 76, paragraph 8) 41
REFERENCES 42
ANNEXI TABLES OF GEOGRAPHICAL COORDINATES OF: THE FOOT OF THE CONTINENTAL SLOPE POINTS, THE FIXED POINTS OF THE OUTER EDGE OF THE CONTINENTAL MARGIN AND THE FIXED POINTS OF THE OUTER LIMITS OF THE CONTINENTAL SHELF BEYOND 200 M, AS RECOMMENDED BY THE COMMISSION, BASED ON THE JOINT SUBMISSION BY FRANCE AND SOUTH AFRICA IN THE AREA OF THE CROZET ARCHIPELAGO AND THE PRINCE EDWARD ISLANDS

GLOSSARY OF TERMS

$\mathbf{6 0} \mathbf{M}$ formula line	Line delineated by reference to fixed points not more than 60 nautical miles from the foot of the continental slope
$\mathbf{6 0} \mathbf{M}$ formula point	Fixed point not more than 60 nautical miles from the foot of the continental slope
$\mathbf{2 0 0} \mathbf{M}$ line	Line at a distance of 200 nautical miles from the baselines from which the breadth of the territorial sea is measured
$\mathbf{2 , 5 0 0} \mathbf{m}$ isobath	Line connecting the depth of 2,500 metres
Article 76	Article 76 of the United Nations Convention on the Law of the Sea
Baselines	Baselines from which the breadth of the territorial sea is measured
BOS	Base of the continental slope
Commission	Commission on the Limits of the Continental Shelf
Convention	United Nations Convention on the Law of the Sea of 10 December 1982
Depth Constraint	Constraint line determined at a distance of 100 M from the 2,500 m isobath
Distance Constraint	Constraint line determined at a distance of 350 M from the baselines
DOALOS	Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs, United Nations
FOS	Foot of the continental slope
Guidelines	Scientific and Technical Guidelines of the Commission (CLCS/11 and CLCS/11/Add.1)
\mathbf{M}	Nautical mile
Rules of procedure	Rules of procedure of the Commission (CLCS/40/Rev.1)
Secretary-General	Secretary-General of the United Nations
Sediment thickness formula line	Line delineated by reference to the outermost fixed points at each of which the thickness of sedimentary rocks is at least 1 per cent of the shortest distance from such point to the FOS
Sediment thickness formula point	Fixed point at which the thickness of sedimentary rocks is at least 1 per cent of the shortest distance from that point to the FOS

(page left intentionally blank)

I. INTRODUCTION

1 On 6 May 2009, the French Republic and the Republic of South Africa ("France" and "South Africa") jointly submitted to the Commission, through the Secretary-General, ${ }^{1}$ information on the limits of the continental shelf beyond 200 M from the baselines in the area of the Crozet Archipelago and the Prince Edward Islands, in accordance with article 76, paragraph 8 (the "Submission").

2 The Convention entered into force for France on 11 May 1996 and for South Africa on 22 January 1998.
3 The Submission was made in respect of the area of the Crozet Archipelago (France) and the Prince Edward Islands (South Africa), in the southwestern Indian Ocean. According to the submitting States, the Submission is a partial submission for both France and South Africa. With regard to disputes, the submitting States indicated that "the continental shelf in the area of the Prince Edward Islands and the Crozet Archipelago is not the subject of any dispute between the two coastal States and any other State". ${ }^{2}$

4 On 7 May 2009, the Secretary-General issued Continental Shelf Notification CLCS.34.2009. LOS 3 giving due publicity to the Executive Summary of the Submission in accordance with rule 50 of the rules of procedure. Pursuant to rule 51 of the rules of procedure, the consideration of the Submission was included in the agenda of the twenty-sixth session of the Commission, held from 2 August to 3 September 2010.

5 Pursuant to section 2 of annex III to the rules of procedure, a presentation of the Submission was made to the plenary of the twenty-sixth session of the Commission on 19 August 2010, by Elie Jarmache, Chargé de mission, Secrétariat général de la mer, France, and Sandea de Wet, Chief State Law Adviser, South Africa, Heads of their respective Delegations. The Delegations of France and South Africa (the "Delegation") also included a number of advisers. In addition to elaborating on substantive points of the Submission, Mr. Jarmache and Ms. de Wet indicated that no member of the Commission had assisted France and South Africa by providing scientific and technical advice with respect to the Submission.

6 Mr. Jarmache stated that the area of the continental shelf included in the Submission was not subject to any dispute and that no notes verbales had been received from other States in this regard. He also specified that the Submission was without prejudice to the future delimitation of maritime boundaries between the submitting States. He further stated that they reserved their right to submit additional information involving the depth constraint as soon as the analysis of recently acquired bathymetry data for the region was completed. In this connection, he specified that the inclusion of the depth constraint would affect the outer limits of the continental shelf currently included in the Submission.

7 The Commission took note that no notes verbales had been received from other States in relation to the Submission. The Commission addressed the modalities for the consideration of the Submission and decided that, as provided for in article 5 of annex II to the Convention and in rule 42 of the rules of procedure, the Submission

[^1]would be addressed by a subcommission to be established in accordance with rule 51, paragraph 4ter, of the rules of procedure, at a future session. The Commission decided to revert to the consideration of the Submission at the plenary level when it was next in line for consideration as queued in the order in which it was received.

8 On 26 March 2013, France and South Africa submitted an Addendum to their Submission which related to the extension of the proposed outer limits of the continental shelf along the Discovery II Ridge (DIIR).

9 On 4 April 2013, the Secretary-General issued Continental Shelf Notification CLCS.34.2009.LOS.Add. 1^{4} giving due publicity to the Executive Summary of the Addendum to the Submission in accordance with rule 50 of the rules of procedure.

10 In view of the partial change in membership of the Commission, which had occurred since the original presentation to the Commission as a result of the elections held at the twenty-second Meeting of States Parties in June 2012, the Delegation made a presentation of the Submission and its Addendum at the thirty-second session of the Commission, held from 15 July-30 August 2013.
11 The presentation was made on 27 August 2013 by Elie Jarmache, Chargé de mission, Secrétariat général de la mer, France, and Dire Tladi, Principal State Law Adviser, Department of International Relations and Cooperation, South Africa, Heads of their respective Delegations. The Delegation also included a number of advisers.

12 In addition to elaborating on substantive points of the Submission, Mr. Jarmache noted that the Submission was not the subject of any dispute and that no notes verbales had been received from other States. He also informed the Commission that, on 26 June 2012, a trilateral declaration had been signed on behalf of the Governments of France, Madagascar and South Africa, declaring that the considerations of the respective submissions to the Commission were without prejudice to any future delimitation and that the Commission might consider any overlapping claims in the respective submissions on the understanding that the submissions and the recommendations of the Commission on any such overlapping claim would not prejudice any future boundary delimitation between the respective Governments. He also informed the Commission that one of its members, Walter R. Roest, had provided France and South Africa with advice and assistance. Mr. Tladi provided details on the technical and scientific aspects of the Submission, highlighting the new bathymetric data that had been obtained regarding the DIIR.
13 The Commission addressed the modalities for the consideration of the Submission and recalled that, at its twenty-sixth session, it had decided that, as provided for in article 5 of annex II to the Convention and in rule 42 of the rules of procedure, the Submission would be addressed by a subcommission to be established in accordance with rule 51, paragraph 4ter, of the rules of procedure, at a future session. The Commission had decided to revert to the consideration of the Submission at the plenary level when it was next in line for consideration as queued in the order in which it was received. The Commission confirmed that decision.

14 The Subcommission for the consideration of the Joint Submission made by France and South Africa in the area of the Crozet Archipelago and the Prince Edward Islands ("the Subcommission") was established on 13 March 2014 during the plenary of the

[^2]thirty-fourth session of the Commission, held from 27 January-14 March 2014. The following members of the Commission were appointed as members of the Subcommission: Muhammad Arshad, Richard Thomas Haworth, Estevão Stefane Mahanjane, Simon Njuguna, Carlos Marcelo Paterlini and Tetsuro Urabe. The Commission agreed that, in view of the absence of some members, the seventh member of the Subcommission would be appointed at a subsequent stage. The Subcommission elected Mr. Njuguna as Chair and Messrs. Arshad and Haworth as Vice-Chairs.

15 At its thirty-eighth session, held from 20 July to 4 September 2015, the Commission appointed Jair Alberto Ribas Marques as the seventh member of the Subcommission.

16 The five-year term of the members of the Commission elected in 2012 expired on 15 June 2017. On 14 June 2017, during the twenty-seventh Meeting of State Parties, 20 members of the Commission were elected for a term of five years (SPLOS/316, paragraphs 77-86) and this resulted in three vacancies in the composition of the Subcommission. At the forty-fourth session, held from 24 July to 8 September 2017, the Commission adjusted the composition of the Subcommission as follows: Aldino Campos, Wenzheng Lyu, Estevão Stefane Mahanjane, Jair Alberto Ribas Marques, Marcin Mazurowski, Simon Njuguna and Carlos Marcelo Paterlini. The Subcommission confirmed Mr. Njuguna as Chair and elected Messrs. Campos and Lyu as Vice-Chairs.
17 Following the resignation of Mr. Lyu on 25 July 2018, the Subcommission elected Mr. Mazurowski as Vice-Chair at the forty-seventh session of the Commission, held from 16 July to 31 August 2018. On 15 January 2019, the twenty-eighth Meeting of States Parties was resumed for the purpose of conducting a by-election to fill the vacancy and elected Yong Tang. At the forty-ninth session, held from 28 January to 15 March 2019, the Commission appointed Mr. Tang as a member of the Subcommission.

18 On 8 December 2021, the thirty-first Meeting of States Parties was resumed for the purpose of conducting a by-election to fill the vacancy resulting from the passing of Mr. Marques. The States Parties elected Antonio Fernando Garcez Faria. At the fiftyfourth session, held from 21 February to 11 March 2022, the Commission appointed Mr. Garcez as a member of the Subcommission.

19 The Subcommission examined the Submission from the thirty-fifth session (21 July to 5 September 2014) to the fifty-sixth session (5 October to 22 November 2022). ${ }^{5}$ During these sessions the Subcommission considered the Submission for a total of 33 weeks and held 26 meetings with the Delegation, posed questions and presented considerations and views. During the course of the examination of the Submission by the Subcommission, the Delegation provided responses to the questions and provided additional material.
20 The Subcommission interacted with the Delegation according to the rules of procedure and practice of the Commission outlined to the Delegation at the first meeting held with the Subcommission.

[^3]21 The Subcommission initially met from 18 to 22 August 2014, during the thirty-fifth session, to commence its consideration and to conduct a preliminary analysis of the Submission pursuant to paragraph 5.1 of annex III to the rules of procedure.
22 At the thirty-sixth session, held from 20 October to 28 November 2014, the Subcommission commenced the main scientific and technical examination of the Submission pursuant to paragraph 9 of annex III to the rules of procedure.

23 On 1 December 2017, the Subcommission transmitted to the Delegation a comprehensive document of its views and general conclusions at an advanced stage of the examination of the Submission, on the understanding that it replaced the presentation as provided for in paragraph 10.3 of annex III to the rules of procedure. After further consideration and interactions, as detailed in paragraph 19, the Delegation indicated, by a communication dated 18 February 2022, that it would not avail itself of the opportunity to respond to the 10.3 document of the Subcommission, pursuant to paragraph 10.4 of annex III to the rules of procedure.
24 The Subcommission adopted its Recommendations on 17 November 2022 and submitted them to the Commission on the same date for consideration and approval.
25 The Subcommission made a presentation to the Commission on the substance and rationale for its Recommendations on 2 February 2023. The Delegation subsequently made a presentation to the Commission on the same date in accordance with paragraph 15.1bis of annex III to the rules of procedure.
26 The Commission approved these Recommendations on 7 March 2023, taking into consideration article 76 and annex II to the Convention, the Guidelines and the rules of procedure.

27 The Recommendations of the Commission are based on the scientific and technical data and other material provided by the Delegation in relation to the implementation of article 76. The Commission makes these Recommendations to France and South Africa in fulfilment of its mandate as contained in article 76 and in articles 3 and 5 of annex II to the Convention.

28 The Recommendations of the Commission only deal with issues related to article 76 and annex II to the Convention and shall not prejudice matters relating to delimitation of boundaries between States with opposite or adjacent coasts, or prejudice the position of States which are parties to a land or maritime dispute, or the application of other parts of the Convention or any other treaties.

29 The Commission makes Recommendations to coastal States on matters related to the establishment of the outer limits of their continental shelf in accordance with article 76, paragraph 8. Pursuant to this provision, the limits of the continental shelf established by a coastal State on the basis of these Recommendations shall be final and binding.

30 Throughout the examination of the Submission, the Subcommission requested and received support from DOALOS.

II. CONTENTS OF THE SUBMISSION

A. Original Submission

31 The original Submission received on 6 May 2009 contained three parts: an Executive Summary; a Main Body which is the analytical and descriptive part; and Scientific and Technical Data.

32 The Submission relates to the area of the Crozet Archipelago and the Prince Edward Islands (hereafter "PEl") (Figure 1).

Figure 1. Bathymetric map showing outer limits of the continental shelf as proposed in the Submission made on 6 May 2009 (Crozet Archipelago - east; PEI - west) [Executive Summary - Figure 2].

B. Addendum to the Submission

33 The Addendum to the Submission, received on 26 March 2013, contained three parts: an Executive Summary; a Main Body which is the analytical and descriptive part; and Scientific and Technical Data.
34 The Addendum relates to the extension of the proposed outer limits of the continental shelf along the DIIR (Figure 2).

Figure 2. Bathymetric map showing amended outer limits of the continental shelf as proposed in the Addendum to the Submission made on 26 March 2013, including the DIIR in the north (Crozet Archipelago east; PEI - west). [Addendum to the Executive Summary - Figure 3]

C. Communications and additional material

35 In the course of the examination of the Submission by the Subcommission, the Delegation submitted additional material, including responses to questions and requests for clarifications of the Subcommission.

III. EXAMINATION OF THE SUBMISSION BY THE SUBCOMMISSION

A. Examination of the format and completeness of the Submission

36 Pursuant to paragraph 3 of annex III to the rules of procedure, the Subcommission examined and verified the format and completeness of the Submission.

B. Preliminary analysis of the Submission

37 Pursuant to paragraph 5 of annex III to the rules of procedure, at the thirty-fifth session, the Subcommission undertook a preliminary analysis of the Submission, in accordance with article 76 and as outlined in the Guidelines and determined that:
(a) The determination on whether the test of appurtenance had been satisfied would require more time than the one week designated in the rules of procedure for the initial examination. The Subcommission therefore decided to address the test of appurtenance thereafter;
(b) The proposed outer limits of the continental shelf of France and South Africa beyond 200 M in the area of the Crozet Archipelago and the PEI consist of 60 M formula points and the distance and depth constraints (Figure 2);
(c) In order to determine whether appropriate combinations of FOS points and constraint lines have been used,
(i) it was considered that this would need to be verified in situations where the Submission may be based on separate land masses;
(ii) it was further considered that under this requirement the Subcommission would need to verify that the total area of continental shelf proposed in the Submission was not larger than the sum of the individual areas of continental shelf that each of the two States would have proposed if they had made separate submissions, in accordance with the decision of principle reached by the Commission at its twentieth session (CLCS/56, paragraphs 26-29); and
(iii) the determination of this aspect was deferred until the locations of specific FOS points, the outer edge of the continental margin and the outer limits of the continental shelf would be confirmed (see paragraph 132).
(d) The constructed outer limits, as amended on 26 March 2013, contained straight line segments not exceeding 60 M in length;
(e) The cooperation of relevant international organizations, in accordance with rule 56 of the rules of procedure, or the advice of a specialist in accordance with rule 57 and/or of any other member of the Commission would not be sought; and
(f) Additional time would be required to review all the data and to prepare its Recommendations during future sessions of the Commission.

38 The Subcommission further decided to use the first week of consideration during the thirty-sixth session, for the analysis of the test of appurtenance and noted the following:
(a) In the original Submission, the test of appurtenance was not addressed in any specific part. Instead, the submitting States provided a number of regional profiles to demonstrate that the natural prolongation extends beyond 200 M , e. g. a profile running approximately east-west from the land masses of both States (Figure 3);

Figure 3. Bathymetric map showing location of regional bathymetric profiles (left) used to demonstrate, according to the Submission, the extent of natural prolongation with respect to the 200 M from both Crozet Archipelago and PEI; east-west profile location shown on the right, with areas shallower than $4,000 \mathrm{~m}$ shaded in orange on the upper graph. [Presentation 2014_08_19_FRAZAF-PRES-001, slides 16 and 17]
(b) For the test of appurtenance to be satisfied by each submitting State, the outer edge of the continental margin, established by applying article 76, paragraph 4, needs to extend beyond the 200 M lines of both the Crozet Archipelago (France) and the Prince Edward Islands (South Africa);
(c) In this regard, the Subcommission examined the BOS as identified by the submitting States and verified that it lies beyond the 200 M lines in several areas of the continental margin (Figure 4);

Figure 4. Bathymetric map showing BOS region (grey shaded area) as originally identified, also showing the 200 M lines of the submitting States (red) [presentation 2014_08_19_FRAZAF-PRES-001, slide 29]. Labels added by the Subcommission.
(d) The submitting States applied the concept of bathymetric anomaly in combination with specific water depths and specific features of the ocean floor to identify the BOS region;
(e) The Commission reached a decision of principle at its twentieth session from the examination of the first joint submission that would apply to all joint submissions thereafter (CLCS/56, paragraphs 26-29). This decision requires that in a joint submission, each coastal State has to establish its own set of criteria for the foot of the continental slope points, applied formulas, constraints and respective outer limits. Therefore, each State, individually, has to provide evidence that its margin extends beyond 200 M and consequently meets the test of appurtenance. In that regard, the Subcommission noted that, for the test of appurtenance to be satisfied individually, it would suffice if the islands of each submitting State, separately, were morphologically connected to the Del Cano Rise, since the BOS/FOS on the northern and southern flanks of the Del Cano Rise would be located beyond 200 M of the land masses of each State, separately (Figure 4);
(f) In this context, the Subcommission examined the submitted bathymetric profiles crossing the saddle areas between Crozet Archipelago and Del Cano Rise on one hand, and between PEI and Del Cano Rise on the other, and compared the depth of the saddles to the depth of the immediately adjacent deep ocean floor (DOF). The Subcommission concluded that the saddles (with depths circa $2,800 \mathrm{~m}$ for PEI and $2,900 \mathrm{~m}$ for Crozet Archipelago) are significantly higher than the depth of the surrounding DOF, which was considered to be at a depth of around $4,000 \mathrm{~m}$ southwest of PEI and at a depth of at least $3,500 \mathrm{~m}$ east of the Crozet Archipelago taking into account the average ruggedness of the DOF. Consequently, the Subcommission considers the Del Cano Rise to be morphologically connected to the land masses of both France and South Africa; and
(g) Since the Del Cano Rise extends beyond the 200 M line of each submitting State, the outer edge of the continental margin, established by applying the provisions of article 76, paragraph 4 (a)(ii), from any FOS point on the northern or southern edge of the Del Cano Rise extends beyond the 200 M lines of both France and South Africa. Therefore, the test of appurtenance was satisfied by each submitting State, separately, and the Subcommission recognized the entitlement of both France and South Africa to delineate the outer limits of their continental shelf beyond their 200 M lines in the area of the Crozet Archipelago and the PEI.

C. Main scientific and technical examination of the Submission

39 Pursuant to paragraph 9 of annex III to the rules of procedure, the Subcommission conducted the examination of the Submission based on the Guidelines, and evaluated the following, as applicable:
(a) The data and methodology employed by the coastal States to determine the location of the FOS;
(b) The methodology used to determine the 60 M formula line;
(c) The data and methodology used to determine the sediment thickness formula line;
(d) The data and methodology employed to determine the 2,500 m isobath;
(e) The methodology used to determine the depth constraint;
(f) The data and methodology used to determine the distance constraint;
(g) The construction of the formulae line as the outer envelope of the two formulae;
(h) The construction of the constraint line as the outer envelope of the two constraints;
(i) The construction of the inner envelope of the formulae and constraint lines;
(j) The delineation of the outer limit of the continental shelf by means of straight lines not exceeding 60 M in length with a view to ensuring that only the portions of the seabed that satisfy all the provisions of article 76 and the Statement of Understanding are enclosed;
(k) The estimates of the uncertainties in the methods applied, with a view to identifying the main source(s) of such uncertainties and their effect on the Submission; and, in all cases,
(I) Whether the data submitted are sufficient in terms of quantity and quality to justify the proposed limits.

In conducting its examination of the Submission, the Subcommission:
(a) Proceeded with a detailed examination of the data and information supporting FOS points selected for the establishment of the outer edge of the continental margin;
(b) Sought clarifications and additional data and information from the Delegation, where necessary;
(c) Presented preliminary views and conclusions to the Delegation;
(d) Transmitted to the Delegation a comprehensive document of its views and general conclusions at an advanced stage of the examination of the Submission, on the understanding that it replaced the presentation as provided for in paragraph 10.3 of annex III to the rules of procedure.

IV. RECOMMENDATIONS OF THE COMMISSION WITH RESPECT TO THE AREA OF THE CROZET ARCHIPELAGO AND THE PRINCE EDWARD ISLANDS

1. Geographical and geological description of the region

41 The French Crozet Archipelago and the South African Prince Edward Group, separated from each other by a distance of approximately $1,100 \mathrm{~km}$, lie to the south of the nearly NE-SW oriented Southwest Indian Ridge (SWIR) approximately on the latitude 46° South and between longitudes 37° and 54° East (Figure 5).

42 The continental margin of France and South Africa in respect of the area of the Crozet Archipelago and the PEI consists of areas that surround the Marion and Prince Edward islands (PEI) and île aux Cochons, île de la Possession, île de l'Est, and others (Crozet Archipelago).
43 The surrounding areas of the Crozet Archipelago and PEI land masses show a complex margin characterized by tectonic features and many topographic highs surrounded, in part, by abyssal plains of different depths.

Figure 5. Bathymetric map showing main physiographic features in the area of the Crozet Archipelago and the PEI, including the SWIR and a number of important fracture zones. The 200 M lines for each State are also shown. [Original Main Body - Figure 2-1]

44 In the Main Body of the Submission, the submitting States describe the most relevant tectonic features and submarine topographic highs in terms of the geological and geomorphological aspects outlined in paragraphs 45-51 below.
45 The PEI, which are volcanically active, lie on the south-eastern flank of the SWIR about 300 km from the spreading centre. The islands are aligned on the Eric Simpson Fracture Ridge (Chevallier, 1986) on oceanic crust that is about 45 Ma old (magnetic polarity Chron C20) (Bergh and Norton, 1976). The lavas of the islands exhibit typical oceanic island alkaline basalt geochemical characteristics (Verwoerd et al., 1990) and are considered to mark the present position of a long-lived hotspot, i.e. the surface expression of a mantle plume. Duncan (1981) suggested that the Marion (also called Prince Edward) hotspot can be back-tracked to the east coast of Madagascar during the past 100 Ma .
46 The Crozet Archipelago represents volcanic peaks on a submarine plateau, the Crozet Bank, which lies to the east of the Del Cano Rise. The Crozet Bank lies between magnetic anomalies C30 and C31 (Maastrichtian, circa 67 Myr old crust) and is considered by Goslin et al. (1981) to have formed circa 54 Ma (Early Eocene).

47 The Crozet Plateau (CP) is a seafloor high on the southeastern flank of the SWIR which extends for approximately $1,000 \mathrm{~km}$ in an east-west direction between the Prince Edward and Crozet Islands (Main Body (page 2-11)). It is further described to be composed of two distinct highs: the Del Cano Rise on the west and the Crozet Bank on the east. The Del Cano Rise is approximately 220 km wide and extends for
about 700 km to the east of the Eric Simpson Fracture Ridge, with depths ranging from circa $2,500 \mathrm{~m}$ to $1,000 \mathrm{~m}$. Based on seismic refraction data and gravity modelling, Goslin et al. (1981) proposed that the southern domain of the Madagascar Ridge (also referred to as the Madagascar Plateau) and the CP probably have a common origin as they overlap in pre-anomaly C24 reconstructions and were later, since the early Palaeocene, separated by spreading along the SWIR. Goslin and Diament (1987) concluded that the Del Cano Rise was emplaced in a near-ridge setting. According to the same authors, the Crozet Bank is located in a tectonic setting that may be different from that of the Del Cano Rise, as it lies on oceanic crust on the flank of the SWIR and was emplaced in an off-ridge setting sometime before magnetic anomaly C31.
48 Even though the above features are individually identifiable, for purposes of this Submission, the Delegation considers the CP to be a composite morphological body that includes PEI, Del Cano Rise, Crozet Bank and Crozet Archipelago.

49 The ultra-slow spreading SWIR (full spreading rate of circa $14 \mathrm{~km} / \mathrm{Myr}$) is a pronounced feature of the seafloor of the southwestern Indian Ocean. It extends for $7,700 \mathrm{~km}$ from the Bouvet Triple Junction in the southern Atlantic Ocean to the Rodrigues triple junction in the southern Indian Ocean and marks the divergent boundary between the Antarctic and the Nubian and Somalian plates (Sclater et al., 2005). The reconstructions of the conjugate Mesozoic anomalies (Eagles and König, 2008; Marks and Tikku, 2001) show that the ridge between the Prince Edward and Discovery II fracture zones appears to be the oldest part of the SWIR, having been spreading since circa 155 Ma , as indicated by magnetic anomaly M25.
50 In the view of the submitting States, the DIIR is a composite tectonic feature that lies between the Eric Simpson and Discovery II transform fault zones. It extends northward across the western end of the Del Cano Rise and the SWIR up towards the southern termination of the South Madagascar Ridge. The submitting States attributed the anomalously shallow bathymetry of the DIIR to the interaction of the Marion hotspot with the SWIR.
51 The Andrew Bain and Gallieni transform fractures delimit a bathymetrically anomalous region of the SWIR, the "Marion Swell" (Fisher and Goodwillie, 1997; Storey et al., 1995), which may be further separated into two shallow ridge sections between the Prince Edward and Discovery transform fractures and between the Indomed and Gallieni fractures (Georgen et al., 2001; Sclater et al., 2005; Sauter and Cannat, 2010). This broad bathymetric swell corresponds to a large negative Mantle Bouger gravity Anomaly (MBA) indicating thicker constant density crust or lighter material. MBA values decrease from a high at the Andrew Bain fracture zone to a regional low between the Prince Edward and Discovery transform faults, which is interpreted by Georgen et al. (2001) as being due to thicker crust and/or a hotter mantle near the Marion hotspot.

2. The determination of the FOS (article 76, paragraph 4(b))

52 The FOS shall be established in accordance with article 76, paragraph 4(b).
53 The bathymetric data used for the determination of the BOS/FOS included Global Seafloor Topography by Smith and Sandwell - Version 10.1 (Smith and Sandwell, 1997), single beam bathymetry data from GEODAS, and multibeam data collected by the submitting States, which was supported by geological and geophysical evidence as needed.

54 According to the submitting States, the entire area surrounding the Crozet Archipelago and the PEl is anomalously shallow, and the elevation is a result of the interaction between the Marion hot-spot and the SWIR. Therefore, the anomalous elevation of the area is regarded by the submitting States as evidence of the submerged prolongation of their land territories. They noted that the entire area of the PEI and the Crozet Archipelago is characterised by a bathymetric anomaly exceeding $1,000 \mathrm{~m}$ (Figure 6). The submitting States calculated the bathymetric anomaly by subtracting, from the observed bathymetry, the values predicted by a depth-age model based on thermal subsidence according to Hillier and Watts (2005). The age of the oceanic crust is taken from a global model based on seafloor spreading magnetic anomalies (Müller et al., 2008).

Figure 6. Bathymetric anomaly in metres with anomalously shallow depths (in red) associated with the PEl and Crozet Archipelago elevation, as submitted; areas in green show anomaly values of $\pm 1000 \mathrm{~m}$ from the expected depth of the DOF [Figure 6-4, original Main Body]; labels added by the Subcommission.

55 For the purposes of defining the BOS, the submitting States subdivided the area of the Submission into the western, southern, eastern, northeastern and northwestern sections (Figure 7). Together, these sections form a single and continuous margin with each presenting different morphological characteristics and hence requiring specific criteria for the identification of the BOS.

Figure 7. Bathymetric map showing the five sections of the margin and the BOS/FOS envelope as submitted in the Addendum. 200 M lines of both States in red [presentation 2014_08_19_FRAZAF-PRES-001, slide 31]. FOS points within the respective sections grouped in yellow and labelled by the Subcommission.

56 The submitting States outlined the criteria for the identification of the BOS/FOS in the five sections of the continental margin, as summarized in Figure 8. At the thirtysixth session, the Delegation expressed the view that since the bathymetric anomaly was derived from observed bathymetry, the BOS as identified by the submitting States is fundamentally derived from a morphological analysis, and that this anomaly allowed to distinguish the continental slope from other inclining seafloor surfaces of the DOF with greater confidence. The Delegation further argued that the determination of the BOS using the two-step approach of the Guidelines (para. 5.4.5) yielded the same results.
57 The Subcommission noted that the BOS was identified by the submitting States on the basis of a combination of bathymetric anomaly, specific depths and use of specific morphological features (Figure 8). The Subcommission did not concur with the way the bathymetric anomaly had been used, as it has a degree of uncertainty inherent to the ocean age-depth model as well as those associated with the choice of the appropriate thresholds (see para. 101). Furthermore, in the view of the Subcommission, the bathymetric anomaly technique may assist in the search for the BOS, but the BOS itself must be identified on morphological criteria.
58 Due to the complexity of the margin in the area surrounding the PEI and the Crozet Archipelago, the BOS/FOS of each of the five sections of the margin (Figure 7) are addressed separately in the sections below.

Sub-regions	CM (Continental Margin) in brown and BOS (Base of the Slope) in red	Geology and Morphological expression of the BOS	Landward edge of BOS	Seaward edge of BOS
Southern segment of Western margin Northern segment of Western margin		Base of ridges prolongating the Crozet Plateau Transition between the base of DII ridge and the abyssal plain	Bathymetric anomaly 1200 m , Seafloor above 4000 m Bathymetric anomaly 1200 m , Seafloor above 4000 m	Base of the most seaward ridge above 5000 m Bathymetry substantially above 5000 m
Southern margin		Trough marking the inversion slope between Crozet Plateau and Conrad rise	Bathymetric anomaly above 1200 m North face of the trough	Conrad face of the trough
Eastern margin		Transition between lower slope of the Crozet Plateau and the abyssal plain	Bathymetric anomaly $1200 \mathrm{~m}$	Bathymetric anomaly $1000 \mathrm{~m}$
Northeastern margin		Transition between the slope of the Crozet Plateau and the northern flank of SWIR	Seaward edge of the 1200 m bathymetric anomaly	Deepest trough before the flank of the SWIR
Northwestern margin		Transition between the slope of the Crozet Plateau and the northern flank of SWIR	Seaward edge of the 1200 m bathymetric anomaly	Eastern face of the deepest trough before the flank of the SWIR

Figure 8. Summary of the criteria for the identification of the BOS region in the five sections of the continental margin, as submitted. [Document 2014_10_17_FRAZAF-DOC-SC-002, page 22]

2.1 Southern Section

2.1.1 Considerations

59 In the southern section, which is located to the south of the CP, five FOS points were originally submitted (Figure 7).

60 The submitting States noted in the Main Body that "the area south of the Del Cano Rise is characterised by a slow and progressive deepening of the ocean floor [...] where there is a sharp east-west trough interpreted as an ancient accretion axis". They interpreted that the BOS was defined "on the last scarp that characterises the slopes just before the trough." Consistent with its "definition of the submarine elevation extension based on the 1200 m bathymetric anomaly value", the Delegation noted that "the trough corresponds to the only location of this zone where the bathymetric anomaly reaches value lower than 1200 m ."
61 At the thirty-sixth session, the Delegation presented a cross section of the southern margin to demonstrate that its interpretation of the landward edge of the BOS zone coincided with a bathymetric anomaly of $1,200 \mathrm{~m}$ and the northern flank of the central trough between the Del Cano Rise and the Conrad Rise, while the seaward edge was the southern flank of that central trough marking the region of a reversal in the dip direction of the slope.
62 The Subcommission observed a regional change in gradient further upslope, but also identified, between that upslope location and the BOS as identified by the Delegation, a change in the morphological character of the seafloor from the smooth topography associated with the Crozet Bank and the Del Cano Rise to the rougher topography of the DOF.
63 Following exchanges that took place during the thirty-eighth session, the Delegation revised its methodology and adopted a morphological approach for the definition of the BOS for all sections of the continental margin. Then followed a series of interactions up to the forty-second session. Subsequently, the Delegation provided a final set of seven revised FOS points.

64 Based on the morphological and bathymetric evidence, provided by France and South Africa, the Subcommission agreed with the revised BOS and the way the locations of these seven FOS points were established (FOS_South03, $-04,-05,-06$, $-07,-08$, and -09), five of which are critical FOS points generating formula points beyond the 200 M lines of France and South Africa: FOS_South04, -05, -07, -08 and -09 (Figure 9).

2.1.2 Recommendations

65 Based on its consideration of the scientific and technical documentation contained in the Submission of France and South Africa and the additional scientific and technical data and information provided in the documents referred to in paragraphs 33 and 35 , the Commission concludes that, in the southern section of the continental margin of the Crozet Archipelago and the PEI, the FOS points listed in Table 1a of annex I fulfil the requirements of article 76 and chapter 5 of the Guidelines. The Commission recommends that these FOS points should form the basis for the establishment of the outer edge of the continental margin in the southern section of the Crozet Archipelago and the PEI.

Figure 9. Bathymetric map showing final FOS points South03 in the west to South09 in the east with the outer edge of the continental margin, 200 M and 350 M lines of the submitting States, received on 31 October 2016 (document 2016_10_28_FRAZAF_DOC_SC_005, Figure 2). NM - nautical miles (M), thin white lines show arc control from the FOS points used to establish the outer edge of the continental margin.

2.2 Eastern Section

2.2.1 Considerations

66 In the eastern section, which lies east of the Del Cano Rise and the Crozet Bank, ten FOS points were originally submitted (Figure 7).
67 The submitting States noted in the Main Body that "the margin [...] is characterised by a steep slope down to a seafloor depth of around 3500 m , followed by a very slow and progressive deepening of the sea floor" and that "the bathymetric anomaly shows that the elevation of the seafloor at the foot of this steep upper slope stays abnormally high [...] compared to its theoretical depth". They also noted that "in this situation, no morphological feature of regional significance could be identified to mark the base of the continental slope" [...] and that its "determination therefore relies on the bathymetric anomaly only". Furthermore, the submitting States identified "the base of the eastern slope of the Del Cano Rise [...] as the zone where the bathymetric anomaly is between [...] 1200 m and $1000 \mathrm{~m} . "$

68 During the thirty-sixth and thirty-seventh sessions, the Subcommission observed that, for this section, the BOS as identified by the submitting States was located in an area with little morphological variation and no significant regional morphological inflection. Further, the seafloor at the submitted FOS points presented gradients that the Subcommission associated with the DOF. The Subcommission suggested that the Delegation consider a new location for the BOS at a morphological change closer to the CP that represents a regional seafloor inflection.

69 At the thirty-eighth session, the Delegation adopted a purely morphological approach in identifying a landward limit of the BOS zone on the margin of the CP and a seaward limit represented by the DOF between the Crozet and Kerguelen Plateaus. Then followed a series of interactions up to the forty-second session. Subsequently, the Delegation provided a final set of five revised FOS points.
70 Based on the morphological and bathymetric evidence, provided by France and South Africa, the Subcommission agreed with the revised BOS and the way the locations of these five FOS points were established (FOS_East06, -07, -08, -09 and -10), all of which are critical FOS points generating formula points beyond the 200 M line of France (Figure 10).

Figure 10. Bathymetric map showing final FOS points East06 in the southeast to East10 in the northwest with the outer edge of the continental margin, 200 M and 350 M lines of France, received on 31 October 2016 (document 2016_10_28_FRAZAF_DOC_SC_005, Figure 7). NM - nautical miles (M), thin white lines show arc control from the FOS points used to establish the outer edge of the continental margin.

2.2.2 Recommendations

71 Based on its consideration of the scientific and technical documentation contained in the Submission of France and South Africa and the additional scientific and technical data and information provided in the documents referred to in paragraphs 33 and 35 , the Commission concludes that, in the eastern section of the continental margin of the Crozet Archipelago and the PEI, the FOS points listed in Table 1b of annex I, fulfil the requirements of article 76 and chapter 5 of the Guidelines. The Commission recommends that these FOS points should form the basis for the establishment of the outer edge of the continental margin in the eastern section of the Crozet Archipelago and the PEI.

2.3 Northeastern Section

2.3.1 Considerations

72 In the northeastern section of the margin, six FOS points were originally submitted (Figure 7).

73 The seafloor morphology of the northeastern flank of the CP is marked by the intersection of the northern flank of the Del Cano Rise with the southern flank of the SWIR, which, between Discovery II and Gallieni Fracture Zones, is regarded to be an oceanic ridge of the DOF by the Delegation. The submitting States identified the BOS in this region based on the reversal of the dip direction of the regional slope at the deepest part of the passage from CP to SWIR, combined with bathymetric anomaly values of less than $1,200 \mathrm{~m}$.

74 At the thirty-sixth session, the Subcommission observed that the SWIR in this section is characterised by a significantly higher roughness as compared to the smoother seafloor in the area of the CP, and considered these distinctive changes in morphological character of the seafloor helpful in distinguishing the CP domain from the SWIR. Due to the morphological complexity arising from the CP abutting another seafloor high (SWIR), the Subcommission analysis took into account a regional context (3D) and not only 2D bathymetric profiles and identified a BOS location further landward than the BOS proposed by the submitting States (Figure 11).

Figure 11.* Bathymetric profile MD05 showing changes in gradient and seafloor character distinguishing CP from SWIR. The roughness of the seafloor is illustrated by the second derivative (red). [Presentation 2016_08_03_SCFRAZAF_PRE_FRAZAF_009, slide 11]

[^4]75 At the forty-first session, held from 11 July to 26 August 2016, the Delegation revised its morphological analysis, including that of an east-west trending topographic high extending eastward from the northeastern edge of the Del Cano Rise, and submitted revised FOS points (Figure 12). Then followed a series of interactions up to the fiftythird session, held from 6 October to 23 November 2021, including further revisions on some of those FOS points. Towards the end of consideration, the Delegation abandoned the use of revised FOS point NE01 and submitted a further revised location for FOS point NE15 that was agreed by the Subcommission, after which the Delegation provided a final set of nine FOS points.

Figure 12. Bathymetric map showing location of revised FOS points for the northeastern section of the continental margin, as provided on 20 July 2016. [Document 2016_07_20_FRAZAF-DOC-SC-004, Figure 22]

76 Based on the morphological and bathymetric evidence, provided by France and South Africa, the Subcommission agreed with the revised BOS and the way the locations of these nine FOS points were established (FOS_NE03, -04, -05, -06, -07, $-09,-10,-12$ and -15$)$, five of which are critical FOS points generating formula points beyond the 200 M lines of France and South Africa: FOS_NE03, -07, -10, -12 and -15 (Figure 13).

Figure 13.* Bathymetric map showing location of final FOS points NE03 in the east to NE15 in the west with the outer edge of the continental margin, 200 M and 350 M lines of France and South Africa, received on 18 February 2022. [2022_02_15_FRAZAF_DOC_SCFRAZAF_008, after Figure 2]

2.3.2 Recommendations

77 Based on its consideration of the scientific and technical documentation contained in the Submission of France and South Africa and the additional scientific and technical data and information provided in the documents referred to in paragraphs 33 and 35, the Commission concludes that, in the northeastern section of the continental margin of the Crozet Archipelago and the PEI, the FOS points listed in Table 1c of annex I, fulfil the requirements of article 76 and chapter 5 of the Guidelines. The Commission recommends that these FOS points should form the basis for the establishment of the outer edge of the continental margin in the northeastern section of the Crozet Archipelago and the PEI.

2.4 Northwestern and Western Sections

2.4.1 Considerations

78 In the northwestern and western sections of the margin, 28 FOS points were initially submitted for the western section, and 11 FOS points for the northwestern section, all within a single continuous BOS (Figure 7). These sections lie to the north and west of the CP encompassing parts of the SWIR and the DIIR located to the north of it.

79 As stated in the Main Body, the western and northwestern sections are characterized by NNE-trending ridges and troughs associated with the transform fracture system of the ultra-slow spreading SWIR, and the NE-trending DIIR (Figure 7). The submitting States noted that the entire region of the northwestern section "is anomalously shallow in comparison with the surrounding deep ocean floor". In the view of the submitting States, it is only "in the very deepest parts of the trenches associated with the transform faults and the spreading centre that the seafloor reaches depths that equate with the deep ocean".
80 At the thirty-eighth session, the Subcommission questioned morphological continuity between the land mass of PEI and the ridges west of Prince Edward Fracture Zone.
81 The Subcommission also sought further clarification on morphological continuity from CP across the SWIR to DIIR, at the thirty-eighth and thirty-ninth sessions.

82 In response to these questions from the Subcommission, the Delegation submitted a revised location of the BOS/FOS for the entire region covered by the Submission (Figure 14). Then followed a series of interactions that are summarized below.

Figure 14. Bathymetric map showing location of revised FOS points for the western and northwestern sections (labelled), as provided on 20 July 2016 [Document 2016_07_20_FRAZAF-DOC-SC-004, Figure 24]. PEI label added by the Subcommission.

(a) Morphological continuity from the land masses to DIIR

83 The Subcommission analysed the proposed morphological continuity between the land masses of the submitting States and the DIIR through a portion of the SWIR, evaluating the following aspects: (i) elevation of a particular part of the SWIR relative to other parts; (ii) morphological character of the seafloor along and across the

SWIR; (iii) level of the DOF; (iv) morphological bridges/saddles crossing the SWIR; and (v) use of bathymetric anomaly.
(i) Elevation of a particular part of the SWIR relative to other parts

84 The Delegation submitted that the SWIR could be separated into a section that belongs to the continental margin and other parts that belong to the DOF. In particular, the Delegation considered the part of the SWIR between Discovery II and Prince Edward Fracture Zones to belong to the continental margin because of its anomalous elevation and morphological continuity with the land masses of France and South Africa. Based on a bathymetric profile along the SWIR axial valley, the Delegation argued that the section of the SWIR between Andrew Bain and Gallieni Fracture Zones is significantly elevated in relation to other parts of this ridge (Figure 2a from Sauter and Cannat, 2010). The Delegation added that, where the SWIR transects the "composite margin", it is morphologically modified by the processes that formed the continental margin. In the view of the submitting States, the CP and the DIIR are formed by the same mantle plume, and, therefore, there was morphological and geological continuity from the CP through the SWIR to the DIIR.

85 The Subcommission assessed the bathymetry of the ridge crest in the area of the Submission and noted that the SWIR section between Prince Edward and Discovery II Fracture Zones has similar elevations to other parts of the SWIR. Therefore, the proposed "anomalous elevation" was not significant if the ruggedness of the DOF along the ridge crest was taken into account (Figure 15).

Figure 15.* A bathymetric profile generated by the Subcommission on the basis of the Smith and Sandwell (1997) grid, roughly along the crest of the SWIR, showing similar elevation between the Prince Edward and Gallieni Fracture Zones and beyond. [Presentation 2015_08_18_SCFRAZAF_PRE_FRAZAF_005, slide 21]

(ii) Morphological character of the seafloor along and across the SWIR

86 In further analysing morphological continuity, the Subcommission observed that along its length, the axis of the SWIR, although offset by numerous fracture zones, has a central valley and prominently lower bathymetric anomaly values contrasting with its flanks. Further, the Subcommission analysed whether the SWIR section between the Prince Edward and Discovery II Fracture Zones can be morphologically distinguished from the adjacent sections of the ridge considered to be part of the DOF with its oceanic ridges.

87 As in the northeastern section of the margin (Figure 11), the Subcommission noted a similar roughness contrast along the northern edge of the CP for the segment between Prince Edward and Discovery II Fracture Zones (Figure 16). It therefore assessed whether that portion of the SWIR has similar morphological characteristics as compared to the CP and DIIR or to the adjacent sections of the SWIR along the ridge axis, by comparing profiles along and across the ridge. It observed that both the elevation and roughness of the central portion of the SWIR are similar immediately northeast and southwest of the Discovery II Fracture Zone along the ridge crest, while there is a clear difference in roughness between that central portion of the SWIR and both the seafloor surface immediately north of the PEI and the DIIR north of the ridge (Figure 16). The Subcommission concluded that there are morphological similarities along the SWIR but differences across it.

Figure 16.* Bathymetric map of the region showing the SWIR and other features considered by the submitting States as part of one composite continental margin. The central portion of the SWIR between Prince Edward and Discovery II Fracture Zones (between black dashed lines), while narrower, presents similar morphological characteristics as the adjacent SWIR section to the east but differs from the Del Cano Rise and the DIIR. [Presentation 2015_08_18_SCFRAZAF_PRE_FRAZAF_005, slide 16]

(iii) Level of the DOF

88 The Delegation also proposed that the submerged prolongation could be determined on the assumption of a flat reference level of the DOF (Figure 17) so that any elevations above it would be part of the submerged prolongation.

Figure 17. Concept of a flat reference level of the DOF as presented by the Delegation. [Presentation 2015-08-19-FRAZAF_PRES-006, slide 10]

89 The Delegation used regional profiles across the margin and considered that the sections of the profile above the flat reference level of the DOF (Figure 18) are part of the continental shelf and slope.

Figure 18. Morphological concept of shelf, slope and DOF as proposed by the Delegation along a profile from the PEI across the Crozet Plateau/SWIR and along the DIIR towards the Mozambique Basin (DOF); additional labels by the Subcommission. [Presentation 2016_08_03_FRAZAF_PRES_010, slide 12]

90 In order to further demonstrate morphological continuity between the CP and the DIIR, the Delegation submitted a series of profiles across the SWIR (Figure 19 and Figure 20), namely:
a) profiles 1 and 7 located in an area of "standard" SWIR where it is regarded to be part of the DOF;
b) profile 6 located to the west of Prince Edward Fracture Zone showing an "elevated part of the SWIR" while still displaying two distinct flanks, regarded to be part of the DOF;
c) profiles 2 and 3 located in an area where the BOS was determined between the CP and the SWIR, not including that part of the SWIR as part of the continental margin; and
d) profiles 4 and 5 (MD207) which cross the "elevated part of the SWIR" where the Delegation claims morphological continuity to the DIIR.
91 According to the Delegation, the analysis of these profiles demonstrates that along profiles 4 and 5 the CP and the DIIR are morphologically continuous across the "elevated" portion of the SWIR, while profiles 2 and 3 showed the elevated Del Cano Rise and an elevated portion of the SWIR further north with no morphological connection. Profiles 1 and 7 showed no elevated portions on or beyond the SWIR, while profile 6 showed an "elevated" SWIR with similar distinct flanks. Therefore, the portions of the SWIR in profiles $1,2,3,6$ and 7 were considered part of the DOF by the Delegation.

Figure 19. Bathymetric map showing location of profiles 1-7 shown in Figure 20. [Presentation 2017_08_15_FRAZAF_PRES_011, slide 14]

Figure 20. Regional bathymetric profiles 1-7 from Figure 19 (thin grey lines), from west (top) to east (bottom). The orange triangular areas point towards the central axis of the SWIR and highlight the expected sloping morphology of the flanks of a "standard" SWIR. In the view of the Delegation, the light green horizontal bars "indicate the depth range of $2,500 \mathrm{~m}$ to $3,500 \mathrm{~m}$, showing the continuity above which much of the continental margin occurs". Horizontal axis in km. [Presentation 2017_08_15_FRAZAF_PRES_011, slide 15]. Red circles added by the Subcomission to highlight interruption of morphological continuity at the SWIR axis within the area of the Submission (see paragraph 92e).

92 The Subcommission considered these views and observed:
a) The depiction of a uniform level of the DOF throughout the entire region, as shown by the straight red line in Figure 17, does not take into account that the profile crosses ocean floor of different ages and therefore different elevations;
b) The morphological concept of shelf, slope and DOF, as presented in Figure 18, suggests a classical continental margin setup with a geomorphic continental shelf, which is contradictory to other data and information submitted by the Delegation, as well as the geoscientific concept of a continental shelf and slope;
c) Both flanks of the SWIR, as depicted by the orange triangle in Figure 20, are shown as having a constant gradient instead of a curvilinear shape of the SWIR which would be expected in line with the age-depth relationship;
d) The depiction of the centre of the SWIR at a depth of $3,000 \mathrm{~m}$, as shown in Figure 20 by the top of the orange triangle, was not substantiated;
e) Even considering the depicted expected level of the DOF, illustrated by the submitting States with the orange triangle, there is an interruption of morphological continuity at the SWIR axis in both profiles 4 and 5 of Figure 20, as indicated by the red circles;
f) The expected level of the DOF across the SWIR, as shown by the orange triangular areas in Figure 20, also does not take into account any error margin, while in the bathymetric anomaly model the Delegation used a value of $\pm 1,000 \mathrm{~m}$ from the expected depth to identify normal DOF (green areas in Figure 6);
g) Taking into account these uncertainties, the interruption of morphological continuity at the SWIR axis, observed under point (e) above, becomes even more pronounced, covering more than just the spreading axis itself and thus confirming the morphological discontinuity between the CP and the DIIR. Hence, the BOS identified by the Delegation around the DIIR cannot be reached without crossing the DOF. Consequently, the BOS is expected to be located between the northern flank of the CP and the southern flank of the SWIR, as per paragraph 5.4.5 of the Guidelines.

(iv) Morphological bridges/saddles crossing the SWIR

93 The Delegation further attempted to demonstrate morphological continuity between the CP and the DIIR by showing that the elevation along the SWIR axial valley, in the segment that forms the saddle, is significantly higher than the depths of the proposed BOS/FOS located in the adjacent Prince Edward and Discovery II fracture zones to the west and east, respectively (Figure 21). It then proposed five morphological bridges crossing the SWIR between these two fracture zones in a N-S direction through the shallowest parts of its axial valley connecting PEI with the DIIR (Figure 22).

Figure 21. Submitted profile along a section of the SWIR axial valley from A to B, showing the difference in elevation between potential morphological bridges from CP to DIIR in perpendicular direction (e. g. the one marked in pink as N-S Crossing Profile, shown in Figure 22) and the identified BOS in adjacent fracture zones (highlighted as green boxes). [Presentation 2019_08_06_FRAZAF_PRES_014, slide 19] Labels A and B added by the Subcommission.

Figure 22. Submitted profile crossing the SWIR from south (PEI) to north (BOS in the Mozambique Basin) used to demonstrate a morphological bridge, which is shallower than the proposed BOS/FOS in the north. Location where the profile crosses the SWIR axial profile of Figure 21 marked with a pink dashed line. [Presentation 2019_08_06_FRAZAF_PRES_014, slide 20] Labels in the location map added by the Subcommission.

94 At the thirty-eighth session, the Delegation recalled the finding of the Subcommission in its consideration of the Test of Appurtenance that saddles at water depths of circa $2,800-2,900 \mathrm{~m}$ had been accepted as morphologically connecting the land masses of the two submitting States with the Del Cano Rise (see para. 38). In that regard, the Delegation reasoned that any saddles between the CP and the DIIR, being of shallower depths, also had to represent a valid morphological connection.

95 In this respect, the Subcommission expressed the view that the same water depth that was acceptable as a saddle at a certain distance away from the ridge axis may not be sufficient to serve as a bridge closer to the ridge axis, where the DOF is much younger and therefore shallower.
96 At the forty-eighth session, held from 15 October to 30 November 2018, the Subcommission conveyed its view that the processes that shaped the continental margin needed to have resulted in a clear present-day morphological expression (i.e. a significant elevation above the DOF) in order to consider different features as morphologically connected. To that end, it analysed water depths along different bathymetric profiles crossing the SWIR crest in different segments of the ridge (Figure 23). This approach compared the depth of proposed morphological bridges (measured data) with the level of the adjacent DOF by stacking them with similar profiles through shallow parts of other/adjacent segments of the SWIR away from the proposed margin (using data from Smith and Sandwell, 1997).

Figure 23.* Bathymetric map showing bathymetric profiles along ridges of the SWIR. PEI to the south of the SWIR and DIIR to the north of it (circled in red). [after Figure 3, Document 2018_11_30_SCFRAZAF_ DOC_FRAZAF_008]

97 The Subcommission noted that while PEI/CP clearly stand out to the south of the SWIR, and the DIIR to the north of it, the central parts of the SWIR along the
proposed bridge are well within the water depths of the DOF and its ruggedness and not elevated above it (Figure 24).

Figure 24.* Easternmost morphological bridge proposed by the Delegation (yellow, for location see profile A-B in Figure 23), against the backdrop of profiles along other parts of the SWIR in grey (i.e. the blue, green, red and purple profiles from Figure 23), which show the level and ruggedness of the DOF. PEI to the south of the SWIR and the DIIR to the north of it (circled in red). Area that would need to be bridged morphologically to connect the CP with the DIIR highlighted (red bar). [Document 2020_01_31_SCFRAZAF_DOC_FRAZAF_009, Figure 1]

98 The Subcommission regards the "top of the deep ocean floor", as per paragraph 5.4.5 of the Guidelines, to be represented by the height of the SWIR crest of neighbouring segments including the entire top section and not just its axial valley. Further, it regards fracture zones to be localized features with negative depth anomalies. Therefore, the Subcommission concentrated its analysis on the shallow parts of the ridge rather than comparing the bridges to the deep fracture zones.

99 In this context, the Subcommission noted that the part of the SWIR that would need to be bridged morphologically is the area highlighted with the red bar in Figure 24. The figure illustrates that there is no morphological continuity between the elevated parts of the profile (CP and DIIR, respectively - circled in red) and that morphological connection is already lost at the transition between the CP and the SWIR, before reaching the axial valley.

100 The Subcommission concluded that none of the suggested morphological bridges was significantly elevated above the level of similar profiles crossing the SWIR in other segments, but rather that they merge with the background level of the DOF while crossing the SWIR (Figure 24).

(v) Use of bathymetric anomaly

101 Given that at the forty-seventh session the Delegation maintained that the bathymetric anomaly remained an essential tool in separating the continental margin from the DOF, particularly in the vicinity of mid-ocean ridges, the Subcommission focussed its analysis on the threshold values of $1,000 \mathrm{~m}$ and $1,200 \mathrm{~m}$, as used by the Delegation to identify the edges of the BOS. To that end, the Subcommission analysed the bathymetric anomaly values at FOS locations in the southern, eastern and northeastern sections of the continental margin that were accepted at the time in order to see how well they compared to those proposed thresholds. Fitting agreed FOS points in the southern and eastern sections of the margin resulted in an anomaly
of approximately $1,450 \mathrm{~m}$, on average, with values ranging circa from 750 m to 1,940 m , and differed between these two sectors of the margin. In the northeastern sector the anomaly values ranged circa from $1,770 \mathrm{~m}$ to $2,190 \mathrm{~m}$. Therefore, no single "threshold" value seemed appropriate to be used to identify the BOS on the entire margin. However, the Subcommission was of the view that the bathymetric anomaly, once average values and ranges have been identified on specific subregional scales, could potentially support the identification of a broad search area for the BOS.

102 Applying the above adjusted values, the bathymetric anomaly supports the view of the Subcommission that the CP is not morphologically continuous with the DIIR through part of the SWIR, and that the discontinuity covers more than just the axial valley (see also para. 99).

Conclusion on morphological continuity

103 The Subcommission concluded that, since the portion of the SWIR between the Prince Edward and Discovery II Fracture Zones cannot be distinguished from the adjacent DOF (adjacent being along the ridge crest of the same age and not the abyssal plains on both sides of different age), it had to be regarded as part of the DOF as well. Consequently, as there is DOF between the CP and the DIIR, there is no morphological connection between the two features.

104 The Delegation disagreed with this conclusion arguing that it was not possible to determine which features were part of the DOF prior to completing the process of establishing the FOS envelope, since only then it would be possible to identify features that are within the FOS envelope and, therefore, not part of the DOF. In this context, the Delegation argued that the BOS could not be identified at the comparably shallow depths of the SWIR crest, but would only be found around the DIIR, where depths reach the level of abyssal plains, considering that "the foot of the continental slope shall, by definition, always be found at its base (not the top)".
105 The Subcommission maintained its conclusion and pointed out that even in a nonclassical continental margin setting, paragraph 5.4.5. of the Guidelines still applies. Since the "base of the continental slope [is defined] as a region where the lower part of the slope merges into [...] the top of the deep ocean floor where a continental rise does not exist", there is already a distinction between the slope and the DOF in the process of the determination of the location of the BOS region. Due to the convergence of different seafloor highs (CP, SWIR and DIIR), in the area of the Submission, the "top of the deep ocean floor" in the area of the SWIR is located in comparably shallow depths (see also para. 98 above).

(b) Geological and geophysical considerations

106 The submitting States are of the view that both morphological and geological considerations demonstrate that the CP is continuous with a section of the SWIR and the DIIR. Regarding geological continuity, the Delegation argues that (i) the CP was formed by a swell related to the Marion hotspot volcanism, (ii) the Crozet Bank was later modified by overprinting by the Crozet volcanism, and (iii) the DIIR was formed by the Marion hotspot volcanism which also affected the elevated part of the SWIR.

107 The Subcommission is of the view that without demonstration of morphological continuity, geological continuity throughout a region cannot be used to identify the

BOS. Despite the Subcommission's view that morphological continuity from the CP to the DIIR, through the SWIR, had not been demonstrated, it did consider geological connectivity as proposed by the Delegation, as follows.
108 The Del Cano Rise was located alongside the Madagascar Plateau at 73.6 Ma before the start of the SWIR formation (e.g. Zhang et al., 2011). These results support earlier studies based on seismic velocities calculated from sonobuoys (e.g. Goslin et al., 1981), indicating that the Madagascar Plateau and the Del Cano Rise had formed over a thicker crust of oceanic composition. This is in line with the crust below the Crozet Bank being thicker than normal oceanic crust, also inferred from a seismic velocity model (Recq et al., 1998). The foregoing points to different formation mechanisms, at least between the Del Cano Rise and the SWIR, since the Madagascar Plateau and the Del Cano Rise were former neighbours having formed much earlier than any geological process forming the shallow bathymetric entities between the Prince Edward and Discovery II Fracture Zones (SWIR and DIIR).

109 Relating to potential field information, the magnetic and gravity signatures of the CP are different from those of the SWIR. These data show a pattern of the DIIR with the associated Discovery II Fracture Zone to be similar to the other ridges and alternate fracture zone systems of the SWIR in the region (Figure 25).

Conclusion on geological continuity

110 The Subcommission is of the view that geological and geophysical evidence show a distinct SWIR between the CP and the DIIR interrupting continuity and thus corroborating the findings from the morphological analysis of the Subcommission.

Figure 25.* Maps showing (A) vertical gravity gradient (Topex) and (B) magnetic anomaly (EMAG2) with isobaths in black (GMRT). ([Presentation 2015_08_20_SCFRAZAF_PRE_FRAZAF_006, after slides 7 and 8]

(c) Conclusions relating to morphological and geological continuity

111 The Subcommission conveyed to the Delegation its conclusion that no morphological or geological continuity had been demonstrated between the CP and any portion of the SWIR or the DIIR, and therefore the BOS surrounding the CP land masses should not include any portion of those features.

112 An analysis, which was based on the latest bathymetric grids and information about hot spot-ridge interactions, was presented at the level of the plenary. While the analysis is not conclusive, the Commission recognizes that it may lead to an alternative view to submerged prolongation of the land masses across the SWIR.

(d) BOS region and FOS points

113 Recalling paragraph 5.4.5 of the Guidelines, the Subcommission concluded that in the area of the northwestern and western sections, the BOS is located where the CP meets the SWIR, which is where the lower part of the slope of the CP merges into the top of the DOF, as characterized by the grey background level of the DOF in Figure 24. The Subcommission considered changes in seafloor character (roughness) as one of the criteria for the identification of the BOS in these sections, as also applied for the northeastern section (see Figure 11).

114 Based on its disagreement with the location of the BOS region as identified by the submitting States, the Subcommission did not examine most of the individual FOS points in the northwestern and western sections (Figure 14). The Subcommission did examine FOS point West04, which it considered to be located seaward of the BOS. That BOS/FOS point was determined by the Delegation in the Prince Edward Fracture Zone instead of where the slope merges with the top of the DOF, as illustrated by the grey background level of the DOF in Figure 26.

Figure 26.* Upper panel - 2D bathymetric profile used by the Delegation for identification of BOS/FOS West04 and its location (inset map). Lower panel - same profile (blue) against the backdrop of others crossing the SWIR. The yellow profile is profile A-C from Figure 23, which in the first part coincides approximately in location with the profile towards FOS point West04. Elevated part of the PEI highlighted by a red ellipse. In both panels, the BOS as identified by the submitting States is circled in red, and an alternative BOS location is indicated in green. [Document 2020_01_31_SCFRAZAF_DOC_FRAZAF_009, Figure 8]

115 The Subcommission also examined FOS points West09 to West11 (Figure 14) and noted that, even though derived from three different bathymetric profiles, all of them align with the profile on which FOS point West11 was determined. The Subcommission agreed only with the location of FOS point West11, which does not contribute to an outer edge of the continental margin beyond 200 M .

2.4.2 Recommendations

116 Based on its consideration of the scientific and technical documentation contained in the Submission of France and South Africa and the additional scientific and technical data and information provided in the documents referenced in paragraphs 33 and 35 , the Commission was unable to come to a conclusion concerning the submerged prolongation of the land masses across the SWIR.
117 The Commission recommends, therefore, that the submitting States make a revised submission concerning the western and northwestern regions, taking into consideration paragraph 112.
3. The establishment of the outer edge of the continental margin (article 76, paragraph 4(a))
118 The outer edge of the continental margin of France and South Africa in the area of the Crozet Archipelago and the PEI shall be established in accordance with article 76, paragraph 4(a).

3.1 Southern Section (Southern Segment)

3.1.1 The application of the $\mathbf{6 0} \mathbf{~ M}$ distance formula (article 76, paragraph 4(a)(ii))

119 In the southern section, the outer edge of the continental margin is solely based on fixed points constructed at a distance of not more than 60 M from each of the five respective critical FOS points on the continental margin of the Crozet Archipelago and the PEI (Figure 27; Table 2a, annex I), in accordance with the provisions contained in article 76, paragraph 4(a)(ii).
120 The Commission agrees with the methodology by which these points have been established by France and South Africa in the southern section of the continental margin of the Crozet Archipelago and the PEI.

3.1.2 Configuration of the Outer Edge of the Continental Margin

121 In the southern section of the continental margin of the Crozet Archipelago and the PEI, the outer edge of the continental margin of France and South Africa extends eastwards from the 200 M line of the PEI (South Africa) to the 200 M line of the Crozet Archipelago (France) and is defined by 194 fixed points (CM_S_001 to CM_S_194) (Figure 27).

Figure 27. Bathymetric map showing final FOS positions and the outer edge of the continental margin of France and South Africa in the southern and northern segments of the continental margin in the area of the Crozet Archipelago and the PEI. Coordinates of FOS points are contained in Tables 1a, 1b and 1c of annex I to these Recommendations. Coordinates of fixed points defining the outer edge of the continental margin are contained in Tables 2a and 2b of annex I. Also shown are the 200 M and 350 M lines of France and South Africa. [Document 2022_02_15_FRAZAF_DOC_SCFRAZAF_008, Figure 2]

3.1.3 Recommendations

122 In the southern section of the continental margin of the Crozet Archipelago and the PEI, the outer edge of the continental margin of France and South Africa beyond 200 M is based on 194 fixed points on the 60 M formula line (Figure 27) as described in section 3.1.1, in accordance with article 76, paragraph 4. The fixed points are listed in Table 2a of annex I to these Recommendations. The Commission recommends that these points be used as the basis for delineating the outer limits of the continental shelf in this region, subject to the application of the relevant constraints (see Chapter 4).

3.2 Eastern and Northeastern Sections (Northern Segment)

123 At the fifty-fourth session, the outer edges of the eastern and northeastern sections of the continental margin of France and South Africa were combined into a single segment by the Delegation, called the Northern Segment.

3.2.1 The application of the $\mathbf{6 0} \mathbf{M}$ distance formula (article 76, paragraph 4(a)(ii))

124 In the Northern Segment, the outer edge of the continental margin is solely based on fixed points constructed at a distance of not more than 60 M from each of the ten respective critical FOS points on the continental margin of the Crozet Archipelago and the PEI (Figure 27; Table 2b, annex I), in accordance with the provisions contained in article 76, paragraph 4(a)(ii).

125 The Commission agrees with the methodology by which these points have been established by France and South Africa in the Northern Segment of the continental margin of the Crozet Archipelago and the PEI.

3.2.2 Configuration of the Outer Edge of the Continental Margin

126 In the Northern Segment of the continental margin of the Crozet Archipelago and the PEI, the outer edge of the continental margin of France and South Africa extends northwards and northwestwards from the 200 M line of the Crozet Archipelago (France) to the 200 M line of the PEI (South Africa) and is defined by 531 fixed points (CM_N_001 to CM_N_531) (Figure 27).

3.2.3 Recommendations

127 In the Northern Segment of the continental margin of the Crozet Archipelago and the PEI, the outer edge of the continental margin of France and South Africa beyond 200 M is based on 531 fixed points on the 60 M formula line (Figure 27) as described in section 3.2.1, in accordance with article 76, paragraph 4. The fixed points are listed in Table 2b of annex I to these Recommendations. The Commission recommends that these points be used as the basis for delineating the outer limits of the continental shelf in this region, subject to the application of the relevant constraints (see Chapter 4).
4. The application of the constraint criteria (article 76, paragraphs 5 and 6)

128 The outer limits of the continental shelf cannot extend beyond the constraints as per the provisions contained in article 76, paragraphs 5 and 6 . The fixed points comprising the line of the outer limits of the continental shelf on the seabed, drawn in accordance with paragraph 4(a)(i) and (ii), either shall not exceed 350 M from the baselines, or shall not exceed 100 M from the $2,500 \mathrm{~m}$ isobath.

129 For the outer limits of the continental shelf in the southern and northern segments of the continental margin of the Crozet Archipelago and the PEI, France and South Africa invoked only the distance constraint.

4.1 The construction of the distance constraint line

130 The distance constraint line submitted by France and South Africa for the southern and northern segments of the continental margin of the Crozet Archipelago and the PEI was constructed by arcs at 350 M distance from the baselines of France and South Africa, respectively (Figure 27). The Commission agrees with the methodology applied by France and South Africa in the construction of this constraint line.

5. The outer limits of the continental shelf (article 76, paragraph 7)

131 The outer edge of the continental margin in the area of the Crozet Archipelago and the PEI, as amended by France and South Africa on 18 February 2022, is located entirely landward of the distance constraint line determined according to paragraph 130, in the southern and northern segments of the continental margin. Therefore, the distance constraint line has no limiting effect on the extent of the outer limits of the continental shelf in those areas.

132 Taking into account that the Submission was a joint submission by two coastal States, the Subcommission verified that the total area of continental shelf proposed in the Submission was not larger than the sum of the individual areas of continental shelf that each of the two States could have proposed if they had made separate submissions, in accordance with the decision of principle reached by the Commission at its twentieth session (CLCS/56, paragraphs 26-29).

5.1 Southern Section (Southern Segment)

133 In the southern section of the continental margin of the Crozet Archipelago and the PEI, the outer limits of the continental shelf as transmitted by France and South Africa on 18 February 2022 consist of 88 fixed points (OL_S_001 to OL_S_088) connected by straight lines not exceeding 60 M in length (Figure 28). The fixed points are established in accordance with article 76, or points located on the 200 M lines of France and South Africa, as follows:

- 2 fixed points, OL_S_001 and OL_S_088, are located on the lines established at 200 M from the baselines of South Africa and France, respectively, using 60 M bridging lines; and
- 86 fixed points, OL_S_002 to OL_S_087, are located on a line delineated in accordance with article 76 , paragraph 7 , by reference to fixed points not more than 60 M from the FOS by application of article 76, paragraph 4(a)(ii).
134 Neither of the two points OL_S_001 and OL_S_088 has been determined by application of article 76 , paragraph $4(\mathrm{a})(\mathrm{i})$ or (ii), $\overline{\text { and }}$ it is not the practice of the Commission to recommend the use of 60 M bridging lines to connect to the 200 M lines (see Figure 28), namely the construction between OL_S_002 and OL_S_001 and between OL_S_087 and OL_S_088. The Commission recommends that each of these lines be replaced by points and straight lines not exceeding 60 M in length that conform to the outer edge of the continental margin (see Figure 27 and Table 2a, annex I) up to their intersection with the 200 M line, or as per the practice of the Commission, by lines of shortest distance (not exceeding 60 M in length) to the 200 M lines.

135 The Commission agrees with the determination of the 86 fixed points listed in Table 3a of annex I to these Recommendations, and the construction of the straight lines connecting those points.

Figure 28. Bathymetric map showing outer limits of the continental shelf of France and South Africa for the southern and northern segments of the continental margin in the area of the Crozet Archipelago and the PEI, and their defining fixed points, connected with straight lines not exceeding 60 M in length. Coordinates of fixed points defining the outer limits of the continental shelf are contained in Tables 3a and 3b of annex I to these Recommendations. Also shown are the 200 M and 350 M lines of France and South Africa as constructed by the submitting States [document 2022_02_15_FRAZAF_DOC_SCFRAZAF_008, Figure 3]. Outer limit fixed points not accepted by the Subcommission are highlighted in yellow (see paragraphs 134 and 137).

5.2 Eastern and Northeastern Sections (Northern Segment)

136 In the eastern and northeastern sections (Northern Segment) of the continental margin of the Crozet Archipelago and the PEI, the outer limits of the continental shelf as transmitted by France and South Africa on 18 February 2022 consist of 376 points (OL_N_001 to OL_N_376) connected by straight lines not exceeding 60 M in length (Figure 28). The fixed points are established in accordance with article 76, or points located on the 200 M lines of France and South Africa, as follows:

- 2 fixed points, OL_N_001 and OL_N_376, are located on the lines established at 200 M from the baselines of France and South Africa, respectively, using 60 M bridging lines; and
- 374 fixed points, OL_N_002 to OL_N_375, are located on a line delineated in accordance with article $\overline{7} 6$, paragraph 7 , by reference to fixed points not more than 60 M from the FOS by application of article 76, paragraph 4(a)(ii).

137 Neither of the two points OL_N_001 and OL_N_376 has been determined by application of article 76, paragraph 4(a)(i) or (ii), and it is not the practice of the Commission to recommend the use of 60 M bridging lines to connect to the 200 M lines (see Figure 28), namely the construction between OL_N_002 and OL_N_001 and between OL_N_375 and OL_N_376. The Commission recommends that each of these lines be replaced by points and straight lines not exceeding 60 M in length that conform to the outer edge of the continental margin (see Figure 27 and Table 2b, annex I) up to their intersection with the 200 M line, or as per the practice of the Commission, by lines of shortest distance (not exceeding 60 M in length) to the 200 M lines.

138 The Commission agrees with the determination of the 374 fixed points listed in Table 3b of annex I to these Recommendations, and the construction of the straight lines connecting those points.

6. Recommendations for the area of the Crozet Archipelago and the Prince Edward Islands (article 76, paragraph 8)

139 The Commission agrees with the determination of the fixed points listed in Tables 2a and 2 b of annex I, establishing the outer edge of the continental margin in the area of the Crozet Archipelago and the PEI. The Commission recommends that the delineation of the outer limits of the continental shelf in that area be conducted in accordance with article 76, paragraph 7, by straight lines not exceeding 60 M in length, connecting fixed points, defined by coordinates of latitude and longitude. Further, the Commission agrees with the methodology and its accuracy applied in delineating the outer limits of the continental shelf in the area of the Crozet Archipelago and the PEI, including the determination of the fixed points listed in Tables 3a and 3b of annex I, and the construction of the straight lines connecting those points.

140 The Commission recommends that France and South Africa proceed to establish the outer limits of the continental shelf in the northern and southern segments of the Crozet Archipelago and the PEI accordingly.
141 The Commission recommends that France and South Africa make a revised submission concerning the western and northwestern regions (see section 2.4) of the Crozet Archipelago and the PEI.

REFERENCES

Bergh, H.W., and I.O. Norton (1976): "Prince Edward fracture zone and the evolution of the Mozambique basin." Journal of Geophysical Research, 81(29), 5221-5239

Chevallier, L. (1986): "Tectonics of Marion and Prince Edward volcanoes (Indian Ocean): Result of regional control and edifice dynamics." Tectonophysics, 124(1-2), 155-175.

Duncan, R.A. (1981): "Hotspots in the Southern Oceans - an absolute frame of reference for motion of the Gondwana continents." Tectonophysics, 74(1-2), 29-42

Eagles, G., and M. König (2008): "A model of plate kinematics in Gondwana breakup." Geophysical Journal International, 173(2), 703-717.

Fischer, R.L., and A.M. Goodwillie (1997): "The Physiography of the Southwest Indian Ridge." Marine Geophysical Researches, 19, 451-455.

Georgen, J.E., J. Lin and H.J.B. Dick (2001): "Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets." Earth and Planetary Science Letters, 187(3-4), 283-300.

Goslin, J., and M. Diament (1987): "Mechanical and thermal isostatic response of the Del Cano Rise and Crozet Bank (southern Indian Ocean) from altimetry data." Earth and Planetary Science Letters, 84(2-3): 285294.

Goslin, J., M. Recq and R. Schlich (1981): "Structure profonde du plateau de Madagascar: Relations avec le plateau de Crozet." Tectonophysics, 76(1/2), 75-85, 89-97.

Hillier, J.K., and A.B Watts (2005): "Relationship between depth and age in the North Pacific Ocean." Journal of Geophysical Research, 110 (B02405), 1-22.

Marks, K.M., and A.A. Tikku (2001): "Cretaceous reconstructions of East Antarctica, Africa and Madagascar." Earth and Planetary Science Letters, 186(3-4), 479-495.

Müller, R.D., M. Sdrolias, C. Gaina, W.R. Roest (2008): "Age, spreading rates and spreading asymmetry of the world's ocean crust." Geochemistry, Geophysics Geosystems, 9(4) (Q04006), doi:10.1029/2007GC001743.

Recq, M., J. Goslin, P. Charvis and S. Operto (1998): "Small-scale crustal variability within an intraplate structure: the Crozet Bank (southern Indian Ocean)." Geophysical Journal International, 134(1), 145-156.

Sauter, D., and M. Cannat (2010): "The Ultraslow Spreading Southwest Indian Ridge." Washington D.C., American Geophysical Union, Geophysical Monograph Series, 188, doi:10.1029/2008GM000843.

Sclater, J.G., N.R. Grindlay, J.A. Madsen and C. Rommevaux-Jestin (2005): "Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean." Geochemistry Geophysics Geosystems, 6(9), Q09K10, doi:10.1029/2005GC000951.

Smith, W.H., and D.T. Sandwell (1997): "Global sea floor topography from satellite altimetry and ship depth soundings." Science, 277, 1893-2088.

Storey, M., J.J. Mahoney, A.D. Saunders, R.A. Duncan, S.P. Kelley and M.F. Coffin (1995): "Timing of Hot Spot-Related Volcanism and the Breakup of Madagascar and India." Science, 267, 852-855.

Verwoerd, W.J., L. Chevallier and J.W. Thomson (1990): "F. Oceanic Islands on the Antarctic Plate." In: LeMasurier, W.E., J.W. Thomson, P.E. Baker, P.R. Kyle, P.D. Rowley, J.L. Smellie and W.J. Verwoerd (eds.) "Volcanoes of the Antarctic Plate and Southern Oceans", Washington D.C., American Geophysical Union, Antarctic Research Series, 48, 396-463.

Zhang T., J. Lin and J.Y. Gao (2011): "Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma : Implications on the formation of oceanic plateaus and intra-plate seamounts."
Science China Earth Sciences, 54(8), 1177-1188

ANNEX I

TABLES OF GEOGRAPHICAL COORDINATES OF: THE FOOT OF THE CONTINENTAL SLOPE POINTS, THE FIXED POINTS OF THE OUTER EDGE OF THE CONTINENTAL MARGIN AND THE FIXED POINTS OF THE OUTER LIMITS OF THE CONTINENTAL SHELF BEYOND 200 M, AS RECOMMENDED BY THE COMMISSION, BASED ON THE JOINT SUBMISSION BY FRANCE AND SOUTH AFRICA IN THE AREA OF THE CROZET ARCHIPELAGO AND THE PRINCE EDWARD ISLANDS

Table 1a. Coordinates of the foot of the continental slope points in the southern section of the continental margin [as received on 18 February 2022]

FOS point	Longitude [dd E]	Latitude [dd S]	Depth [m]
FOS_South03*	42.1533300	47.1083300	3784.0
FOS_South04	43.0056633	47.9386233	4243.3
FOS_South05	43.4889383	48.1172819	4421.5
FOS_South06*	45.1489341	47.2754381	3553.9
FOS_South07	46.2351288	48.7376089	4329.4
FOS_South08	47.4144000	48.8756800	4252.0
FOS_South09	48.2050000	48.7833300	4240.0

* Not critical

Table 1b. Coordinates of the critical foot of the continental slope points in the eastern section of the continental margin [as received on 18 February 2022]

FOS point	Longitude [dd E]	Latitude [dd S]	Depth [m]
FOS_East06	55.3976150	44.7004999	4270.0
FOS_East07	54.8576223	43.9139778	4126.4
FOS_East08	53.4812023	43.1683237	3930.4
FOS_East09	52.9284200	42.5609900	3924
FOS_East10	52.3441303	42.6765162	4140.7

Table 1c. Coordinates of the foot of the continental slope points in the northeastern section of the continental margin [as received on 18 February 2022]

FOS point	Longitude [dd E]	Latitude [dd S]	Depth [m]
FOS_NE03	49.1434478	42.45027418	3324.5
FOS_NE04*	49.1323811	42.46767518	3325.5
FOS_NE05*	48.8296778	42.67943685	3294.0
FOS_NE06*	48.5513754	42.75700829	3239.5
FOS_NE07	48.1730437	42.84330816	3168.5
FOS_NE09*	46.5215840	43.01829218	3209.0
FOS_NE10	46.1073285	42.94666969	3213.5
FOS_NE12	44.9995642	43.4316912	2942.35
FOS_NE15	42.6239778	44.2029611	2599.2

* Not critical

Table 2a. Coordinates of fixed points defining the outer edge of the continental margin and their corresponding FOS points in the southern section of the continental margin (Southern Segment) [as received on 11 March 2022]

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_001	41.7010268	48.425936	0.0	(4) (a) (ii)	FOS_South04
CM_S_002	41.7132289	48.4404773	1.0	(4) (a) (ii)	FOS_South04
CM_S_003	41.7258005	48.4548799	1.0	(4) (a) (ii)	FOS_South04
CM_S_004	41.7387383	48.4691396	1.0	(4) (a) (ii)	FOS_South04
CM_S_005	41.752039	48.4832525	1.0	(4) (a) (ii)	FOS_South04
CM_S_006	41.7656991	48.4972144	1.0	(4) (a) (ii)	FOS_South04
CM_S_007	41.7797148	48.5110213	1.0	(4) (a) (ii)	FOS_South04
CM_S_008	41.7940825	48.5246692	1.0	(4) (a) (ii)	FOS_South04
CM_S_009	41.8087984	48.5381544	1.0	(4) (a) (ii)	FOS_South04
CM_S_010	41.8238585	48.5514728	1.0	(4) (a) (ii)	FOS_South04
CM_S_011	41.8392587	48.5646207	1.0	(4) (a) (ii)	FOS_South04
CM_S_012	41.8549949	48.5775942	1.0	(4) (a) (ii)	FOS_South04
CM_S_013	41.8710627	48.5903897	1.0	(4) (a) (ii)	FOS_South04
CM_S_014	41.8874578	48.6030033	1.0	(4) (a) (ii)	FOS_South04
CM_S_015	41.9041757	48.6154316	1.0	(4) (a) (ii)	FOS_South04

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_016	41.9212119	48.6276708	1.0	(4) (a) (ii)	FOS_South04
CM_S_017	41.9385617	48.6397176	1.0	(4) (a) (ii)	FOS_South04
CM_S_018	41.9562201	48.6515683	1.0	(4) (a) (ii)	FOS_South04
CM_S_019	41.9741824	48.6632196	1.0	(4) (a) (ii)	FOS_South04
CM_S_020	41.9924436	48.6746681	1.0	(4) (a) (ii)	FOS_South04
CM_S_021	42.0109986	48.6859105	1.0	(4) (a) (ii)	FOS_South04
CM_S_022	42.0298423	48.6969435	1.0	(4) (a) (ii)	FOS_South04
CM_S_023	42.0489692	48.7077639	1.0	(4) (a) (ii)	FOS_South04
CM_S_024	42.0683739	48.7183685	1.0	(4) (a) (ii)	FOS_South04
CM_S_025	42.0880512	48.7287542	1.0	(4) (a) (ii)	FOS_South04
CM_S_026	42.1079953	48.7389181	1.0	(4) (a) (ii)	FOS_South04
CM_S_027	42.1282006	48.7488572	1.0	(4) (a) (ii)	FOS_South04
CM_S_028	42.1486616	48.7585687	1.0	(4) (a) (ii)	FOS_South04
CM_S_029	42.1693722	48.7680496	1.0	(4) (a) (ii)	FOS_South04
CM_S_030	42.1903268	48.7772972	1.0	(4) (a) (ii)	FOS_South04
CM_S_031	42.2115192	48.7863089	1.0	(4) (a) (ii)	FOS_South04
CM_S_032	42.2329435	48.795082	1.0	(4) (a) (ii)	FOS_South04
CM_S_033	42.2545935	48.8036139	1.0	(4) (a) (ii)	FOS_South04
CM_S_034	42.2764627	48.8119021	1.0	(4) (a) (ii)	FOS_South04
CM_S_035	42.2985451	48.8199442	1.0	(4) (a) (ii)	FOS_South04
CM_S_036	42.3208344	48.8277378	1.0	(4) (a) (ii)	FOS_South04
CM_S_037	42.3433241	48.8352808	1.0	(4) (a) (ii)	FOS_South04
CM_S_038	42.3660079	48.8425709	1.0	(4) (a) (ii)	FOS_South04
CM_S_039	42.3888789	48.8496058	1.0	(4) (a) (ii)	FOS_South04
CM_S_040	42.4119306	48.8563837	1.0	(4) (a) (ii)	FOS_South04
CM_S_041	42.4351563	48.8629024	1.0	(4) (a) (ii)	FOS_South04
CM_S_042	42.4585492	48.8691601	1.0	(4) (a) (ii)	FOS_South04
CM_S_043	42.4821028	48.875155	1.0	(4) (a) (ii)	FOS_South04
CM_S_044	42.5058104	48.8808853	1.0	(4) (a) (ii)	FOS_South04
CM_S_045	42.5296369	48.8868139	1.0	(4) (a) (ii)	FOS_South05
CM_S_046	42.5491034	48.897401	1.0	(4) (a) (ii)	FOS_South05
CM_S_047	42.5688602	48.9077785	1.0	(4) (a) (ii)	FOS_South05
CM_S_048	42.5888848	48.9179341	1.0	(4) (a) (ii)	FOS_South05
CM_S_049	42.6091715	48.9278648	1.0	(4) (a) (ii)	FOS_South05
CM_S_050	42.6297144	48.9375676	1.0	(4) (a) (ii)	FOS_South05
CM_S_051	42.6505079	48.9470399	1.0	(4) (a) (ii)	FOS_South05
CM_S_052	42.6715458	48.9562787	1.0	(4) (a) (ii)	FOS_South05

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_053	42.6928222	48.9652814	1.0	(4) (a) (ii)	FOS_South05
CM_S_054	42.7143311	48.9740454	1.0	(4) (a) (ii)	FOS_South05
CM_S_055	42.7360664	48.9825682	1.0	(4) (a) (ii)	FOS_South05
CM_S_056	42.7580217	48.9908471	1.0	(4) (a) (ii)	FOS_South05
CM_S_057	42.7801908	48.9988799	1.0	(4) (a) (ii)	FOS_South05
CM_S_058	42.8025672	49.0066642	1.0	(4) (a) (ii)	FOS_South05
CM_S_059	42.8251447	49.0141976	1.0	(4) (a) (ii)	FOS_South05
CM_S_060	42.8479165	49.021478	1.0	(4) (a) (ii)	FOS_South05
CM_S_061	42.870876	49.0285032	1.0	(4) (a) (ii)	FOS_South05
CM_S_062	42.8940167	49.0352712	1.0	(4) (a) (ii)	FOS_South05
CM_S_063	42.9173319	49.04178	1.0	(4) (a) (ii)	FOS_South05
CM_S_064	42.9408148	49.0480277	1.0	(4) (a) (ii)	FOS_South05
CM_S_065	42.9644586	49.0540125	1.0	(4) (a) (ii)	FOS_South05
CM_S_066	42.9882563	49.0597325	1.0	(4) (a) (ii)	FOS_South05
CM_S_067	43.012201	49.0651862	1.0	(4) (a) (ii)	FOS_South05
CM_S_068	43.0362858	49.0703718	1.0	(4) (a) (ii)	FOS_South05
CM_S_069	43.0605037	49.075288	1.0	(4) (a) (ii)	FOS_South05
CM_S_070	43.0848474	49.0799332	1.0	(4) (a) (ii)	FOS_South05
CM_S_071	43.1093099	49.0843061	1.0	(4) (a) (ii)	FOS_South05
CM_S_072	43.1338841	49.0884054	1.0	(4) (a) (ii)	FOS_South05
CM_S_073	43.1585629	49.0922299	1.0	(4) (a) (ii)	FOS_South05
CM_S_074	43.1833387	49.0957784	1.0	(4) (a) (ii)	FOS_South05
CM_S_075	43.1994777	49.0979346	0.7	(4) (a) (ii)	FOS_South05
CM_S_076	43.2082045	49.0990499	0.4	(4) (a) (ii)	FOS_South05
CM_S_077	43.2243978	49.1010257	0.7	(4) (a) (ii)	FOS_South05
CM_S_078	43.2493958	49.1038383	1.0	(4) (a) (ii)	FOS_South05
CM_S_079	43.2744643	49.1063715	1.0	(4) (a) (ii)	FOS_South05
CM_S_080	43.299596	49.1086247	1.0	(4) (a) (ii)	FOS_South05
CM_S_081	43.3247835	49.1105971	1.0	(4) (a) (ii)	FOS_South05
CM_S_082	43.3500193	49.1122881	1.0	(4) (a) (ii)	FOS_South05
CM_S_083	43.3752961	49.1136973	1.0	(4) (a) (ii)	FOS_South05
CM_S_084	43.4006063	49.1148242	1.0	(4) (a) (ii)	FOS_South05
CM_S_085	43.4259425	49.1156686	1.0	(4) (a) (ii)	FOS_South05
CM_S_086	43.4512974	49.1162301	1.0	(4) (a) (ii)	FOS_South05
CM_S_087	43.4766633	49.1165086	1.0	(4) (a) (ii)	FOS_South05
CM_S_088	43.5020328	49.116504	1.0	(4) (a) (ii)	FOS_South05
CM_S_089	43.5273984	49.1162164	1.0	(4) (a) (ii)	FOS_South05

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_090	43.5527528	49.1156457	1.0	(4) (a) (ii)	FOS_South05
CM_S_091	43.5780883	49.1147922	1.0	(4) (a) (ii)	FOS_South05
CM_S_092	43.6033976	49.1136562	1.0	(4) (a) (ii)	FOS_South05
CM_S_093	43.6286731	49.1122379	1.0	(4) (a) (ii)	FOS_South05
CM_S_094	43.6539075	49.1105377	1.0	(4) (a) (ii)	FOS_South05
CM_S_095	43.6790933	49.1085563	1.0	(4) (a) (ii)	FOS_South05
CM_S_096	43.704223	49.1062941	1.0	(4) (a) (ii)	FOS_South05
CM_S_097	43.7292894	49.1037518	1.0	(4) (a) (ii)	FOS_South05
CM_S_098	45.127777	49.4226388	58.2	(4) (a) (ii)	FOS_South07
CM_S_099	45.1453009	49.4347485	1.0	(4) (a) (ii)	FOS_South07
CM_S_100	45.1631403	49.4466633	1.0	(4) (a) (ii)	FOS_South07
CM_S_101	45.1812905	49.4583798	1.0	(4) (a) (ii)	FOS_South07
CM_S_102	45.1997462	49.4698945	1.0	(4) (a) (ii)	FOS_South07
CM_S_103	45.2185024	49.4812041	1.0	(4) (a) (ii)	FOS_South07
CM_S_104	45.2375539	49.4923054	1.0	(4) (a) (ii)	FOS_South07
CM_S_105	45.2568953	49.503195	1.0	(4) (a) (ii)	FOS_South07
CM_S_106	45.2765212	49.5138699	1.0	(4) (a) (ii)	FOS_South07
CM_S_107	45.296426	49.5243269	1.0	(4) (a) (ii)	FOS_South07
CM_S_108	45.3166041	49.534563	1.0	(4) (a) (ii)	FOS_South07
CM_S_109	45.3370499	49.5445752	1.0	(4) (a) (ii)	FOS_South07
CM_S_110	45.3577576	49.5543605	1.0	(4) (a) (ii)	FOS_South07
CM_S_111	45.3787212	49.5639162	1.0	(4) (a) (ii)	FOS_South07
CM_S_112	45.3999348	49.5732395	1.0	(4) (a) (ii)	FOS_South07
CM_S_113	45.4213923	49.5823276	1.0	(4) (a) (ii)	FOS_South07
CM_S_114	45.4430876	49.5911778	1.0	(4) (a) (ii)	FOS_South07
CM_S_115	45.4650146	49.5997876	1.0	(4) (a) (ii)	FOS_South07
CM_S_116	45.4871668	49.6081545	1.0	(4) (a) (ii)	FOS_South07
CM_S_117	45.5095379	49.616276	1.0	(4) (a) (ii)	FOS_South07
CM_S_118	45.5321216	49.6241497	1.0	(4) (a) (ii)	FOS_South07
CM_S_119	45.5549112	49.6317733	1.0	(4) (a) (ii)	FOS_South07
CM_S_120	45.5779003	49.6391447	1.0	(4) (a) (ii)	FOS_South07
CM_S_121	45.601082	49.6462616	1.0	(4) (a) (ii)	FOS_South07
CM_S_122	45.6244498	49.6531219	1.0	(4) (a) (ii)	FOS_South07
CM_S_123	45.6479969	49.6597236	1.0	(4) (a) (ii)	FOS_South07
CM_S_124	45.6717164	49.6660648	1.0	(4) (a) (ii)	FOS_South07
CM_S_125	45.6956013	49.6721437	1.0	(4) (a) (ii)	FOS_South07
CM_S_126	45.7196449	49.6779584	1.0	(4) (a) (ii)	FOS_South07

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_127	45.7438399	49.6835073	1.0	(4) (a) (ii)	FOS_South07
CM_S_128	45.7681795	49.6887886	1.0	(4) (a) (ii)	FOS_South07
CM_S_129	45.7926564	49.6938009	1.0	(4) (a) (ii)	FOS_South07
CM_S_130	45.8172635	49.6985427	1.0	(4) (a) (ii)	FOS_South07
CM_S_131	45.8419936	49.7030125	1.0	(4) (a) (ii)	FOS_South07
CM_S_132	45.8668395	49.7072091	1.0	(4) (a) (ii)	FOS_South07
CM_S_133	45.8917939	49.7111313	1.0	(4) (a) (ii)	FOS_South07
CM_S_134	45.9168494	49.7147778	1.0	(4) (a) (ii)	FOS_South07
CM_S_135	45.9419986	49.7181476	1.0	(4) (a) (ii)	FOS_South07
CM_S_136	45.9672343	49.7212397	1.0	(4) (a) (ii)	FOS_South07
CM_S_137	47.1204356	49.8561933	45.6	(4) (a) (ii)	FOS_South08
CM_S_138	47.145743	49.8592856	1.0	(4) (a) (ii)	FOS_South08
CM_S_139	47.1711296	49.8620993	1.0	(4) (a) (ii)	FOS_South08
CM_S_140	47.196588	49.8646336	1.0	(4) (a) (ii)	FOS_South08
CM_S_141	47.2221106	49.8668876	1.0	(4) (a) (ii)	FOS_South08
CM_S_142	47.2476899	49.8688608	1.0	(4) (a) (ii)	FOS_South08
CM_S_143	47.2733184	49.8705525	1.0	(4) (a) (ii)	FOS_South08
CM_S_144	47.2989885	49.8719623	1.0	(4) (a) (ii)	FOS_South08
CM_S_145	47.3246927	49.8730896	1.0	(4) (a) (ii)	FOS_South08
CM_S_146	47.3504234	49.8739343	1.0	(4) (a) (ii)	FOS_South08
CM_S_147	47.376173	49.8744961	1.0	(4) (a) (ii)	FOS_South08
CM_S_148	47.4019338	49.8747747	1.0	(4) (a) (ii)	FOS_South08
CM_S_149	47.4276983	49.8747701	1.0	(4) (a) (ii)	FOS_South08
CM_S_150	47.4534589	49.8744824	1.0	(4) (a) (ii)	FOS_South08
CM_S_151	47.479208	49.8739115	1.0	(4) (a) (ii)	FOS_South08
CM_S_152	47.5049379	49.8730576	1.0	(4) (a) (ii)	FOS_South08
CM_S_153	47.5306411	49.8719211	1.0	(4) (a) (ii)	FOS_South08
CM_S_154	47.55631	49.8705023	1.0	(4) (a) (ii)	FOS_South08
CM_S_155	47.5819371	49.8688014	1.0	(4) (a) (ii)	FOS_South08
CM_S_156	47.6075147	49.8668192	1.0	(4) (a) (ii)	FOS_South08
CM_S_157	47.6330353	49.8645561	1.0	(4) (a) (ii)	FOS_South08
CM_S_158	47.6584915	49.8620128	1.0	(4) (a) (ii)	FOS_South08
CM_S_159	47.6838756	49.8591901	1.0	(4) (a) (ii)	FOS_South08
CM_S_160	47.7091804	49.8560888	1.0	(4) (a) (ii)	FOS_South08
CM_S_161	48.4739635	49.7668569	30.2	(4) (a) (ii)	FOS_South09
CM_S_162	48.5003323	49.7636126	1.0	(4) (a) (ii)	FOS_South09
CM_S_163	48.5254981	49.7602215	1.0	(4) (a) (ii)	FOS_South09

Continental margin fixed point	CM Point Lon [dd E]	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_S_164	48.5505694	49.7565539	1.0	(4) (a) (ii)	FOS_South09
CM_S_165	48.5755389	49.7526107	1.0	(4) (a) (ii)	FOS_South09
CM_S_166	48.6003992	49.7483931	1.0	(4) (a) (ii)	FOS_South09
CM_S_167	48.6251432	49.7439024	1.0	(4) (a) (ii)	FOS_South09
CM_S_168	48.6497634	49.7391398	1.0	(4) (a) (ii)	FOS_South09
CM_S_169	48.6742528	49.7341069	1.0	(4) (a) (ii)	FOS_South09
CM_S_170	48.6986041	49.728805	1.0	(4) (a) (ii)	FOS_South09
CM_S_171	48.7228102	49.7232357	1.0	(4) (a) (ii)	FOS_South09
CM_S_172	48.7468642	49.7174007	1.0	(4) (a) (ii)	FOS_South09
CM_S_173	48.7707588	49.7113016	1.0	(4) (a) (ii)	FOS_South09
CM_S_174	48.7944873	49.7049404	1.0	(4) (a) (ii)	FOS_South09
CM_S_175	48.8180426	49.6983187	1.0	(4) (a) (ii)	FOS_South09
CM_S_176	48.841418	49.6914387	1.0	(4) (a) (ii)	FOS_South09
CM_S_177	48.8646067	49.6843022	1.0	(4) (a) (ii)	FOS_South09
CM_S_178	48.8876019	49.6769115	1.0	(4) (a) (ii)	FOS_South09
CM_S_179	48.910397	49.6692686	1.0	(4) (a) (ii)	FOS_South09
CM_S_180	48.9329855	49.6613758	1.0	(4) (a) (ii)	FOS_South09
CM_S_181	48.9553607	49.6532354	1.0	(4) (a) (ii)	FOS_South09
CM_S_182	48.9775163	49.6448498	1.0	(4) (a) (ii)	FOS_South09
CM_S_183	48.9994459	49.6362215	1.0	(4) (a) (ii)	FOS_South09
CM_S_184	49.0211432	49.627353	1.0	(4) (a) (ii)	FOS_South09
CM_S_185	49.0426019	49.6182468	1.0	(4) (a) (ii)	FOS_South09
CM_S_186	49.063816	49.6089056	1.0	(4) (a) (ii)	FOS_South09
CM_S_187	49.0847795	49.5993322	1.0	(4) (a) (ii)	FOS_South09
CM_S_188	49.1054862	49.5895294	1.0	(4) (a) (ii)	FOS_South09
CM_S_189	49.1259304	49.5794999	1.0	(4) (a) (ii)	FOS_South09
CM_S_190	49.1461063	49.5692468	1.0	(4) (a) (ii)	FOS_South09
CM_S_191	49.1660081	49.558773	1.0	(4) (a) (ii)	FOS_South09
CM_S_192	49.1856303	49.5480816	1.0	(4) (a) (ii)	FOS_South09
CM_S_193	49.2049673	49.5371756	1.0	(4) (a) (ii)	FOS_South09
CM_S_194	49.2240137	49.5260583	1.0	(4) (a) (ii)	FOS_South09

Table 2b. Coordinates of fixed points defining the outer edge of the continental margin and their corresponding FOS points in the eastern and northeastern sections of the continental margin (Northern Segment) [as received on 18 February 2022]

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_001	55.9183123	45.6300466	0.0	(4) (a) (ii)	FOS_East06
CM_N_002	55.9402871	45.6237271	1.0	(4) (a) (ii)	FOS_East06
CM_N_003	55.9621036	45.6171473	1.0	(4) (a) (ii)	FOS_East06
CM_N_004	55.9837557	45.6103092	1.0	(4) (a) (ii)	FOS_East06
CM_N_005	56.005237	45.6032148	1.0	(4) (a) (ii)	FOS_East06
CM_N_006	56.0265413	45.5958661	1.0	(4) (a) (ii)	FOS_East06
CM_N_007	56.0476626	45.5882653	1.0	(4) (a) (ii)	FOS_East06
CM_N_008	56.0685947	45.5804146	1.0	(4) (a) (ii)	FOS_East06
CM_N_009	56.0893317	45.5723162	1.0	(4) (a) (ii)	FOS_East06
CM_N_010	56.1098675	45.5639725	1.0	(4) (a) (ii)	FOS_East06
CM_N_011	56.1301964	45.555386	1.0	(4) (a) (ii)	FOS_East06
CM_N_012	56.1503125	45.5465592	1.0	(4) (a) (ii)	FOS_East06
CM_N_013	56.1702101	45.5374945	1.0	(4) (a) (ii)	FOS_East06
CM_N_014	56.1898835	45.5281947	1.0	(4) (a) (ii)	FOS_East06
CM_N_015	56.2093271	45.5186623	1.0	(4) (a) (ii)	FOS_East06
CM_N_016	56.2285354	45.5089003	1.0	(4) (a) (ii)	FOS_East06
CM_N_017	56.2475029	45.4989115	1.0	(4) (a) (ii)	FOS_East06
CM_N_018	56.2662243	45.4886986	1.0	(4) (a) (ii)	FOS_East06
CM_N_019	56.2846944	45.4782647	1.0	(4) (a) (ii)	FOS_East06
CM_N_020	56.3029078	45.4676128	1.0	(4) (a) (ii)	FOS_East06
CM_N_021	56.3208595	45.456746	1.0	(4) (a) (ii)	FOS_East06
CM_N_022	56.3385445	45.4456673	1.0	(4) (a) (ii)	FOS_East06
CM_N_023	56.3559578	45.4343801	1.0	(4) (a) (ii)	FOS_East06
CM_N_024	56.3730945	45.4228876	1.0	(4) (a) (ii)	FOS_East06
CM_N_025	56.3899499	45.411193	1.0	(4) (a) (ii)	FOS_East06
CM_N_026	56.4065193	45.3992998	1.0	(4) (a) (ii)	FOS_East06
CM_N_027	56.4227981	45.3872114	1.0	(4) (a) (ii)	FOS_East06
CM_N_028	56.4387817	45.3749312	1.0	(4) (a) (ii)	FOS_East06
CM_N_029	56.4544659	45.3624629	1.0	(4) (a) (ii)	FOS_East06
CM_N_030	56.4698463	45.3498099	1.0	(4) (a) (ii)	FOS_East06
CM_N_031	56.4849186	45.3369759	1.0	(4) (a) (ii)	FOS_East06
CM_N_032	56.4996788	45.3239646	1.0	(4) (a) (ii)	FOS_East06
CM_N_033	56.5141228	45.3107798	1.0	(4) (a) (ii)	FOS_East06
CM_N_034	56.5282467	45.2974252	1.0	(4) (a) (ii)	FOS_East06

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_035	56.5420467	45.2839046	1.0	(4) (a) (ii)	FOS_East06
CM_N_036	56.5555192	45.2702219	1.0	(4) (a) (ii)	FOS_East06
CM_N_037	56.5686603	45.256381	1.0	(4) (a) (ii)	FOS_East06
CM_N_038	56.5814668	45.242386	1.0	(4) (a) (ii)	FOS_East06
CM_N_039	56.5939351	45.2282407	1.0	(4) (a) (ii)	FOS_East06
CM_N_040	56.6060619	45.2139492	1.0	(4) (a) (ii)	FOS_East06
CM_N_041	56.617844	45.1995156	1.0	(4) (a) (ii)	FOS_East06
CM_N_042	56.6292784	45.1849441	1.0	(4) (a) (ii)	FOS_East06
CM_N_043	56.6403621	45.1702387	1.0	(4) (a) (ii)	FOS_East06
CM_N_044	56.6510921	45.1554036	1.0	(4) (a) (ii)	FOS_East06
CM_N_045	56.6614657	45.1404431	1.0	(4) (a) (ii)	FOS_East06
CM_N_046	56.6714803	45.1253614	1.0	(4) (a) (ii)	FOS_East06
CM_N_047	56.6811332	45.1101628	1.0	(4) (a) (ii)	FOS_East06
CM_N_048	56.6904221	45.0948516	1.0	(4) (a) (ii)	FOS_East06
CM_N_049	56.6993446	45.0794322	1.0	(4) (a) (ii)	FOS_East06
CM_N_050	56.7078984	45.0639088	1.0	(4) (a) (ii)	FOS_East06
CM_N_051	56.7160815	45.048286	1.0	(4) (a) (ii)	FOS_East06
CM_N_052	56.7238917	45.0325681	1.0	(4) (a) (ii)	FOS_East06
CM_N_053	56.7313274	45.0167596	1.0	(4) (a) (ii)	FOS_East06
CM_N_054	56.7383865	45.0008649	1.0	(4) (a) (ii)	FOS_East06
CM_N_055	56.7450676	44.9848885	1.0	(4) (a) (ii)	FOS_East06
CM_N_056	56.7513689	44.9688349	1.0	(4) (a) (ii)	FOS_East06
CM_N_057	56.7572891	44.9527086	1.0	(4) (a) (ii)	FOS_East06
CM_N_058	56.7628268	44.9365143	1.0	(4) (a) (ii)	FOS_East06
CM_N_059	56.7679807	44.9202563	1.0	(4) (a) (ii)	FOS_East06
CM_N_060	56.7727498	44.9039394	1.0	(4) (a) (ii)	FOS_East06
CM_N_061	56.7771331	44.887568	1.0	(4) (a) (ii)	FOS_East06
CM_N_062	56.7811295	44.8711467	1.0	(4) (a) (ii)	FOS_East06
CM_N_063	56.7847385	44.8546803	1.0	(4) (a) (ii)	FOS_East06
CM_N_064	56.7879591	44.8381732	1.0	(4) (a) (ii)	FOS_East06
CM_N_065	56.790791	44.8216301	1.0	(4) (a) (ii)	FOS_East06
CM_N_066	56.7932337	44.8050556	1.0	(4) (a) (ii)	FOS_East06
CM_N_067	56.7952867	44.7884543	1.0	(4) (a) (ii)	FOS_East06
CM_N_068	56.7969499	44.7718309	1.0	(4) (a) (ii)	FOS_East06
CM_N_069	56.7982231	44.75519	1.0	(4) (a) (ii)	FOS_East06
CM_N_070	56.7991064	44.7385363	1.0	(4) (a) (ii)	FOS_East06
CM_N_071	56.7995997	44.7218743	1.0	(4) (a) (ii)	FOS_East06

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_072	56.7997034	44.7052087	1.0	(4) (a) (ii)	FOS_East06
CM_N_073	56.7994177	44.6885442	1.0	(4) (a) (ii)	FOS_East06
CM_N_074	56.798743	44.6718853	1.0	(4) (a) (ii)	FOS_East06
CM_N_075	56.7976798	44.6552367	1.0	(4) (a) (ii)	FOS_East06
CM_N_076	56.7962288	44.638603	1.0	(4) (a) (ii)	FOS_East06
CM_N_077	56.7943907	44.6219887	1.0	(4) (a) (ii)	FOS_East06
CM_N_078	56.7921664	44.6053986	1.0	(4) (a) (ii)	FOS_East06
CM_N_079	56.7895567	44.5888372	1.0	(4) (a) (ii)	FOS_East06
CM_N_080	56.7865628	44.572309	1.0	(4) (a) (ii)	FOS_East06
CM_N_081	56.7831858	44.5558186	1.0	(4) (a) (ii)	FOS_East06
CM_N_082	56.7794269	44.5393705	1.0	(4) (a) (ii)	FOS_East06
CM_N_083	56.7752875	44.5229694	1.0	(4) (a) (ii)	FOS_East06
CM_N_084	56.7707691	44.5066197	1.0	(4) (a) (ii)	FOS_East06
CM_N_085	56.7658732	44.4903258	1.0	(4) (a) (ii)	FOS_East06
CM_N_086	56.7606015	44.4740923	1.0	(4) (a) (ii)	FOS_East06
CM_N_087	56.7549557	44.4579237	1.0	(4) (a) (ii)	FOS_East06
CM_N_088	56.7489377	44.4418243	1.0	(4) (a) (ii)	FOS_East06
CM_N_089	56.7425494	44.4257986	1.0	(4) (a) (ii)	FOS_East06
CM_N_090	56.735793	44.409851	1.0	(4) (a) (ii)	FOS_East06
CM_N_091	56.7286705	44.3939858	1.0	(4) (a) (ii)	FOS_East06
CM_N_092	56.7211841	44.3782074	1.0	(4) (a) (ii)	FOS_East06
CM_N_093	56.7133363	44.3625201	1.0	(4) (a) (ii)	FOS_East06
CM_N_094	56.7051295	44.3469281	1.0	(4) (a) (ii)	FOS_East06
CM_N_095	56.6965661	44.3314358	1.0	(4) (a) (ii)	FOS_East06
CM_N_096	56.6876488	44.3160473	1.0	(4) (a) (ii)	FOS_East06
CM_N_097	56.6783803	44.3007668	1.0	(4) (a) (ii)	FOS_East06
CM_N_098	56.6687633	44.2855985	1.0	(4) (a) (ii)	FOS_East06
CM_N_099	56.6588009	44.2705465	1.0	(4) (a) (ii)	FOS_East06
CM_N_100	56.6484958	44.255615	1.0	(4) (a) (ii)	FOS_East06
CM_N_101	56.0816158	43.4543323	54.0	(4) (a) (ii)	FOS_East07
CM_N_102	56.0707848	43.4396491	1.0	(4) (a) (ii)	FOS_East07
CM_N_103	56.0596247	43.4250983	1.0	(4) (a) (ii)	FOS_East07
CM_N_104	56.0481389	43.4106839	1.0	(4) (a) (ii)	FOS_East07
CM_N_105	56.0363307	43.3964098	1.0	(4) (a) (ii)	FOS_East07
CM_N_106	56.0242035	43.3822799	1.0	(4) (a) (ii)	FOS_East07
CM_N_107	56.0117608	43.3682979	1.0	(4) (a) (ii)	FOS_East07
CM_N_108	55.9990062	43.3544677	1.0	(4) (a) (ii)	FOS_East07

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_109	55.9859433	43.3407929	1.0	(4) (a) (ii)	FOS_East07
CM_N_110	55.9725759	43.3272774	1.0	(4) (a) (ii)	FOS_East07
CM_N_111	55.9589078	43.3139247	1.0	(4) (a) (ii)	FOS_East07
CM_N_112	55.9449428	43.3007384	1.0	(4) (a) (ii)	FOS_East07
CM_N_113	55.930685	43.2877221	1.0	(4) (a) (ii)	FOS_East07
CM_N_114	55.9161383	43.2748794	1.0	(4) (a) (ii)	FOS_East07
CM_N_115	55.9013068	43.2622135	1.0	(4) (a) (ii)	FOS_East07
CM_N_116	55.8861947	43.2497281	1.0	(4) (a) (ii)	FOS_East07
CM_N_117	55.8708063	43.2374263	1.0	(4) (a) (ii)	FOS_East07
CM_N_118	55.8551457	43.2253116	1.0	(4) (a) (ii)	FOS_East07
CM_N_119	55.8392174	43.2133872	1.0	(4) (a) (ii)	FOS_East07
CM_N_120	55.8230259	43.2016562	1.0	(4) (a) (ii)	FOS_East07
CM_N_121	55.8065755	43.1901219	1.0	(4) (a) (ii)	FOS_East07
CM_N_122	55.7898709	43.1787873	1.0	(4) (a) (ii)	FOS_East07
CM_N_123	55.7729167	43.1676555	1.0	(4) (a) (ii)	FOS_East07
CM_N_124	55.7557175	43.1567294	1.0	(4) (a) (ii)	FOS_East07
CM_N_125	55.7382781	43.146012	1.0	(4) (a) (ii)	FOS_East07
CM_N_126	55.7206032	43.1355061	1.0	(4) (a) (ii)	FOS_East07
CM_N_127	55.7026977	43.1252146	1.0	(4) (a) (ii)	FOS_East07
CM_N_128	55.6845665	43.1151401	1.0	(4) (a) (ii)	FOS_East07
CM_N_129	55.6662146	43.1052855	1.0	(4) (a) (ii)	FOS_East07
CM_N_130	55.6476469	43.0956532	1.0	(4) (a) (ii)	FOS_East07
CM_N_131	55.6288685	43.086246	1.0	(4) (a) (ii)	FOS_East07
CM_N_132	55.6098844	43.0770663	1.0	(4) (a) (ii)	FOS_East07
CM_N_133	54.5113796	42.5157384	59.1	(4) (a) (ii)	FOS_East08
CM_N_134	54.0576745	42.0153366	36.2	(4) (a) (ii)	FOS_East09
CM_N_135	54.045203	42.0014985	1.0	(4) (a) (ii)	FOS_East09
CM_N_136	54.0324295	41.9878158	1.0	(4) (a) (ii)	FOS_East09
CM_N_137	54.0193576	41.9742923	1.0	(4) (a) (ii)	FOS_East09
CM_N_138	54.0059911	41.9609317	1.0	(4) (a) (ii)	FOS_East09
CM_N_139	53.9923337	41.9477374	1.0	(4) (a) (ii)	FOS_East09
CM_N_140	53.9783893	41.9347133	1.0	(4) (a) (ii)	FOS_East09
CM_N_141	53.9641618	41.9218626	1.0	(4) (a) (ii)	FOS_East09
CM_N_142	53.9496553	41.9091889	1.0	(4) (a) (ii)	FOS_East09
CM_N_143	53.9348738	41.8966957	1.0	(4) (a) (ii)	FOS_East09
CM_N_144	53.9198215	41.8843862	1.0	(4) (a) (ii)	FOS_East09
CM_N_145	53.9045025	41.8722637	1.0	(4) (a) (ii)	FOS_East09

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_146	53.8889211	41.8603317	1.0	(4) (a) (ii)	FOS_East09
CM_N_147	53.8730816	41.8485932	1.0	(4) (a) (ii)	FOS_East09
CM_N_148	53.8569885	41.8370514	1.0	(4) (a) (ii)	FOS_East09
CM_N_149	53.8406462	41.8257094	1.0	(4) (a) (ii)	FOS_East09
CM_N_150	53.8240592	41.8145702	1.0	(4) (a) (ii)	FOS_East09
CM_N_151	53.807232	41.8036369	1.0	(4) (a) (ii)	FOS_East09
CM_N_152	53.7901694	41.7929124	1.0	(4) (a) (ii)	FOS_East09
CM_N_153	53.772876	41.7823996	1.0	(4) (a) (ii)	FOS_East09
CM_N_154	53.7553565	41.7721012	1.0	(4) (a) (ii)	FOS_East09
CM_N_155	53.7376157	41.76202	1.0	(4) (a) (ii)	FOS_East09
CM_N_156	53.7196586	41.7521587	1.0	(4) (a) (ii)	FOS_East09
CM_N_157	53.7014899	41.74252	1.0	(4) (a) (ii)	FOS_East09
CM_N_158	53.6831146	41.7331065	1.0	(4) (a) (ii)	FOS_East09
CM_N_159	53.6645377	41.7239206	1.0	(4) (a) (ii)	FOS_East09
CM_N_160	53.6457643	41.7149648	1.0	(4) (a) (ii)	FOS_East09
CM_N_161	53.6267995	41.7062416	1.0	(4) (a) (ii)	FOS_East09
CM_N_162	53.6076484	41.6977531	1.0	(4) (a) (ii)	FOS_East09
CM_N_163	53.5883161	41.6895018	1.0	(4) (a) (ii)	FOS_East09
CM_N_164	53.5688079	41.6814898	1.0	(4) (a) (ii)	FOS_East09
CM_N_165	53.5491291	41.6737192	1.0	(4) (a) (ii)	FOS_East09
CM_N_166	53.5292849	41.6661921	1.0	(4) (a) (ii)	FOS_East09
CM_N_167	53.5092808	41.6589105	1.0	(4) (a) (ii)	FOS_East09
CM_N_168	53.489122	41.6518764	1.0	(4) (a) (ii)	FOS_East09
CM_N_169	53.468814	41.6450917	1.0	(4) (a) (ii)	FOS_East09
CM_N_170	53.4483623	41.638558	1.0	(4) (a) (ii)	FOS_East09
CM_N_171	53.4277723	41.6322773	1.0	(4) (a) (ii)	FOS_East09
CM_N_172	53.4070495	41.6262511	1.0	(4) (a) (ii)	FOS_East09
CM_N_173	53.3861995	41.620481	1.0	(4) (a) (ii)	FOS_East09
CM_N_174	53.3652279	41.6149687	1.0	(4) (a) (ii)	FOS_East09
CM_N_175	53.3441402	41.6097155	1.0	(4) (a) (ii)	FOS_East09
CM_N_176	53.3229421	41.6047228	1.0	(4) (a) (ii)	FOS_East09
CM_N_177	53.3016392	41.5999921	1.0	(4) (a) (ii)	FOS_East09
CM_N_178	53.2802373	41.5955244	1.0	(4) (a) (ii)	FOS_East09
CM_N_179	53.258742	41.5913211	1.0	(4) (a) (ii)	FOS_East09
CM_N_180	53.237159	41.5873833	1.0	(4) (a) (ii)	FOS_East09
CM_N_181	53.2154941	41.5837119	1.0	(4) (a) (ii)	FOS_East09
CM_N_182	53.1937531	41.580308	1.0	(4) (a) (ii)	FOS_East09

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_183	53.1719416	41.5771724	1.0	(4) (a) (ii)	FOS_East09
CM_N_184	53.1507738	41.5743945	1.0	(4) (a) (ii)	FOS_East09
CM_N_185	53.1288408	41.5717894	1.0	(4) (a) (ii)	FOS_East09
CM_N_186	53.1068547	41.5694549	1.0	(4) (a) (ii)	FOS_East09
CM_N_187	53.0848213	41.5673916	1.0	(4) (a) (ii)	FOS_East09
CM_N_188	53.0627464	41.5656001	1.0	(4) (a) (ii)	FOS_East09
CM_N_189	53.0406359	41.5640809	1.0	(4) (a) (ii)	FOS_East09
CM_N_190	53.0184957	41.5628344	1.0	(4) (a) (ii)	FOS_East09
CM_N_191	52.9963316	41.5618609	1.0	(4) (a) (ii)	FOS_East09
CM_N_192	52.9741495	41.5611606	1.0	(4) (a) (ii)	FOS_East09
CM_N_193	52.9519553	41.5607338	1.0	(4) (a) (ii)	FOS_East09
CM_N_194	52.9297549	41.5605806	1.0	(4) (a) (ii)	FOS_East09
CM_N_195	52.9075541	41.5607009	1.0	(4) (a) (ii)	FOS_East09
CM_N_196	52.8853588	41.5610948	1.0	(4) (a) (ii)	FOS_East09
CM_N_197	52.8631749	41.5617622	1.0	(4) (a) (ii)	FOS_East09
CM_N_198	52.8410084	41.5627029	1.0	(4) (a) (ii)	FOS_East09
CM_N_199	52.818865	41.5639166	1.0	(4) (a) (ii)	FOS_East09
CM_N_200	52.7967506	41.565403	1.0	(4) (a) (ii)	FOS_East09
CM_N_201	52.7746711	41.5671618	1.0	(4) (a) (ii)	FOS_East09
CM_N_202	52.7526324	41.5691924	1.0	(4) (a) (ii)	FOS_East09
CM_N_203	52.7306403	41.5714943	1.0	(4) (a) (ii)	FOS_East09
CM_N_204	52.7087006	41.5740669	1.0	(4) (a) (ii)	FOS_East09
CM_N_205	52.6868192	41.5769096	1.0	(4) (a) (ii)	FOS_East09
CM_N_206	52.6650019	41.5800215	1.0	(4) (a) (ii)	FOS_East09
CM_N_207	52.6432544	41.5834019	1.0	(4) (a) (ii)	FOS_East09
CM_N_208	52.6215826	41.5870498	1.0	(4) (a) (ii)	FOS_East09
CM_N_209	52.5999922	41.5909642	1.0	(4) (a) (ii)	FOS_East09
CM_N_210	52.0151298	41.7065054	27.2	(4) (a) (ii)	FOS_East10
CM_N_211	51.993588	41.7106849	1.0	(4) (a) (ii)	FOS_East10
CM_N_212	51.9721391	41.7151288	1.0	(4) (a) (ii)	FOS_East10
CM_N_213	51.950789	41.7198359	1.0	(4) (a) (ii)	FOS_East10
CM_N_214	51.9295433	41.724805	1.0	(4) (a) (ii)	FOS_East10
CM_N_215	51.9084078	41.7300348	1.0	(4) (a) (ii)	FOS_East10
CM_N_216	51.8873879	41.7355238	1.0	(4) (a) (ii)	FOS_East10
CM_N_217	51.8664894	41.7412706	1.0	(4) (a) (ii)	FOS_East10
CM_N_218	51.8457178	41.7472737	1.0	(4) (a) (ii)	FOS_East10
CM_N_219	51.8250787	41.7535315	1.0	(4) (a) (ii)	FOS_East10

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_220	51.8045776	41.7600422	1.0	(4) (a) (ii)	FOS_East10
CM_N_221	51.78422	41.7668043	1.0	(4) (a) (ii)	FOS_East10
CM_N_222	51.7640114	41.7738158	1.0	(4) (a) (ii)	FOS_East10
CM_N_223	51.7439572	41.781075	1.0	(4) (a) (ii)	FOS_East10
CM_N_224	51.7240627	41.7885798	1.0	(4) (a) (ii)	FOS_East10
CM_N_225	51.7043334	41.7963283	1.0	(4) (a) (ii)	FOS_East10
CM_N_226	51.6847746	41.8043184	1.0	(4) (a) (ii)	FOS_East10
CM_N_227	51.6653914	41.812548	1.0	(4) (a) (ii)	FOS_East10
CM_N_228	51.6461893	41.8210149	1.0	(4) (a) (ii)	FOS_East10
CM_N_229	51.6271732	41.8297168	1.0	(4) (a) (ii)	FOS_East10
CM_N_230	51.6083485	41.8386514	1.0	(4) (a) (ii)	FOS_East10
CM_N_231	51.5897202	41.8478163	1.0	(4) (a) (ii)	FOS_East10
CM_N_232	51.5712933	41.8572091	1.0	(4) (a) (ii)	FOS_East10
CM_N_233	51.553073	41.8668273	1.0	(4) (a) (ii)	FOS_East10
CM_N_234	51.535064	41.8766682	1.0	(4) (a) (ii)	FOS_East10
CM_N_235	50.2055167	41.8370203	59.7	(4) (a) (ii)	FOS_NE03
CM_N_236	50.1915971	41.8239955	1.0	(4) (a) (ii)	FOS_NE03
CM_N_237	50.1773948	41.8111442	1.0	(4) (a) (ii)	FOS_NE03
CM_N_238	50.1629139	41.7984699	1.0	(4) (a) (ii)	FOS_NE03
CM_N_239	50.1481584	41.785976	1.0	(4) (a) (ii)	FOS_NE03
CM_N_240	50.1331325	41.7736659	1.0	(4) (a) (ii)	FOS_NE03
CM_N_241	50.1178404	41.7615428	1.0	(4) (a) (ii)	FOS_NE03
CM_N_242	50.1022864	41.7496102	1.0	(4) (a) (ii)	FOS_NE03
CM_N_243	50.0864747	41.737871	1.0	(4) (a) (ii)	FOS_NE03
CM_N_244	50.0704097	41.7263286	1.0	(4) (a) (ii)	FOS_NE03
CM_N_245	50.0540959	41.7149861	1.0	(4) (a) (ii)	FOS_NE03
CM_N_246	50.0375379	41.7038463	1.0	(4) (a) (ii)	FOS_NE03
CM_N_247	50.0207401	41.6929125	1.0	(4) (a) (ii)	FOS_NE03
CM_N_248	50.0037071	41.6821874	1.0	(4) (a) (ii)	FOS_NE03
CM_N_249	49.9864438	41.6716739	1.0	(4) (a) (ii)	FOS_NE03
CM_N_250	49.9689547	41.661375	1.0	(4) (a) (ii)	FOS_NE03
CM_N_251	49.9512447	41.6512933	1.0	(4) (a) (ii)	FOS_NE03
CM_N_252	49.9333186	41.6414315	1.0	(4) (a) (ii)	FOS_NE03
CM_N_253	49.9151814	41.6317923	1.0	(4) (a) (ii)	FOS_NE03
CM_N_254	49.8968379	41.6223782	1.0	(4) (a) (ii)	FOS_NE03
CM_N_255	49.8782931	41.6131918	1.0	(4) (a) (ii)	FOS_NE03
CM_N_256	49.8595521	41.6042356	1.0	(4) (a) (ii)	FOS_NE03

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_257	49.84062	41.5955118	1.0	(4) (a) (ii)	FOS_NE03
CM_N_258	49.8215018	41.5870229	1.0	(4) (a) (ii)	FOS_NE03
CM_N_259	49.8022028	41.5787712	1.0	(4) (a) (ii)	FOS_NE03
CM_N_260	49.7827282	41.5707587	1.0	(4) (a) (ii)	FOS_NE03
CM_N_261	49.7630832	41.5629877	1.0	(4) (a) (ii)	FOS_NE03
CM_N_262	49.7432732	41.5554602	1.0	(4) (a) (ii)	FOS_NE03
CM_N_263	49.7233033	41.5481783	1.0	(4) (a) (ii)	FOS_NE03
CM_N_264	49.7031791	41.5411438	1.0	(4) (a) (ii)	FOS_NE03
CM_N_265	49.682906	41.5343587	1.0	(4) (a) (ii)	FOS_NE03
CM_N_266	49.6624893	41.5278247	1.0	(4) (a) (ii)	FOS_NE03
CM_N_267	49.6419345	41.5215437	1.0	(4) (a) (ii)	FOS_NE03
CM_N_268	49.6212472	41.5155172	1.0	(4) (a) (ii)	FOS_NE03
CM_N_269	49.6004328	41.5097469	1.0	(4) (a) (ii)	FOS_NE03
CM_N_270	49.579497	41.5042343	1.0	(4) (a) (ii)	FOS_NE03
CM_N_271	49.5584454	41.4989808	1.0	(4) (a) (ii)	FOS_NE03
CM_N_272	49.5372835	41.493988	1.0	(4) (a) (ii)	FOS_NE03
CM_N_273	49.516017	41.489257	1.0	(4) (a) (ii)	FOS_NE03
CM_N_274	49.4946515	41.4847892	1.0	(4) (a) (ii)	FOS_NE03
CM_N_275	49.4731929	41.4805857	1.0	(4) (a) (ii)	FOS_NE03
CM_N_276	49.4516467	41.4766477	1.0	(4) (a) (ii)	FOS_NE03
CM_N_277	49.4300187	41.4729762	1.0	(4) (a) (ii)	FOS_NE03
CM_N_278	49.4083147	41.4695722	1.0	(4) (a) (ii)	FOS_NE03
CM_N_279	49.3865405	41.4664366	1.0	(4) (a) (ii)	FOS_NE03
CM_N_280	49.3654087	41.4636586	1.0	(4) (a) (ii)	FOS_NE03
CM_N_281	49.3435131	41.4610535	1.0	(4) (a) (ii)	FOS_NE03
CM_N_282	49.3215644	41.458719	1.0	(4) (a) (ii)	FOS_NE03
CM_N_283	49.2995685	41.4566557	1.0	(4) (a) (ii)	FOS_NE03
CM_N_284	49.2775312	41.4548643	1.0	(4) (a) (ii)	FOS_NE03
CM_N_285	49.2554583	41.4533451	1.0	(4) (a) (ii)	FOS_NE03
CM_N_286	49.2333558	41.4520987	1.0	(4) (a) (ii)	FOS_NE03
CM_N_287	49.2112294	41.4511253	1.0	(4) (a) (ii)	FOS_NE03
CM_N_288	49.1890851	41.4504251	1.0	(4) (a) (ii)	FOS_NE03
CM_N_289	49.1669286	41.4499985	1.0	(4) (a) (ii)	FOS_NE03
CM_N_290	49.144766	41.4498454	1.0	(4) (a) (ii)	FOS_NE03
CM_N_291	49.122603	41.4499659	1.0	(4) (a) (ii)	FOS_NE03
CM_N_292	49.1004455	41.45036	1.0	(4) (a) (ii)	FOS_NE03
CM_N_293	49.0782994	41.4510277	1.0	(4) (a) (ii)	FOS_NE03

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_294	49.0561706	41.4519686	1.0	(4) (a) (ii)	FOS_NE03
CM_N_295	49.0340649	41.4531826	1.0	(4) (a) (ii)	FOS_NE03
CM_N_296	49.0119882	41.4546693	1.0	(4) (a) (ii)	FOS_NE03
CM_N_297	48.9899464	41.4564284	1.0	(4) (a) (ii)	FOS_NE03
CM_N_298	48.9679453	41.4584593	1.0	(4) (a) (ii)	FOS_NE03
CM_N_299	48.9459907	41.4607616	1.0	(4) (a) (ii)	FOS_NE03
CM_N_300	48.9240884	41.4633346	1.0	(4) (a) (ii)	FOS_NE03
CM_N_301	48.9022444	41.4661776	1.0	(4) (a) (ii)	FOS_NE03
CM_N_302	48.8804643	41.46929	1.0	(4) (a) (ii)	FOS_NE03
CM_N_303	48.858754	41.4726708	1.0	(4) (a) (ii)	FOS_NE03
CM_N_304	48.8371192	41.4763191	1.0	(4) (a) (ii)	FOS_NE03
CM_N_305	48.8155657	41.4802341	1.0	(4) (a) (ii)	FOS_NE03
CM_N_306	48.7940992	41.4844146	1.0	(4) (a) (ii)	FOS_NE03
CM_N_307	48.7727255	41.4888596	1.0	(4) (a) (ii)	FOS_NE03
CM_N_308	48.7514502	41.4935678	1.0	(4) (a) (ii)	FOS_NE03
CM_N_309	48.730279	41.498538	1.0	(4) (a) (ii)	FOS_NE03
CM_N_310	48.7092176	41.5037689	1.0	(4) (a) (ii)	FOS_NE03
CM_N_311	48.6882715	41.5092591	1.0	(4) (a) (ii)	FOS_NE03
CM_N_312	48.6674465	41.5150072	1.0	(4) (a) (ii)	FOS_NE03
CM_N_313	48.6467479	41.5210116	1.0	(4) (a) (ii)	FOS_NE03
CM_N_314	48.6261814	41.5272706	1.0	(4) (a) (ii)	FOS_NE03
CM_N_315	48.6057526	41.5337828	1.0	(4) (a) (ii)	FOS_NE03
CM_N_316	48.5854667	41.5405462	1.0	(4) (a) (ii)	FOS_NE03
CM_N_317	48.5653294	41.5475591	1.0	(4) (a) (ii)	FOS_NE03
CM_N_318	48.545346	41.5548197	1.0	(4) (a) (ii)	FOS_NE03
CM_N_319	48.5255219	41.562326	1.0	(4) (a) (ii)	FOS_NE03
CM_N_320	48.5058624	41.570076	1.0	(4) (a) (ii)	FOS_NE03
CM_N_321	48.4863728	41.5780676	1.0	(4) (a) (ii)	FOS_NE03
CM_N_322	48.4670584	41.5862987	1.0	(4) (a) (ii)	FOS_NE03
CM_N_323	48.4479244	41.5947672	1.0	(4) (a) (ii)	FOS_NE03
CM_N_324	48.4289759	41.6034707	1.0	(4) (a) (ii)	FOS_NE03
CM_N_325	47.6526628	41.9203371	39.7	(4) (a) (ii)	FOS_NE07
CM_N_326	46.3310685	41.9601441	59.2	(4) (a) (ii)	FOS_NE10
CM_N_327	46.3090038	41.9575391	1.0	(4) (a) (ii)	FOS_NE10
CM_N_328	46.2868856	41.9552046	1.0	(4) (a) (ii)	FOS_NE10
CM_N_329	46.2647199	41.9531413	1.0	(4) (a) (ii)	FOS_NE10
CM_N_330	46.2425124	41.9513497	1.0	(4) (a) (ii)	FOS_NE10

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_331	46.2202692	41.9498303	1.0	(4) (a) (ii)	FOS_NE10
CM_N_332	46.197996	41.9485835	1.0	(4) (a) (ii)	FOS_NE10
CM_N_333	46.1756988	41.9476096	1.0	(4) (a) (ii)	FOS_NE10
CM_N_334	46.1533836	41.946909	1.0	(4) (a) (ii)	FOS_NE10
CM_N_335	46.1310561	41.9464816	1.0	(4) (a) (ii)	FOS_NE10
CM_N_336	46.1087223	41.9463278	1.0	(4) (a) (ii)	FOS_NE10
CM_N_337	46.0863882	41.9464475	1.0	(4) (a) (ii)	FOS_NE10
CM_N_338	46.0640596	41.9468407	1.0	(4) (a) (ii)	FOS_NE10
CM_N_339	46.0417425	41.9475073	1.0	(4) (a) (ii)	FOS_NE10
CM_N_340	46.0194427	41.9484471	1.0	(4) (a) (ii)	FOS_NE10
CM_N_341	45.9971662	41.9496598	1.0	(4) (a) (ii)	FOS_NE10
CM_N_342	45.9749189	41.9511452	1.0	(4) (a) (ii)	FOS_NE10
CM_N_343	45.9527067	41.9529028	1.0	(4) (a) (ii)	FOS_NE10
CM_N_344	45.9305354	41.9549322	1.0	(4) (a) (ii)	FOS_NE10
CM_N_345	45.908411	41.9572329	1.0	(4) (a) (ii)	FOS_NE10
CM_N_346	45.8863393	41.9598042	1.0	(4) (a) (ii)	FOS_NE10
CM_N_347	45.8643261	41.9626454	1.0	(4) (a) (ii)	FOS_NE10
CM_N_348	45.8423774	41.9657559	1.0	(4) (a) (ii)	FOS_NE10
CM_N_349	45.8204989	41.9691347	1.0	(4) (a) (ii)	FOS_NE10
CM_N_350	45.7986964	41.972781	1.0	(4) (a) (ii)	FOS_NE10
CM_N_351	45.7769757	41.9766938	1.0	(4) (a) (ii)	FOS_NE10
CM_N_352	45.7553427	41.9808721	1.0	(4) (a) (ii)	FOS_NE10
CM_N_353	45.733803	41.9853147	1.0	(4) (a) (ii)	FOS_NE10
CM_N_354	45.7123624	41.9900205	1.0	(4) (a) (ii)	FOS_NE10
CM_N_355	45.6910267	41.9949882	1.0	(4) (a) (ii)	FOS_NE10
CM_N_356	45.6698014	42.0002165	1.0	(4) (a) (ii)	FOS_NE10
CM_N_357	45.6486923	42.0057041	1.0	(4) (a) (ii)	FOS_NE10
CM_N_358	45.627705	42.0114494	1.0	(4) (a) (ii)	FOS_NE10
CM_N_359	45.6068451	42.017451	1.0	(4) (a) (ii)	FOS_NE10
CM_N_360	45.5861181	42.0237072	1.0	(4) (a) (ii)	FOS_NE10
CM_N_361	45.5655297	42.0302164	1.0	(4) (a) (ii)	FOS_NE10
CM_N_362	45.5450854	42.0369768	1.0	(4) (a) (ii)	FOS_NE10
CM_N_363	45.5247905	42.0439866	1.0	(4) (a) (ii)	FOS_NE10
CM_N_364	45.5046507	42.0512441	1.0	(4) (a) (ii)	FOS_NE10
CM_N_365	45.4846712	42.0587471	1.0	(4) (a) (ii)	FOS_NE10
CM_N_366	45.4648575	42.0664938	1.0	(4) (a) (ii)	FOS_NE10
CM_N_367	45.4452148	42.0744821	1.0	(4) (a) (ii)	FOS_NE10

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_368	45.4257486	42.0827099	1.0	(4) (a) (ii)	FOS_NE10
CM_N_369	44.274102	42.5849041	59.4	(4) (a) (ii)	FOS_NE12
CM_N_370	44.2550481	42.5938333	1.0	(4) (a) (ii)	FOS_NE12
CM_N_371	44.2361926	42.6029927	1.0	(4) (a) (ii)	FOS_NE12
CM_N_372	44.2175408	42.6123799	1.0	(4) (a) (ii)	FOS_NE12
CM_N_373	44.1990978	42.6219925	1.0	(4) (a) (ii)	FOS_NE12
CM_N_374	44.1808684	42.6318278	1.0	(4) (a) (ii)	FOS_NE12
CM_N_375	44.1628577	42.6418831	1.0	(4) (a) (ii)	FOS_NE12
CM_N_376	44.1450707	42.6521559	1.0	(4) (a) (ii)	FOS_NE12
CM_N_377	44.1275121	42.6626434	1.0	(4) (a) (ii)	FOS_NE12
CM_N_378	44.1101868	42.6733427	1.0	(4) (a) (ii)	FOS_NE12
CM_N_379	44.0930995	42.684251	1.0	(4) (a) (ii)	FOS_NE12
CM_N_380	44.076255	42.6953653	1.0	(4) (a) (ii)	FOS_NE12
CM_N_381	44.0596579	42.7066828	1.0	(4) (a) (ii)	FOS_NE12
CM_N_382	44.0433127	42.7182003	1.0	(4) (a) (ii)	FOS_NE12
CM_N_383	44.027224	42.7299148	1.0	(4) (a) (ii)	FOS_NE12
CM_N_384	44.0113963	42.7418231	1.0	(4) (a) (ii)	FOS_NE12
CM_N_385	43.9958339	42.753922	1.0	(4) (a) (ii)	FOS_NE12
CM_N_386	43.9805412	42.7662083	1.0	(4) (a) (ii)	FOS_NE12
CM_N_387	43.9655225	42.7786786	1.0	(4) (a) (ii)	FOS_NE12
CM_N_388	43.9507819	42.7913297	1.0	(4) (a) (ii)	FOS_NE12
CM_N_389	43.9363235	42.8041581	1.0	(4) (a) (ii)	FOS_NE12
CM_N_390	42.6939124	43.2041261	59.7	(4) (a) (ii)	FOS_NE15
CM_N_391	42.6711447	43.2034239	1.0	(4) (a) (ii)	FOS_NE15
CM_N_392	42.6483645	43.2029949	1.0	(4) (a) (ii)	FOS_NE15
CM_N_393	42.6255778	43.202839	1.0	(4) (a) (ii)	FOS_NE15
CM_N_394	42.6027907	43.2029565	1.0	(4) (a) (ii)	FOS_NE15
CM_N_395	42.5800092	43.2033471	1.0	(4) (a) (ii)	FOS_NE15
CM_N_396	42.5572393	43.204011	1.0	(4) (a) (ii)	FOS_NE15
CM_N_397	42.5344871	43.2049477	1.0	(4) (a) (ii)	FOS_NE15
CM_N_398	42.5117585	43.2061572	1.0	(4) (a) (ii)	FOS_NE15
CM_N_399	42.4890596	43.2076391	1.0	(4) (a) (ii)	FOS_NE15
CM_N_400	42.4663964	43.209393	1.0	(4) (a) (ii)	FOS_NE15
CM_N_401	42.4437748	43.2114184	1.0	(4) (a) (ii)	FOS_NE15
CM_N_402	42.4212008	43.2137148	1.0	(4) (a) (ii)	FOS_NE15
CM_N_403	42.3986805	43.2162816	1.0	(4) (a) (ii)	FOS_NE15
CM_N_404	42.3762197	43.2191181	1.0	(4) (a) (ii)	FOS_NE15

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_405	42.3538244	43.2222236	1.0	(4) (a) (ii)	FOS_NE15
CM_N_406	42.3315006	43.2255972	1.0	(4) (a) (ii)	FOS_NE15
CM_N_407	42.3092542	43.2292381	1.0	(4) (a) (ii)	FOS_NE15
CM_N_408	42.2870911	43.2331452	1.0	(4) (a) (ii)	FOS_NE15
CM_N_409	42.2650171	43.2373176	1.0	(4) (a) (ii)	FOS_NE15
CM_N_410	42.2430381	43.2417541	1.0	(4) (a) (ii)	FOS_NE15
CM_N_411	42.22116	43.2464536	1.0	(4) (a) (ii)	FOS_NE15
CM_N_412	42.1993886	43.2514148	1.0	(4) (a) (ii)	FOS_NE15
CM_N_413	42.1777296	43.2566365	1.0	(4) (a) (ii)	FOS_NE15
CM_N_414	42.1561889	43.2621171	1.0	(4) (a) (ii)	FOS_NE15
CM_N_415	42.1347721	43.2678553	1.0	(4) (a) (ii)	FOS_NE15
CM_N_416	42.113485	43.2738495	1.0	(4) (a) (ii)	FOS_NE15
CM_N_417	42.0923333	43.2800982	1.0	(4) (a) (ii)	FOS_NE15
CM_N_418	42.0713226	43.2865997	1.0	(4) (a) (ii)	FOS_NE15
CM_N_419	42.0504585	43.2933523	1.0	(4) (a) (ii)	FOS_NE15
CM_N_420	42.0297467	43.3003541	1.0	(4) (a) (ii)	FOS_NE15
CM_N_421	42.0091926	43.3076033	1.0	(4) (a) (ii)	FOS_NE15
CM_N_422	41.9888018	43.3150981	1.0	(4) (a) (ii)	FOS_NE15
CM_N_423	41.9685798	43.3228363	1.0	(4) (a) (ii)	FOS_NE15
CM_N_424	41.9485319	43.3308159	1.0	(4) (a) (ii)	FOS_NE15
CM_N_425	41.9286637	43.3390349	1.0	(4) (a) (ii)	FOS_NE15
CM_N_426	41.9089805	43.347491	1.0	(4) (a) (ii)	FOS_NE15
CM_N_427	41.8894875	43.356182	1.0	(4) (a) (ii)	FOS_NE15
CM_N_428	41.87019	43.3651055	1.0	(4) (a) (ii)	FOS_NE15
CM_N_429	41.8510933	43.3742592	1.0	(4) (a) (ii)	FOS_NE15
CM_N_430	41.8322026	43.3836406	1.0	(4) (a) (ii)	FOS_NE15
CM_N_431	41.8135229	43.3932473	1.0	(4) (a) (ii)	FOS_NE15
CM_N_432	41.7950594	43.4030766	1.0	(4) (a) (ii)	FOS_NE15
CM_N_433	41.7768171	43.413126	1.0	(4) (a) (ii)	FOS_NE15
CM_N_434	41.7588009	43.4233928	1.0	(4) (a) (ii)	FOS_NE15
CM_N_435	41.7410158	43.4338741	1.0	(4) (a) (ii)	FOS_NE15
CM_N_436	41.7234667	43.4445673	1.0	(4) (a) (ii)	FOS_NE15
CM_N_437	41.7061583	43.4554695	1.0	(4) (a) (ii)	FOS_NE15
CM_N_438	41.6890955	43.4665777	1.0	(4) (a) (ii)	FOS_NE15
CM_N_439	41.6722829	43.4778889	1.0	(4) (a) (ii)	FOS_NE15
CM_N_440	41.6557252	43.4894002	1.0	(4) (a) (ii)	FOS_NE15
CM_N_441	41.6394269	43.5011084	1.0	(4) (a) (ii)	FOS_NE15

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_442	41.6233926	43.5130105	1.0	(4) (a) (ii)	FOS_NE15
CM_N_443	41.6076267	43.5251032	1.0	(4) (a) (ii)	FOS_NE15
CM_N_444	41.5921337	43.5373832	1.0	(4) (a) (ii)	FOS_NE15
CM_N_445	41.5769178	43.5498473	1.0	(4) (a) (ii)	FOS_NE15
CM_N_446	41.5619832	43.5624921	1.0	(4) (a) (ii)	FOS_NE15
CM_N_447	41.5473343	43.5753143	1.0	(4) (a) (ii)	FOS_NE15
CM_N_448	41.5329751	43.5883103	1.0	(4) (a) (ii)	FOS_NE15
CM_N_449	41.5189097	43.6014766	1.0	(4) (a) (ii)	FOS_NE15
CM_N_450	41.505142	43.6148098	1.0	(4) (a) (ii)	FOS_NE15
CM_N_451	41.491676	43.6283063	1.0	(4) (a) (ii)	FOS_NE15
CM_N_452	41.4785155	43.6419623	1.0	(4) (a) (ii)	FOS_NE15
CM_N_453	41.4656642	43.6557741	1.0	(4) (a) (ii)	FOS_NE15
CM_N_454	41.4531258	43.6697382	1.0	(4) (a) (ii)	FOS_NE15
CM_N_455	41.440904	43.6838507	1.0	(4) (a) (ii)	FOS_NE15
CM_N_456	41.4290022	43.6981077	1.0	(4) (a) (ii)	FOS_NE15
CM_N_457	41.4174239	43.7125054	1.0	(4) (a) (ii)	FOS_NE15
CM_N_458	41.4061725	43.72704	1.0	(4) (a) (ii)	FOS_NE15
CM_N_459	41.3952513	43.7417074	1.0	(4) (a) (ii)	FOS_NE15
CM_N_460	41.3846634	43.7565037	1.0	(4) (a) (ii)	FOS_NE15
CM_N_461	41.3744121	43.7714249	1.0	(4) (a) (ii)	FOS_NE15
CM_N_462	41.3645002	43.7864669	1.0	(4) (a) (ii)	FOS_NE15
CM_N_463	41.3549308	43.8016257	1.0	(4) (a) (ii)	FOS_NE15
CM_N_464	41.3457067	43.816897	1.0	(4) (a) (ii)	FOS_NE15
CM_N_465	41.3368308	43.8322768	1.0	(4) (a) (ii)	FOS_NE15
CM_N_466	41.3283056	43.8477609	1.0	(4) (a) (ii)	FOS_NE15
CM_N_467	41.3201338	43.863345	1.0	(4) (a) (ii)	FOS_NE15
CM_N_468	41.3123179	43.8790249	1.0	(4) (a) (ii)	FOS_NE15
CM_N_469	41.3048603	43.8947963	1.0	(4) (a) (ii)	FOS_NE15
CM_N_470	41.2977634	43.9106549	1.0	(4) (a) (ii)	FOS_NE15
CM_N_471	41.2910292	43.9265964	1.0	(4) (a) (ii)	FOS_NE15
CM_N_472	41.2846601	43.9426163	1.0	(4) (a) (ii)	FOS_NE15
CM_N_473	41.278658	43.9587104	1.0	(4) (a) (ii)	FOS_NE15
CM_N_474	41.2730249	43.9748741	1.0	(4) (a) (ii)	FOS_NE15
CM_N_475	41.2677625	43.9911031	1.0	(4) (a) (ii)	FOS_NE15
CM_N_476	41.2628728	44.0073929	1.0	(4) (a) (ii)	FOS_NE15
CM_N_477	41.2583572	44.0237391	1.0	(4) (a) (ii)	FOS_NE15
CM_N_478	41.2542174	44.040137	1.0	(4) (a) (ii)	FOS_NE15

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_479	41.2504548	44.0565823	1.0	(4) (a) (ii)	FOS_NE15
CM_N_480	41.2470707	44.0730704	1.0	(4) (a) (ii)	FOS_NE15
CM_N_481	41.2440665	44.0895967	1.0	(4) (a) (ii)	FOS_NE15
CM_N_482	41.2414432	44.1061567	1.0	(4) (a) (ii)	FOS_NE15
CM_N_483	41.2392019	44.1227458	1.0	(4) (a) (ii)	FOS_NE15
CM_N_484	41.2373436	44.1393594	1.0	(4) (a) (ii)	FOS_NE15
CM_N_485	41.235869	44.155993	1.0	(4) (a) (ii)	FOS_NE15
CM_N_486	41.2347789	44.1726418	1.0	(4) (a) (ii)	FOS_NE15
CM_N_487	41.2340739	44.1893014	1.0	(4) (a) (ii)	FOS_NE15
CM_N_488	41.2337546	44.2059671	1.0	(4) (a) (ii)	FOS_NE15
CM_N_489	41.2338214	44.2226342	1.0	(4) (a) (ii)	FOS_NE15
CM_N_490	41.2342745	44.2392982	1.0	(4) (a) (ii)	FOS_NE15
CM_N_491	41.2351142	44.2559544	1.0	(4) (a) (ii)	FOS_NE15
CM_N_492	41.2363406	44.2725981	1.0	(4) (a) (ii)	FOS_NE15
CM_N_493	41.2379536	44.2892248	1.0	(4) (a) (ii)	FOS_NE15
CM_N_494	41.2399531	44.3058298	1.0	(4) (a) (ii)	FOS_NE15
CM_N_495	41.242339	44.3224084	1.0	(4) (a) (ii)	FOS_NE15
CM_N_496	41.2451108	44.3389561	1.0	(4) (a) (ii)	FOS_NE15
CM_N_497	41.2482681	44.3554682	1.0	(4) (a) (ii)	FOS_NE15
CM_N_498	41.2518104	44.3719401	1.0	(4) (a) (ii)	FOS_NE15
CM_N_499	41.255737	44.3883672	1.0	(4) (a) (ii)	FOS_NE15
CM_N_500	41.260047	44.4047449	1.0	(4) (a) (ii)	FOS_NE15
CM_N_501	41.2647397	44.4210686	1.0	(4) (a) (ii)	FOS_NE15
CM_N_502	41.269814	44.4373337	1.0	(4) (a) (ii)	FOS_NE15
CM_N_503	41.2752689	44.4535356	1.0	(4) (a) (ii)	FOS_NE15
CM_N_504	41.281103	44.4696699	1.0	(4) (a) (ii)	FOS_NE15
CM_N_505	41.2873151	44.4857319	1.0	(4) (a) (ii)	FOS_NE15
CM_N_506	41.2939038	44.5017171	1.0	(4) (a) (ii)	FOS_NE15
CM_N_507	41.3008674	44.5176211	1.0	(4) (a) (ii)	FOS_NE15
CM_N_508	41.3082044	44.5334393	1.0	(4) (a) (ii)	FOS_NE15
CM_N_509	41.3159129	44.5491674	1.0	(4) (a) (ii)	FOS_NE15
CM_N_510	41.3239911	44.5648007	1.0	(4) (a) (ii)	FOS_NE15
CM_N_511	41.332437	44.580335	1.0	(4) (a) (ii)	FOS_NE15
CM_N_512	41.3412486	44.5957658	1.0	(4) (a) (ii)	FOS_NE15
CM_N_513	41.3504235	44.6110888	1.0	(4) (a) (ii)	FOS_NE15
CM_N_514	41.3599595	44.6262996	1.0	(4) (a) (ii)	FOS_NE15
CM_N_515	41.3698542	44.6413939	1.0	(4) (a) (ii)	FOS_NE15

Continental margin fixed point	CM Point Lon [dd E)	CM Point Lat [dd S]	Distance to previous CM Point [M]	Article 76 criterion	Corresponding FOS point
CM_N_516	41.380105	44.6563674	1.0	(4) (a) (ii)	FOS_NE15
CM_N_517	41.3907093	44.6712159	1.0	(4) (a) (ii)	FOS_NE15
CM_N_518	41.4016644	44.6859351	1.0	(4) (a) (ii)	FOS_NE15
CM_N_519	41.4129673	44.7005209	1.0	(4) (a) (ii)	FOS_NE15
CM_N_520	41.4246153	44.7149692	1.0	(4) (a) (ii)	FOS_NE15
CM_N_521	41.4366051	44.7292757	1.0	(4) (a) (ii)	FOS_NE15
CM_N_522	41.4489337	44.7434364	1.0	(4) (a) (ii)	FOS_NE15
CM_N_523	41.4615977	44.7574473	1.0	(4) (a) (ii)	FOS_NE15
CM_N_524	41.4745937	44.7713044	1.0	(4) (a) (ii)	FOS_NE15
CM_N_525	41.4879184	44.7850037	1.0	(4) (a) (ii)	FOS_NE15
CM_N_526	41.5015682	44.7985413	1.0	(4) (a) (ii)	FOS_NE15
CM_N_527	41.5155392	44.8119133	1.0	(4) (a) (ii)	FOS_NE15
CM_N_528	41.5298279	44.825116	1.0	(4) (a) (ii)	FOS_NE15
CM_N_529	41.5444303	44.8381454	1.0	(4) (a) (ii)	FOS_NE15
CM_N_530	41.5593423	44.8509979	1.0	(4) (a) (ii)	FOS_NE15
CM_N_531	41.5745601	44.8636698	1.0	(4) (a) (ii)	FOS_NE15

Table 3a. Coordinates of fixed points defining the outer limits of the continental shelf beyond $\mathbf{2 0 0} \mathbf{M}$ and their corresponding FOS points in the southern section of the continental margin (Southern Segment) [as received on 18 February 2022]

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_S_002	43.1994777	49.0979346	n/a	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_003	43.2243978	49.1010257	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_004	43.2493958	49.1038383	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_005	43.2744643	49.1063715	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_006	43.299596	49.1086247	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_007	43.3247835	49.1105971	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_008	43.3500193	49.1122881	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_009	43.3752961	49.1136973	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_010	43.4006063	49.1148242	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_011	43.4259425	49.1156686	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_012	43.4512974	49.1162301	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_013	43.4766633	49.1165086	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_014	43.5020328	49.116504	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_S_015	43.5273984	49.1162164	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_016	43.5527528	49.1156457	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_017	43.5780883	49.1147922	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_018	43.6033976	49.1136562	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_019	43.6286731	49.1122379	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_020	43.6539075	49.1105377	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_021	43.6790933	49.1085563	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_022	43.704223	49.1062941	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_023	43.7292894	49.1037518	1.0	(4) (a) (ii)	FOS South05	43.4889383	48.1172819
OL_S_024	45.127777	49.4226388	58.2	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_025	45.1453009	49.4347485	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_026	45.1631403	49.4466633	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_027	45.1812905	49.4583798	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_028	45.1997462	49.4698945	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_029	45.2185024	49.4812041	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_030	45.2375539	49.4923054	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_031	45.2568953	49.503195	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_032	45.2765212	49.5138699	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_033	45.296426	49.5243269	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_034	45.3166041	49.534563	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_035	45.3370499	49.5445752	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_036	45.3577576	49.5543605	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_037	45.3787212	49.5639162	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_038	45.3999348	49.5732395	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_039	45.4213923	49.5823276	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_040	45.4430876	49.5911778	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_041	45.4650146	49.5997876	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_042	45.4871668	49.6081545	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_043	45.5095379	49.616276	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_044	45.5321216	49.6241497	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_045	45.5549112	49.6317733	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_046	45.5779003	49.6391447	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_047	45.601082	49.6462616	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_048	45.6244498	49.6531219	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_049	45.6479969	49.6597236	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_050	45.6717164	49.6660648	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_051	45.6956013	49.6721437	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	$\begin{gathered} \text { Distance } \\ \text { to } \\ \text { previous } \\ \text { point [M] } \\ \hline \end{gathered}$	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_S_052	45.7196449	49.6779584	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_053	45.7438399	49.6835073	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_054	45.7681795	49.6887886	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_055	45.7926564	49.6938009	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_056	45.8172635	49.6985427	1.0	(i)	FOS South07	46.2351288	48.7376089
OL_S_057	45.8419936	49.7030125	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_058	45.8668395	49.7072091	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_059	45.8917939	49.7111313	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_060	45.9168494	49.7147778	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_061	45.9419986	49.7181476	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_062	45.9672343	49.7212397	1.0	(4) (a) (ii)	FOS South07	46.2351288	48.7376089
OL_S_063	47.1204356	49.8561933	45.6	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_064	47.145743	49.8592856	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_065	47.1711296	49.8620993	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_066	47.196588	49.8646336	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_067	47.2221106	49.8668876	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_068	47.2476899	49.8688608	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_069	47.2733184	49.8705525	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_070	47.2989885	49.8719623	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_071	47.3246927	49.8730896	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_072	47.3504234	49.8739343	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_073	47.376173	49.8744961	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_074	47.4019338	49.8747747	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_075	47.4276983	49.8747701	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_076	47.4534589	49.8744824	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_077	47.479208	49.8739115	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_078	47.5049379	49.8730576	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_079	47.5306411	49.8719211	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_080	47.55631	49.8705023	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_081	47.5819371	49.8688014	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_082	47.6075147	49.8668192	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_083	47.6330353	49.8645561	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_084	47.6584915	49.8620128	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_085	47.6838756	49.8591901	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_086	47.7091804	49.8560888	1.0	(4) (a) (ii)	FOS South08	47.4144	48.87568
OL_S_087	48.4739635	49.7668569	30.2	(4) (a) (ii)	FOS South09	48.205	48.78333

Table 3b. Coordinates of fixed points defining the outer limits of the continental shelf beyond $\mathbf{2 0 0} \mathbf{M}$ and their corresponding FOS points in the eastern and northeastern sections of the continental margin (Northern Segment) [as received on 18 February 2022]

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_002	56.7943907	44.6219887	n/a	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_003	56.7921664	44.6053986	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_004	56.7895567	44.5888372	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_005	56.7865628	44.572309	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_006	56.7831858	44.5558186	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_007	56.7794269	44.5393705	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_008	56.7752875	44.5229694	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_009	56.7707691	44.5066197	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_010	56.7658732	44.4903258	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_011	56.7606015	44.4740923	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_012	56.7549557	44.4579237	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_013	56.7489377	44.4418243	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_014	56.7425494	44.4257986	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_015	56.735793	44.409851	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_016	56.7286705	44.3939858	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_017	56.7211841	44.3782074	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_018	56.7133363	44.3625201	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_019	56.7051295	44.3469281	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_020	56.6965661	44.3314358	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_021	56.6876488	44.3160473	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_022	56.6783803	44.3007668	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_023	56.6687633	44.2855985	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_024	56.6588009	44.2705465	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_025	56.6484958	44.255615	1.0	(4) (a) (ii)	FOS_East06	55.397615	44.7004999
OL_N_026	56.0816158	43.4543323	54.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_027	56.0707848	43.4396491	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_028	56.0596247	43.4250983	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_029	56.0481389	43.4106839	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_030	56.0363307	43.3964098	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_031	56.0242035	43.3822799	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_032	56.0117608	43.3682979	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_033	55.9990062	43.3544677	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_034	55.9859433	43.3407929	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_035	55.9725759	43.3272774	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_036	55.9589078	43.3139247	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_037	55.9449428	43.3007384	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_038	55.930685	43.2877221	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_039	55.9161383	43.2748794	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_040	55.9013068	43.2622135	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_041	55.8861947	43.2497281	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_042	55.8708063	43.2374263	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_043	55.8551457	43.2253116	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_044	55.8392174	43.2133872	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_045	55.8230259	43.2016562	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_046	55.8065755	43.1901219	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_047	55.7898709	43.1787873	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_048	55.7729167	43.1676555	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_049	55.7557175	43.1567294	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_050	55.7382781	43.146012	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_051	55.7206032	43.1355061	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_052	55.7026977	43.1252146	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_053	55.6845665	43.1151401	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_054	55.6662146	43.1052855	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_055	55.6476469	43.0956532	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_056	55.6288685	43.086246	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_057	55.6098844	43.0770663	1.0	(4) (a) (ii)	FOS_East07	54.8576223	43.9139778
OL_N_058	54.5113796	42.5157384	59.1	(4) (a) (ii)	FOS_East08	53.4812023	43.1683237
OL_N_059	54.0576745	42.0153366	36.2	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_060	54.045203	42.0014985	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_061	54.0324295	41.9878158	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_062	54.0193576	41.9742923	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_063	54.0059911	41.9609317	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_064	53.9923337	41.9477374	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_065	53.9783893	41.9347133	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_066	53.9641618	41.9218626	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_067	53.9496553	41.9091889	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_068	53.9348738	41.8966957	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_069	53.9198215	41.8843862	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_070	53.9045025	41.8722637	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_071	53.8889211	41.8603317	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_072	53.8730816	41.8485932	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_073	53.8569885	41.8370514	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_074	53.8406462	41.8257094	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_075	53.8240592	41.8145702	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_076	53.807232	41.8036369	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_077	53.7901694	41.7929124	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_078	53.772876	41.7823996	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_079	53.7553565	41.7721012	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_080	53.7376157	41.76202	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_081	53.7196586	41.7521587	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_082	53.7014899	41.74252	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_083	53.6831146	41.7331065	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_084	53.6645377	41.7239206	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_085	53.6457643	41.7149648	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_086	53.6267995	41.7062416	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_087	53.6076484	41.6977531	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_088	53.5883161	41.6895018	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_089	53.5688079	41.6814898	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_090	53.5491291	41.6737192	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_091	53.5292849	41.6661921	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_092	53.5092808	41.6589105	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_093	53.489122	41.6518764	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_094	53.468814	41.6450917	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_095	53.4483623	41.638558	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_096	53.4277723	41.6322773	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_097	53.4070495	41.6262511	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_098	53.3861995	41.620481	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_099	53.3652279	41.6149687	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_100	53.3441402	41.6097155	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_101	53.3229421	41.6047228	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_102	53.3016392	41.5999921	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_103	53.2802373	41.5955244	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_104	53.258742	41.5913211	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_105	53.237159	41.5873833	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_106	53.2154941	41.5837119	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_107	53.1937531	41.580308	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_108	53.1719416	41.5771724	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_109	53.1507738	41.5743945	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_110	53.1288408	41.5717894	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_111	53.1068547	41.5694549	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_112	53.0848213	41.5673916	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_113	53.0627464	41.5656001	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_114	53.0406359	41.5640809	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_115	53.0184957	41.5628344	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_116	52.9963316	41.5618609	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_117	52.9741495	41.5611606	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_118	52.9519553	41.5607338	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_119	52.9297549	41.5605806	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_120	52.9075541	41.5607009	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_121	52.8853588	41.5610948	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_122	52.8631749	41.5617622	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_123	52.8410084	41.5627029	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_124	52.818865	41.5639166	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_125	52.7967506	41.565403	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_126	52.7746711	41.5671618	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_127	52.7526324	41.5691924	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_128	52.7306403	41.5714943	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_129	52.7087006	41.5740669	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_130	52.6868192	41.5769096	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_131	52.6650019	41.5800215	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_132	52.6432544	41.5834019	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_133	52.6215826	41.5870498	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_134	52.5999922	41.5909642	1.0	(4) (a) (ii)	FOS_East09	52.92842	42.56099
OL_N_135	52.0151298	41.7065054	27.2	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_136	51.993588	41.7106849	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_137	51.9721391	41.7151288	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_138	51.950789	41.7198359	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_139	51.9295433	41.724805	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_140	51.9084078	41.7300348	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_141	51.8873879	41.7355238	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_142	51.8664894	41.7412706	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_143	51.8457178	41.7472737	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_144	51.8250787	41.7535315	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_145	51.8045776	41.7600422	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_146	51.78422	41.7668043	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_147	51.7640114	41.7738158	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_148	51.7439572	41.781075	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_149	51.7240627	41.7885798	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_150	51.7043334	41.7963283	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_151	51.6847746	41.8043184	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_152	51.6653914	41.812548	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_153	51.6461893	41.8210149	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_154	51.6271732	41.8297168	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_155	51.6083485	41.8386514	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_156	51.5897202	41.8478163	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_157	51.5712933	41.8572091	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_158	51.553073	41.8668273	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_159	51.535064	41.8766682	1.0	(4) (a) (ii)	FOS_East10	52.3441303	42.6765162
OL_N_160	50.2055167	41.8370203	59.7	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_161	50.1915971	41.8239955	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_162	50.1773948	41.8111442	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_163	50.1629139	41.7984699	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_164	50.1481584	41.785976	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_165	50.1331325	41.7736659	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_166	50.1178404	41.7615428	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_167	50.1022864	41.7496102	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_168	50.0864747	41.737871	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_169	50.0704097	41.7263286	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_170	50.0540959	41.7149861	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_171	50.0375379	41.7038463	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_172	50.0207401	41.6929125	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_173	50.0037071	41.6821874	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_174	49.9864438	41.6716739	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_175	49.9689547	41.661375	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_176	49.9512447	41.6512933	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_177	49.9333186	41.6414315	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_178	49.9151814	41.6317923	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_179	49.8968379	41.6223782	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_180	49.8782931	41.6131918	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_181	49.8595521	41.6042356	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_182	49.84062	41.5955118	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_183	49.8215018	41.5870229	1.0	(4) (a) (ii)	FOS_NEO3	49.1434478	42.4502742
OL_N_184	49.8022028	41.5787712	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_185	49.7827282	41.5707587	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_186	49.7630832	41.5629877	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_187	49.7432732	41.5554602	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_188	49.7233033	41.5481783	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_189	49.7031791	41.5411438	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_190	49.682906	41.5343587	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_191	49.6624893	41.5278247	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_192	49.6419345	41.5215437	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_193	49.6212472	41.5155172	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_194	49.6004328	41.5097469	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_195	49.579497	41.5042343	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_196	49.5584454	41.4989808	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_197	49.5372835	41.493988	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_198	49.516017	41.489257	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_199	49.4946515	41.4847892	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_200	49.4731929	41.4805857	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_201	49.4516467	41.4766477	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_202	49.4300187	41.4729762	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_203	49.4083147	41.4695722	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_204	49.3865405	41.4664366	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_205	49.3654087	41.4636586	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_206	49.3435131	41.4610535	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_207	49.3215644	41.458719	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_208	49.2995685	41.4566557	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_209	49.2775312	41.4548643	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_210	49.2554583	41.4533451	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_211	49.2333558	41.4520987	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_212	49.2112294	41.4511253	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_213	49.1890851	41.4504251	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_214	49.1669286	41.4499985	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_215	49.144766	41.4498454	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_216	49.122603	41.4499659	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_217	49.1004455	41.45036	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_218	49.0782994	41.4510277	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_219	49.0561706	41.4519686	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_220	49.0340649	41.4531826	1.0	(4) (a) (ii)	FOS_NEO3	49.1434478	42.4502742
OL_N_221	49.0119882	41.4546693	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_222	48.9899464	41.4564284	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_223	48.9679453	41.4584593	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_224	48.9459907	41.4607616	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_225	48.9240884	41.4633346	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_226	48.9022444	41.4661776	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_227	48.8804643	41.46929	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_228	48.858754	41.4726708	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_229	48.8371192	41.4763191	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_230	48.8155657	41.4802341	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_231	48.7940992	41.4844146	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_232	48.7727255	41.4888596	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_233	48.7514502	41.4935678	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_234	48.730279	41.498538	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_235	48.7092176	41.5037689	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_236	48.6882715	41.5092591	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_237	48.6674465	41.5150072	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_238	48.6467479	41.5210116	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_239	48.6261814	41.5272706	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_240	48.6057526	41.5337828	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_241	48.5854667	41.5405462	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_242	48.5653294	41.5475591	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_243	48.545346	41.5548197	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_244	48.5255219	41.562326	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_245	48.5058624	41.570076	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_246	48.4863728	41.5780676	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_247	48.4670584	41.5862987	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_248	48.4479244	41.5947672	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_249	48.4289759	41.6034707	1.0	(4) (a) (ii)	FOS_NE03	49.1434478	42.4502742
OL_N_250	47.6526628	41.9203371	39.7	(4) (a) (ii)	FOS_NE07	48.1730437	42.8433082
OL_N_251	46.3310685	41.9601441	59.2	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_252	46.3090038	41.9575391	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_253	46.2868856	41.9552046	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_254	46.2647199	41.9531413	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_255	46.2425124	41.9513497	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_256	46.2202692	41.9498303	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_257	46.197996	41.9485835	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_258	46.1756988	41.9476096	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_259	46.1533836	41.946909	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_260	46.1310561	41.9464816	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_261	46.1087223	41.9463278	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_262	46.0863882	41.9464475	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_263	46.0640596	41.9468407	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_264	46.0417425	41.9475073	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_265	46.0194427	41.9484471	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_266	45.9971662	41.9496598	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_267	45.9749189	41.9511452	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_268	45.9527067	41.9529028	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_269	45.9305354	41.9549322	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_270	45.908411	41.9572329	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_271	45.8863393	41.9598042	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_272	45.8643261	41.9626454	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_273	45.8423774	41.9657559	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_274	45.8204989	41.9691347	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_275	45.7986964	41.972781	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_276	45.7769757	41.9766938	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_277	45.7553427	41.9808721	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_278	45.733803	41.9853147	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_279	45.7123624	41.9900205	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_280	45.6910267	41.9949882	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_281	45.6698014	42.0002165	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_282	45.6486923	42.0057041	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_283	45.627705	42.0114494	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_284	45.6068451	42.017451	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_285	45.5861181	42.0237072	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_286	45.5655297	42.0302164	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_287	45.5450854	42.0369768	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_288	45.5247905	42.0439866	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_289	45.5046507	42.0512441	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_290	45.4846712	42.0587471	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_291	45.4648575	42.0664938	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_292	45.4452148	42.0744821	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697
OL_N_293	45.4257486	42.0827099	1.0	(4) (a) (ii)	FOS_NE10	46.1073285	42.9466697

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_294	44.274102	42.5849041	59.4	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_295	44.2550481	42.5938333	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_296	44.2361926	42.6029927	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_297	44.2175408	42.6123799	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_298	44.1990978	42.6219925	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_299	44.1808684	42.6318278	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_300	44.1628577	42.6418831	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_301	44.1450707	42.6521559	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_302	44.1275121	42.6626434	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_303	44.1101868	42.6733427	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_304	44.0930995	42.684251	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_305	44.076255	42.6953653	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_306	44.0596579	42.7066828	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_307	44.0433127	42.7182003	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_308	44.027224	42.7299148	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_309	44.0113963	42.7418231	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_310	43.9958339	42.753922	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_311	43.9805412	42.7662083	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_312	43.9655225	42.7786786	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_313	43.9507819	42.7913297	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_314	43.9363235	42.8041581	1.0	(4) (a) (ii)	FOS_NE12	44.9995642	43.4316912
OL_N_315	42.6939124	43.2041261	59.7	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_316	42.6711447	43.2034239	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_317	42.6483645	43.2029949	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_318	42.6255778	43.202839	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_319	42.6027907	43.2029565	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_320	42.5800092	43.2033471	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_321	42.5572393	43.204011	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_322	42.5344871	43.2049477	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_323	42.5117585	43.2061572	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_324	42.4890596	43.2076391	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_325	42.4663964	43.209393	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_326	42.4437748	43.2114184	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_327	42.4212008	43.2137148	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_328	42.3986805	43.2162816	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_329	42.3762197	43.2191181	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_330	42.3538244	43.2222236	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_331	42.3315006	43.2255972	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_332	42.3092542	43.2292381	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_333	42.2870911	43.2331452	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_334	42.2650171	43.2373176	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_335	42.2430381	43.2417541	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_336	42.22116	43.2464536	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_337	42.1993886	43.2514148	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_338	42.1777296	43.2566365	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_339	42.1561889	43.2621171	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_340	42.1347721	43.2678553	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_341	42.113485	43.2738495	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_342	42.0923333	43.2800982	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_343	42.0713226	43.2865997	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_344	42.0504585	43.2933523	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_345	42.0297467	43.3003541	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_346	42.0091926	43.3076033	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_347	41.9888018	43.3150981	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_348	41.9685798	43.3228363	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_349	41.9485319	43.3308159	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_350	41.9286637	43.3390349	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_351	41.9089805	43.347491	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_352	41.8894875	43.356182	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_353	41.87019	43.3651055	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_354	41.8510933	43.3742592	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_355	41.8322026	43.3836406	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_356	41.8135229	43.3932473	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_357	41.7950594	43.4030766	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_358	41.7768171	43.413126	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_359	41.7588009	43.4233928	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_360	41.7410158	43.4338741	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_361	41.7234667	43.4445673	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_362	41.7061583	43.4554695	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_363	41.6890955	43.4665777	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_364	41.6722829	43.4778889	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_365	41.6557252	43.4894002	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_366	41.6394269	43.5011084	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_367	41.6233926	43.5130105	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611

OLCS point	OL Point Lon [dd E]	OL Point Lat [dd S]	Distance to previous point [M]	Article 76 criterion	Corresponding Point	Corr. Point Lon [dd E]	Corr. Point Lat [dd S]
OL_N_368	41.6076267	43.5251032	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_369	41.5921337	43.5373832	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_370	41.5769178	43.5498473	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_371	41.5619832	43.5624921	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_372	41.5473343	43.5753143	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_373	41.5329751	43.5883103	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_374	41.5189097	43.6014766	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611
OL_N_375	41.505142	43.6148098	1.0	(4) (a) (ii)	FOS_NE15	42.6239778	44.2029611

[^0]: * The aim of this Summary is to provide information which is not of confidential or proprietary nature in order to facilitate the function of the Secretary-General in accordance with paragraph 11.3 of annex III to the rules of procedure of the Commission (CLCS/40/Rev.1). This Summary is based on excerpts of the Recommendations and may refer to material not necessarily included either in the full Recommendations or this Summary

[^1]: ${ }^{1}$ The Submission was received by DOALOS as the secretariat of the Commission.
 ${ }^{2}$ Part 4 of the Executive Summary of the original Joint Submission.
 ${ }^{3}$ See Continental Shelf Notification CLCS.34.2009.LOS at:
 http://www.un.org/Depts/los/clcs_new/submissions_files/frazaf34_09/frazaf_clcs34_2009e.pdf

[^2]: ${ }^{4}$ See Continental Shelf Notification CLCS.34.2009.LOS.Add. 1 at: http://www.un.org/Depts/los/clcs_new/submissions_files/frazaf34_09/frazaf_clcs34_2013.pdf.

[^3]: ${ }^{5}$ During the forty-sixth session (21 January-16 March 2018) the Subcommission did not proceed with the consideration of the Submission, as the Delegation requested further time to analyse the document by the Subcommission of 1 December 2017, which had been prepared on the mutual understanding that it replaced the presentation envisioned under paragraph 10.3 of annex III to the rules of procedure. Statements of the Chair for each session are available at https://www.un.org/Depts/los/clcs_new/clcs_home.htm.

[^4]: * The figures marked by an asterisk are prepared by the Subcommission on the basis of the submitted information. The designation employed and the presentation of material on any illustrative maps does not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

