

Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf concerning the Manihiki Plateau

EXECUTIVE SUMMARY April 2009 CKI-ES-DOC 1982 UNITED NATIONS CONVENTION ON THE LAW OF THE SEA

Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf concerning the Manihiki Plateau

EXECUTIVE SUMMARY

APRIL 2009

CKI-ES-DOC

The Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf concerning the Manihiki Plateau was prepared by representatives of the following Ministries of the Government of the Cook Islands:

Hon. Sir Terepai Maoate KBE, Deputy Prime Minister Mr Michael Mitchell, Secretary of the Ministry of Foreign Affairs & Immigration Mr Keu Mataroa, Executive Officer, Ministry of Infrastructure and Planning Mr Vaipo Mataora, GIS Manager, Ministry of Infrastructure and Planning

The following organisations and persons acted as advisors and provided assistance to the Government of the Cook Islands in the preparation of this Submission:

Mr Joshua Brien, Legal Adviser, Commonwealth Secretariat, London Dr Alain Murphy, Director, GeoLimits Consulting, Canada Mr Mark Alcock, Project Leader, Law of the Sea, GeoScience Australia Dr Elaine Baker, United Nations Environment Program/GRID-Arendal Dr Arthur Webb, Programme Manager, Oceans and Islands, Pacific Islands Applied Geoscience Commission (SOPAC) Mr Andrick Lal, Senior Project Officer, Survey, SOPAC Ms Emily Artack, Project Officer, Maritime Boundary Project, SOPAC

CONTENTS

1.	Introduction	5
2.	Maps and Coordinates	7
3.	Provisions of Article 76 Invoked	10
4.	Commission Members Who Provided Advice on the Submission	10
5.	Outstanding Maritime Delimitations	10
6.	Overview of the Extended Continental Shelf in the Manihiki Plateau Region	11
7.	Note of Authentication	15
8.	Notes	15

ANNEX

Annex 1: Table listing the points defining the outer limit of the Cook Islands extended continental shelf (Decimal Degrees)

CKI-ES-DOC-ANNEX 1

MAPS

(A0 Executive Summary map supplied separately)

Figure 1: The outer limit of the continental shelf of Cook Islands showing the outer limit line and area of extended continental shelf

CKI-ES-DOC-MAP 1

Figure 2: The outer limit of the continental shelf of the Cook Islands showing the provisions of article 76 invoked

CKI-ES-DOC-MAP 2

1. INTRODUCTION

- 1-1 The Executive Summary document has been prepared as part of the Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf ('the Commission') made pursuant to paragraph 8 of Article 76 of the 1982 United Nations Convention on the Law of the Sea ('the Convention') in support of the establishment by the Cook Islands of the outer limits of the continental shelf that lies beyond 200 nautical miles (M) from the baselines from which the breadth of the territorial sea of the Cook Islands is measured (hereinafter referred to as 'the territorial sea baselines') in the region of the Manihiki Plateau.
- 1-2 The Cook Islands is a self-governing nation in free association with New Zealand, and comprises a series of islands located in the western equatorial Pacific Ocean scattered between 8° and 23° latitude S and 156° and 167° longitude W as specified in the *Constitution of the Cook Islands*. The islands of the Cook Islands are divided into two groups—the Northern Group and the Southern Group. The Northern Group includes the islands of *Manihiki, Nassau, Penryhn, Pukapuka, Rakahanga,* and *Suwarrow*. The Southern Group includes the islands of *Aitutaki, Atiu, Manuae, Mauke, Mitiaro, Mangaia, Takutea* and *Palmerston*, together with the island of *Rarotonga*, which is the location of the nation's capital.
- 1-3 The Cook Islands is a party to the Convention, which it signed on the day it was opened for signature on 10 December 1982 and subsequently ratified on 15 February 1995.
- 1-4 Under Article 4 of Annex II to the Convention, as supplemented by the decisions of the Eleventh (SPLOS/72) and Eighteenth (SPLOS/183) meetings of the States Parties to the Convention respectively regarding the ten-year period established by article 4 of Annex II to the Convention, a coastal State

Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf Executive Summary CKI-ES-DOC

for which the Convention entered into force before 13 May 1999 is requested to submit particulars of the outer limits of the continental shelf to the Commission, together with supporting scientific and technical data by 13 May 2009. This submission by the Cook Islands satisfies that requirement.

- **1-5** The continental shelf of the Cook Islands is defined under the *Continental Shelf Act 1964, as amended in 1977,* which establishes a formula for defining the outer limit of the continental shelf based on the relevant provisions of the Convention.
- **1-6** As provided for under paragraph 1 of Article 76, the Cook Islands has a continental shelf comprising the seabed and subsoil of the submarine areas that extend beyond its territorial sea throughout the natural prolongation of its land territory to the outer edge of the continental margin, up to the limits provided for in paragraphs 4 to 6 of Article 76 or, to a distance of 200 M from the territorial sea baseline where the outer edge of the continental margin does not extend beyond that distance. Article 121 of the Convention further provides that in the case of Islands, the provisions of Article 76 are applicable to the determination of the outer limit of the continental shelf in the same manner as they apply to other land territory.
- 1-7 Paragraphs 4 to 6 of Article 76 set out a number of provisions by which a coastal State may establish the outer edge of its continental margin, and its legal continental shelf, wherever that margin extends beyond 200 M from its territorial sea baselines.
- **1-8** As set out in paragraph 7 of Article 76, the coastal State is to delineate the outer limits of those portions of its continental shelf that extend beyond 200 M from its territorial sea baselines by straight lines not exceeding 60 M in length, connecting fixed points ('Article 76 fixed points') defined by coordinates of latitude and longitude.

- **1-9** The data submitted by the Cook Islands in support of the Submission establish that the outer edge of Cook Islands continental margin extends beyond 200 M from the territorial sea baseline in the Manihiki Plateau region (*Penryhn, Pukapuka, Rakahanga*). The Government of the Cook Islands intends to proclaim the outer limits of the continental shelf following the making of recommendations by the Commission pursuant to paragraph 8 of Article 76. The proclaimed outer limits will be established on the basis of those recommendations.
- 1-10 A separate section of this Executive Summary document provides an outline of the region of extended continental shelf, including a depiction of the outer limit of the Cook Islands' extended continental shelf. A map depicting the outer limit of the extended continental shelf is shown in Figure 1 below (CKI-DOC-ES-MAP 1).
- **1-11** The part of the continental shelf lying more than 200 M from the Cook Islands territorial sea baseline is referred to in this Executive Summary document and throughout the Submission as the 'extended continental shelf'.

2. MAPS AND COORDINATES

2-1 Two maps at an appropriate scale are included in this Executive Summary in two forms: as Figures 1 to 2 within this document, and as separate A0-size maps. Figure 1 (CKI-ES-DOC-MAP 1) depicts the outer limit lines and the area of extended continental shelf submitted to the Commission. Figure 2 (CKI-ES-DOC-MAP 2) depicts the outer limit line by reference to the location of the Article 76 fixed points that define the outer limit of the area and the provisions of Article 76 invoked.

2-2 Lists of coordinates of the Article 76 fixed points that define the outer limit of Cook Islands extended continental shelf are supplied in an annex to this Executive Summary document (Annex 1—CKI-ES-DOC-ANNEX 1), with the fixed points defining the outer limit of Cook Islands continental shelf presented in decimal degrees. The provision of Article 76 invoked to define each fixed point, as well as the distance between adjacent points, is indicated in the annex.

Figure 1 The outer limit of the continental shelf of the Cook Islands in the Manihiki Plateau region showing the outer limit line and area of extended continental shelf.

CKI-ES-DOC-MAP 1

3. PROVISIONS OF ARTICLE 76 INVOKED

The Cook Islands invokes paragraphs 4(a)(ii), 4(b), 5 and 7 of Article 76 of the Convention in support of the determination of the outer limit of the extended continental shelf in the region of the Manihiki Plateau included in the Submission by the Cook Islands, as outlined in Section 6 of this Executive Summary document.

4. COMMISSION MEMBERS WHO PROVIDED ADVICE ON THE SUBMISSION

The Cook Islands was assisted in the preparation of this Submission by Mr Philip Alexander Symonds (2002-present). In addition, a list of the advisers and organisations that provided legal and technical assistance to the Cook Islands during the preparation of the Submission is included in the Preface to this document.

5. OUTSTANDING MARITIME DELIMITATIONS

- 5-1 The Cook Islands has concluded maritime boundary agreements with the United States of America concerning American Samoa and with the French Republic concerning the French Republic of Polynesia. These international agreements delimit boundaries concerning the exclusive economic zone ('EEZ') of the Cook Islands and those of American Samoa and the French Republic of Polynesia respectively in those areas where EEZ entitlements would otherwise overlap.
- **5-2** The EEZ entitlements of the Cook Islands overlap also with those of the adjacent coastal States of Niue, New Zealand (Tokelau), and Kiribati.

5-3 The area of the Cook Islands extended continental shelf included in this Submission does not implicate any of international agreements noted above, nor is it affected by any of the outstanding delimitations with opposite or adjacent coast referred to above.

6. OVERVIEW OF THE EXTENDED CONTINENTAL SHELF IN THE MANIHIKI PLATEAU REGION

- **6-1** The Manihiki Plateau region is dominated by the Manihiki Plateau, a large, submarine igneous province that covers an area of approximately 800,000 km² of seafloor in the western equatorial Pacific Ocean, and is one of a number of such submarine magmatic and composite features scattered throughout the Pacific, Indian, and Southern Oceans such as the Hikurangi Plateau, Ontong Java Plateau and Kerguelen Plateau. The Manihiki Plateau stands some several kilometers above the surrounding seafloor, and comprises three major structural highs believed to have evolved principally as a result of hotspot activity during the Early Cretaceous (~120 Ma), followed by post-emplacement normal and transform faulting.
- **6-2** The Manihiki Plateau is surmounted in the north and north-east by islands that form part of the territory of the Cook Islands. The Manihiki Plateau and its associated landmasses are all physically juxtaposed as part of the same morphological feature and are the result of a linked chain of geological processes and events. As such, the Manihiki Plateau and its structural highs are natural components of the continental margin and comprise the submerged prolongation of the relevant land masses of the Cook Islands.
- 6-3 The outer limit of the extended continental shelf in the region of the Manihiki Plateau determined by the Cook Islands in accordance with Article 76 of the Convention encloses an area of approximately 413,000 km beyond 200 M

Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf Executive Summary CKI-ES-DOC

from the Cook Islands territorial sea baseline. The extended continental shelf in this region is divided into two areas, which are referred to in this Executive Summary document and throughout the Submission as 'the Northern Area' and, 'the Eastern Area' respectively.

- 6-4 The outer limit of the extended continental shelf of the Cook Islands in the Manihiki Plateau region is defined by **306** Article 76 fixed points, of which:
 - **73** are defined by arcs 60 M from the foot of the slope (Article 76, paragraph 4(a)(ii));
 - **173** are defined by the constraint line 100 M from the 2500 metre isobath (Article 76, paragraph 5);
 - **63** are defined by the constraint line 350 M from the territorial sea baselines (Article 76, paragraph 5);
 - 2 are points (CI_ECS-FP1) and CI_ECS-FP 257) where the outer limit line in the Northern Area commences and terminates respectively at points located along the line 200 M from the territorial sea baseline of Kiribati; and,
 - 2 are points (CI_ECS-FP 258 and CI_ECS-FP 313) where the where the outer limit line in the Eastern Area commences and terminates respectively at points located along the line 200 M from Kiribati.
- **6-5** Each successive pair of Article 76 fixed points, including points where the outer limit line commences and terminates, is connected by geodesics not exceeding 60 M in length as provided for under paragraph 7 of Article 76 of the Convention.

6-6 The list of Article 76 fixed points delineating the outer limit of the Cook Islands extended continental shelf is given in the Annex (CKI-ES-DOC-ANNEX 1) attached to this document.

Figure 2 The outer limit of the continental shelf of the Cook islands in the Manihiki Plateau showing the outer limit line and the provisions of article 76 invoked.

CKI-ES-DOC-MAP 2

7. NOTE OF AUTHENTICATION

All maps, charts and databases forming part of the Cook Islands submission were prepared by the Mapping Division of the Ministry of Works, which is the Department within the Cook Islands with responsibility for preparing such material and for certifying its quality and reliability.

8. NOTES

Map Notes

- 8.1 The depiction of the 200 M line from the territories of a State(s) other than the Cook Islands, and lines equidistant from the land territory of the Cook Islands and other States is based on information available at the time of production, and should not be taken to signify acceptance of the validity at international law of basepoints determined by another coastal State, with the exception of those cases where lines have been agreed in a maritime boundary treaty between the Cook Islands and an opposite or adjacent coastal State.
- **8.2** Highlighted areas depict the area of extended continental shelf as submitted by the Cook Islands to the Commission. White shading depicts all areas that lie beyond the area described above.

Table Notes

8-3 The tables included at Annex 1 and Annex 2 to this Executive Summary list by number (identifiers) and coordinates (in latitude and longitude) the fixed points that define the outer limit of the extended continental shelf of the Cook Islands in the Manihiki Plateau Region. The distance in nautical miles (M) from one point on the outer limit line to the next is given in the fourth column of the table.

Submission by the Cook Islands to the Commission on the Limits of the Continental Shelf Executive Summary CKI-ES-DOC

8-4 All coordinates of fixed points defined according to the provisions of Article 76 of the Convention are expressed in this document in the WSG84 geodetic reference system.

Abbreviations

8-5 The following abbreviations are used in the tables included at **Annex 1** to denote the Article 76 provisions invoked:

200 M	200 M line from the territorial sea baseline (Article 76, para. 1)
60 M	60 M (Hedberg) formula point (Article 76, para. 4(a)(ii))
350 M	350 M constraint point (Article 76, para. 5).

Other abbreviations used:

- **M** nautical mile (1852m)
- m metre

ANNEX 1

Table listing the points defining the outer limit of the Cook Islands extended continental shelf (Decimal Degrees)

Fixed Point	Longitude	Latitude	Distance (M)	Method (Article 76)			
NORTHERN OUTER LIMIT LINE							
CI_ECS_FP1	-167.781464	-5.309752	0.0	Other State 200M			
CI_ECS_FP2	-167.760590	-5.302558	1.3	350M Constraint			
CI_ECS_FP3	-167.744766	-5.297169	1.0	350M Constraint			
CI_ECS_FP4	-167.728928	-5.291824	1.0	350M Constraint			
CI_ECS_FP5	-167.713089	-5.286523	1.0	350M Constraint			
CI_ECS_FP6	-167.697220	-5.281267	1.0	350M Constraint			
CI_ECS_FP7	-167.681351	-5.276057	1.0	350M Constraint			
CI_ECS_FP8	-167.665451	-5.270891	1.0	350M Constraint			
CI_ECS_FP9	-167.649551	-5.265769	1.0	350M Constraint			
CI_ECS_FP10	-167.633621	-5.260695	1.0	350M Constraint			
CI_ECS_FP11	-167.617691	-5.255663	1.0	350M Constraint			
CI_ECS_FP12	-167.601746	-5.250679	1.0	350M Constraint			
CI_ECS_FP13	-167.585770	-5.245737	1.0	350M Constraint			
CI_ECS_FP14	-167.569794	-5.240843	1.0	350M Constraint			
CI_ECS_FP15	-167.553802	-5.235993	1.0	350M Constraint			
CI_ECS_FP16	-167.537811	-5.231186	1.0	350M Constraint			
CI_ECS_FP17	-167.521790	-5.226427	1.0	350M Constraint			
CI_ECS_FP18	-167.505753	-5.221713	1.0	350M Constraint			
CI_ECS_FP19	-167.489716	-5.217045	1.0	350M Constraint			
CI_ECS_FP20	-167.473663	-5.212421	1.0	350M Constraint			
CI_ECS_FP21	-167.457596	-5.207844	1.0	350M Constraint			
CI_ECS_FP22	-167.441513	-5.203310	1.0	350M Constraint			
CI_ECS_FP23	-167.425415	-5.198824	1.0	350M Constraint			
CI_ECS_FP24	-167.409302	-5.194382	1.0	350M Constraint			
CI_ECS_FP25	-167.393188	-5.189987	1.0	350M Constraint			
CI_ECS_FP26	-166.791534	-4.421422	58.3	2500m + 100M			
CI_ECS_FP27	-166.803574	-4.123503	17.8	2500m + 100M			
CI_ECS_FP28	-166.804413	-4.106775	1.0	2500m + 100M			
CI_ECS_FP29	-166.805084	-4.090041	1.0	2500m + 100M			
CI_ECS_FP30	-166.805603	-4.073301	1.0	2500m + 100M			
CI_ECS_FP31	-166.805939	-4.056554	1.0	2500m + 100M			
CI_ECS_FP32	-166.806107	-4.039807	1.0	2500m + 100M			

	-166.806107	4 022050	1.0	2500m + 100M
CI_ECS_FP33		-4.023059	1.0	2500m + 100M
CI_ECS_FP34	-166.805954	-4.006311	1.0	2500m + 100M
CI_ECS_FP35	-166.805618	-3.989568	1.0	2500m + 100M
CI_ECS_FP36	-166.805130	-3.972826	1.0	2500m + 100M
CI_ECS_FP37	-166.804474	-3.956090	1.0	2500m + 100M
CI_ECS_FP38	-166.803635	-3.939362	1.0	2500m + 100M
CI_ECS_FP39	-166.802643	-3.922644	1.0	2500m + 100M
CI_ECS_FP40	-166.801483	-3.905936	1.0	2500m + 100M
CI_ECS_FP41	-166.800156	-3.889240	1.0	2500m + 100M
CI_ECS_FP42	-166.798660	-3.872560	1.0	2500m + 100M
CI_ECS_FP43	-166.797012	-3.855895	1.0	2500m + 100M
CI_ECS_FP44	-166.795181	-3.839247	1.0	2500m + 100M
CI_ECS_FP45	-166.793198	-3.822617	1.0	2500m + 100M
CI_ECS_FP46	-166.791031	-3.806010	1.0	2500m + 100M
CI_ECS_FP47	-166.788712	-3.789424	1.0	2500m + 100M
CI_ECS_FP48	-166.786240	-3.772863	1.0	2500m + 100M
CI_ECS_FP49	-166.783585	-3.756327	1.0	2500m + 100M
CI_ECS_FP50	-166.780777	-3.739820	1.0	2500m + 100M
CI_ECS_FP51	-166.777786	-3.723339	1.0	2500m + 100M
CI_ECS_FP52	-166.774643	-3.706892	1.0	2500m + 100M
CI_ECS_FP53	-166.771347	-3.690474	1.0	2500m + 100M
CI_ECS_FP54	-166.767883	-3.674094	1.0	2500m + 100M
CI_ECS_FP55	-166.764252	-3.657748	1.0	2500m + 100M
CI_ECS_FP56	-166.760452	-3.641437	1.0	2500m + 100M
CI_ECS_FP57	-166.756500	-3.625167	1.0	2500m + 100M
CI_ECS_FP58	-166.752380	-3.608937	1.0	2500m + 100M
CI_ECS_FP59	-166.748108	-3.592749	1.0	2500m + 100M
CI_ECS_FP60	-166.743668	-3.576607	1.0	2500m + 100M
CI_ECS_FP61	-166.739059	-3.560507	1.0	2500m + 100M
CI_ECS_FP62	-166.734314	-3.544456	1.0	2500m + 100M
CI_ECS_FP63	-166.729385	-3.528453	1.0	2500m + 100M
CI ECS FP64	-166.724304	-3.512501	1.0	2500m + 100M
CI ECS FP65	-166.719070	-3.496598	1.0	2500m + 100M
CI_ECS_FP66	-166.713684	-3.480752	1.0	2500m + 100M
CI ECS FP67	-166.708130	-3.464959	1.0	2500m + 100M
CI ECS FP68	-166.702423	-3.449223	1.0	2500m + 100M
CI ECS FP69	-166.696564	-3.433545	1.0	2500m + 100M
CI_ECS_FP70	-166.690552	-3.417926	1.0	2500m + 100M
CI_ECS_FP71	-166.684372	-3.402369	1.0	2500m + 100M
CI ECS FP72	-166.678055	-3.386873	1.0	2500m + 100M
CI ECS FP73	-166.671570	-3.371442	1.0	2500m + 100M
CI_ECS_FP74	-166.664932	-3.356079	1.0	2500m + 100M
CI ECS FP75	-166.658142	-3.340781	1.0	2500m + 100M
CI_ECS_FP76	-166.651215	-3.325553	1.0	2500m + 100M
CI_ECS_FP76	-166.644119		1.0	2500m + 100M
CI_ECS_FP77		-3.310394		
U_EU3_FF/0	-166.637085	-3.295211	1.0	2500m + 100M

	400.000000		1.0	0500 40014
CI_ECS_FP79	-166.629898	-3.280099	1.0	2500m + 100M
CI_ECS_FP80	-166.622559	-3.265059	1.0	2500m + 100M
CI_ECS_FP81	-166.615082	-3.250096	1.0	2500m + 100M
CI_ECS_FP82	-166.607452	-3.235207	1.0	2500m + 100M
CI_ECS_FP83	-166.599670	-3.220397	1.0	2500m + 100M
CI_ECS_FP84	-166.591736	-3.205664	1.0	2500m + 100M
CI_ECS_FP85	-166.583664	-3.191014	1.0	2500m + 100M
CI_ECS_FP86	-166.575455	-3.176442	1.0	2500m + 100M
CI_ECS_FP87	-166.567093	-3.161956	1.0	2500m + 100M
CI_ECS_FP88	-166.558578	-3.147554	1.0	2500m + 100M
CI_ECS_FP89	-166.549942	-3.133237	1.0	2500m + 100M
CI_ECS_FP90	-166.541153	-3.119008	1.0	2500m + 100M
CI_ECS_FP91	-166.532211	-3.104869	1.0	2500m + 100M
CI_ECS_FP92	-166.523148	-3.090820	1.0	2500m + 100M
CI ECS FP93	-166.513931	-3.076863	1.0	2500m + 100M
CI_ECS_FP94	-166.504593	-3.062997	1.0	2500m + 100M
CI ECS FP95	-166.495102	-3.049230	1.0	2500m + 100M
CI ECS FP96	-166.485489	-3.035555	1.0	2500m + 100M
CI_ECS_FP97	-166.475723	-3.021979	1.0	2500m + 100M
CI ECS FP98	-166.465836	-3.008500	1.0	2500m + 100M
CI_ECS_FP99	-166.455811	-2.995121	1.0	2500m + 100M
CI_ECS_FP100	-166.445663	-2.981845	1.0	2500m + 100M
CI ECS FP101	-166.435364	-2.968673	1.0	2500m + 100M
CI ECS FP102		-2.955602	1.0	2500m + 100M
CI ECS FP103	-166.414398	-2.942637	1.0	2500m + 100M
CI ECS FP104		-2.929778	1.0	2500m + 100M
CI_ECS_FP105	-166.392929	-2.917027	1.0	2500m + 100M
CI_ECS_FP106	-166.382004	-2.904387	1.0	2500m + 100M
CI ECS FP107	-166.370941	-2.891855	1.0	2500m + 100M
CI ECS FP108	-166.359772	-2.879436	1.0	2500m + 100M
CI ECS FP109		-2.867130	1.0	2500m + 100M
CI ECS FP110	-166.337051	-2.854939	1.0	2500m + 100M
CI_ECS_FP111	-166.325500	-2.842860	1.0	2500m + 100M
CI_ECS_FP112	-166.313843	-2.830901	1.0	2500m + 100M
CI ECS FP113	-166.302063	-2.819057	1.0	2500m + 100M
CI_ECS_FP114	-166.290176	-2.807333	1.0	2500m + 100M
CI ECS FP115	-166.278168	-2.795730	1.0	2500m + 100M
CI ECS FP116				2500m + 100M
CI_ECS_FP116	-166.266037 -166.253799	<u>-2.784247</u> -2.772888	<u>1.0</u> 1.0	2500m + 100M
CI_ECS_FP117 CI_ECS_FP118	-166.253799		1.0	2500m + 100M
		-2.761652		
CLECS_FP119	-166.228989	-2.750539	1.0	2500m + 100M
CI_ECS_FP120	-166.216415	-2.739552	1.0	2500m + 100M
CI_ECS_FP121	-166.203735	-2.728692	1.0	2500m + 100M
CI_ECS_FP122	-166.190948	-2.717960	1.0	2500m + 100M
CI_ECS_FP123	-166.178055	-2.707357	1.0	2500m + 100M
CI_ECS_FP124	-166.165054	-2.696885	1.0	2500m + 100M

CI_ECS_FP125	-166.151947	-2.686542	1.0	2500m + 100M
CI ECS FP126	-166.138748	-2.676333	1.0	2500m + 100M
CI_ECS_FP127		-2.666256	1.0	2500m + 100M
CI ECS FP128	-166.112045	-2.656315	1.0	2500m + 100M
CI_ECS_FP129	-166.098541	-2.646506	1.0	2500m + 100M
CI ECS FP130	-166.084946	-2.636835	1.0	2500m + 100M
CI_ECS_FP131	-166.071259	-2.627300	1.0	2500m + 100M
CI ECS FP132	-166.057465	-2.617904		2500m + 100M
CI_ECS_FP132	-166.043579		1.0	
CI_ECS_FP133		-2.608647 -2.599529	1.0	2500m + 100M 2500m + 100M
			1.0	
CI_ECS_FP135	-166.015549	-2.590553	1.0	2500m + 100M
CI_ECS_FP136	-166.001404	-2.581718	1.0	2500m + 100M
CI_ECS_FP137	-165.987167	-2.573024	1.0	2500m + 100M
CI_ECS_FP138	-165.651077	-2.357871	23.9	2500m + 100M
CI_ECS_FP139	-165.637070	-2.348824	1.0	2500m + 100M
CI_ECS_FP140	-165.622971	-2.339914	1.0	2500m + 100M
CI_ECS_FP141		-2.331149	1.0	2500m + 100M
CI_ECS_FP142	-165.594498	-2.322527	1.0	2500m + 100M
CI_ECS_FP143	-165.580139	-2.314049	1.0	2500m + 100M
CI_ECS_FP144	-165.565704	-2.305715	1.0	2500m + 100M
CI_ECS_FP145	-165.551178	-2.297526	1.0	2500m + 100M
CI_ECS_FP146	-165.536575	-2.289483	1.0	2500m + 100M
CI_ECS_FP147	-165.521881	-2.281590	1.0	2500m + 100M
CI_ECS_FP148	-165.507126	-2.273844	1.0	2500m + 100M
CI_ECS_FP149	-165.492279	-2.266244	1.0	2500m + 100M
CI_ECS_FP150	-165.477371	-2.258795	1.0	2500m + 100M
CI_ECS_FP151	-165.462387	-2.251496	1.0	2500m + 100M
CI_ECS_FP152	-165.447327	-2.244348	1.0	2500m + 100M
CI_ECS_FP153	-165.432205	-2.237351	1.0	2500m + 100M
CI_ECS_FP154	-165.417007	-2.230508	1.0	2500m + 100M
CI_ECS_FP155	-165.401749	-2.223817	1.0	2500m + 100M
CI_ECS_FP156	-165.386414	-2.217281	1.0	2500m + 100M
CI_ECS_FP157	-165.371017	-2.210896	1.0	2500m + 100M
CI_ECS_FP158	-165.355560	-2.204670	1.0	2500m + 100M
CI_ECS_FP159	-165.340042	-2.198597	1.0	2500m + 100M
CI_ECS_FP160	-165.324478	-2.192680	1.0	2500m + 100M
CI_ECS_FP161	-165.308838	-2.186921	1.0	2500m + 100M
CI_ECS_FP162	-165.293152	-2.181318	1.0	2500m + 100M
CI_ECS_FP163	-165.277405	-2.175876	1.0	2500m + 100M
CI ECS FP164	-165.261612	-2.170589	1.0	2500m + 100M
CI_ECS_FP165	-165.245758	-2.165463	1.0	2500m + 100M
CI_ECS_FP166	-165.229858	-2.160497	1.0	2500m + 100M
CI_ECS_FP167	-165.213913	-2.155689	1.0	2500m + 100M
CI ECS FP168	-165.211121	-2.154880	0.2	FOS + 60M
CI_ECS_FP169	-165.195755	-2.164812	1.1	FOS + 60M
CI_ECS_FP170	-165.181900	-2.174120	1.0	FOS + 60M
	103.101300	2.177120	1.0	

CI ECS FP171	-165.168213	-2.183654	1.0	FOS + 60M
CI ECS FP172		-2.193419	1.0	
CI ECS FP173		-2.293346	11.0	FOS + 60M
CI_ECS_FP174		-2.302317	1.0	FOS + 60M
CI ECS FP175				
		-2.311523	1.0	FOS + 60M
CI_ECS_FP176		-2.320961	1.0	FOS + 60M
CI_ECS_FP177		-2.330630	1.0	FOS + 60M
CI_ECS_FP178		-2.340522	1.0	FOS + 60M
CI_ECS_FP179		-2.350640	1.0	FOS + 60M
CI_ECS_FP180		-2.607581	31.7	FOS + 60M
CI_ECS_FP181		-2.712581	30.2	FOS + 60M
CI_ECS_FP182		-2.797306	35.5	FOS + 60M
CI_ECS_FP183		-3.390193	59.0	2500m + 100M
CI_ECS_FP184		-3.396456	1.0	2500m + 100M
CI_ECS_FP185		-3.402874	1.0	2500m + 100M
CI_ECS_FP186		-3.409446	1.0	2500m + 100M
CI_ECS_FP187	-162.534042	-3.416172	1.0	2500m + 100M
CI_ECS_FP188	-162.518845	-3.423051	1.0	2500m + 100M
CI_ECS_FP189	-162.503723	-3.430083	1.0	2500m + 100M
CI_ECS_FP190	-162.488663	-3.437264	1.0	2500m + 100M
CI_ECS_FP191	-162.473679	-3.444597	1.0	2500m + 100M
CI_ECS_FP192	-162.458771	-3.452080	1.0	2500m + 100M
CI_ECS_FP193	-162.443924	-3.459713	1.0	2500m + 100M
CI_ECS_FP194	-162.429169	-3.467491	1.0	2500m + 100M
CI_ECS_FP195	-162.414490	-3.475419	1.0	2500m + 100M
CI_ECS_FP196	-162.399887	-3.483496	1.0	2500m + 100M
CI_ECS_FP197	-162.385361	-3.491715	1.0	2500m + 100M
CI_ECS_FP198	-162.370926	-3.500082	1.0	2500m + 100M
CI_ECS_FP199	-162.356567	-3.508592	1.0	2500m + 100M
CI_ECS_FP200	-162.342300	-3.517246	1.0	2500m + 100M
CI_ECS_FP201	-162.328110	-3.526043	1.0	2500m + 100M
CI_ECS_FP202	-162.314026	-3.534983	1.0	2500m + 100M
CI_ECS_FP203	-162.300018	-3.544061	1.0	2500m + 100M
CI_ECS_FP204	-162.286102	-3.553282	1.0	2500m + 100M
CI_ECS_FP205	-162.272278	-3.562639	1.0	2500m + 100M
CI_ECS_FP206	-162.258545	-3.572137	1.0	2500m + 100M
CI_ECS_FP207	-162.244904	-3.581772	1.0	2500m + 100M
CI_ECS_FP208	-162.231369	-3.591542	1.0	2500m + 100M
CI ECS FP209	-162.217926	-3.601448	1.0	2500m + 100M
CI ECS FP210	-162.204590	-3.611489	1.0	2500m + 100M
CI_ECS_FP211	-162.191345	-3.621660	1.0	2500m + 100M
CI_ECS_FP212	-162.178207	-3.631968	1.0	2500m + 100M
CI_ECS_FP213	-162.165161	-3.642405	1.0	2500m + 100M
CI_ECS_FP213				
	-162.152237	-3.652971	1.0	2500m + 100M
CI_ECS_FP215	-162.139404	-3.663668	1.0	2500m + 100M
CI_ECS_FP216	-162.126678	-3.674494	1.0	2500m + 100M

CI_ECS_FP217	-162.114075	-3.685445	1.0	2500m + 100M	
CI_ECS_FP218	-162.101562	-3.696523	1.0	2500m + 100M	
CI_ECS_FP219	-162.089172	-3.707725	1.0	2500m + 100M	
CI_ECS_FP220	-161.116226	-3.923731	59.8	350M Constraint	
CI_ECS_FP221	-161.101990	-3.915020	1.0	350M Constraint	
CI_ECS_FP222	-161.087723	-3.906347	1.0	350M Constraint	
CI_ECS_FP223	-161.073425	-3.897717	1.0	350M Constraint	
CI_ECS_FP224	-161.059113	-3.889127	1.0	350M Constraint	
CI_ECS_FP225	-161.044769	-3.880579	1.0	350M Constraint	
CI_ECS_FP226	-161.030411	-3.872070	1.0	350M Constraint	
CI_ECS_FP227	-161.016022	-3.863602	1.0	350M Constraint	
CI_ECS_FP228	-161.001617	-3.855177	1.0	350M Constraint	
CI_ECS_FP229	-160.987183	-3.846792	1.0	350M Constraint	
CI_ECS_FP230	-160.972717	-3.838449	1.0	350M Constraint	
CI_ECS_FP231	-160.958237	-3.830145	1.0	350M Constraint	
CI_ECS_FP232	-160.943741	-3.821882	1.0	350M Constraint	
CI_ECS_FP233	-160.929214	-3.813662	1.0	350M Constraint	
CI_ECS_FP234	-160.914658	-3.805482	1.0	350M Constraint	
CI_ECS_FP235	-160.900085	-3.797343	1.0	350M Constraint	
CI_ECS_FP236	-160.885498	-3.789246	1.0	350M Constraint	
CI_ECS_FP237	-160.870865	-3.781190	1.0	350M Constraint	
CI_ECS_FP238	-160.856232	-3.773177	1.0	350M Constraint	
CI_ECS_FP239	-160.841568	-3.765204	1.0	350M Constraint	
CI_ECS_FP240	-160.826889	-3.757275	1.0	350M Constraint	
CI_ECS_FP241	-160.812180	-3.749385	1.0	350M Constraint	
CI_ECS_FP242	-160.797455	-3.741537	1.0	350M Constraint	
CI_ECS_FP243	-160.782700	-3.733733	1.0	350M Constraint	
CI_ECS_FP244	-160.767929	-3.725968	1.0	350M Constraint	
CI_ECS_FP245	-160.753128	-3.718247	1.0	350M Constraint	
CI_ECS_FP246	-160.738312	-3.710567	1.0	350M Constraint	
CI_ECS_FP247	-160.723480	-3.702930	1.0	350M Constraint	
CI_ECS_FP248	-160.708618	-3.695336	1.0	350M Constraint	
CI_ECS_FP249	-160.693741	-3.687785	1.0	350M Constraint	
CI_ECS_FP250	-160.678848	-3.680272	1.0	350M Constraint	
CI_ECS_FP251	-160.669357	-3.675528	0.6	Other State 200M	
EASTERN OUTER LIMIT LINE					
CI_ECS_FP252	-159.790665	-3.727906	0.0	Other State 200M	
CI_ECS_FP253	-159.783295	-3.745956	1.2	FOS + 60M	
CI_ECS_FP254	-159.777267	-3.761572	1.0	FOS + 60M	
CI_ECS_FP255	-159.771500	-3.777287	1.0	FOS + 60M	
CI_ECS_FP256	-159.765991	-3.793097	1.0	FOS + 60M	

FOS + 60M

1.0 FOS + 60M

1.0 FOS + 60M

1.0

-3.808994

-3.824977

-3.841043

CI_ECS_FP257

CI_ECS_FP258

CI_ECS_FP259 -159.751053

-159.760742

-159.755768

	450 740507	2 057405	1.0	
CI_ECS_FP260		-3.857185	1.0	FOS + 60M
CI_ECS_FP261	-159.742432	-3.873399	1.0	FOS + 60M
CI_ECS_FP262	-159.738510	-3.889680	1.0	FOS + 60M
CI_ECS_FP263	-159.734879	-3.906024	1.0	FOS + 60M
CI_ECS_FP264	-159.731506	-3.922427	1.0	FOS + 60M
CI_ECS_FP265	-159.728409	-3.938886	1.0	FOS + 60M
CI_ECS_FP266	-159.725586	-3.955394	1.0	FOS + 60M
CI_ECS_FP267	-159.723038	-3.971944	1.0	FOS + 60M
CI_ECS_FP268	-159.720764	-3.988537	1.0	FOS + 60M
CI_ECS_FP269	-159.718765	-4.005166	1.0	FOS + 60M
CI_ECS_FP270	-159.717056	-4.021823	1.0	FOS + 60M
CI_ECS_FP271	-159.715607	-4.038508	1.0	FOS + 60M
CI_ECS_FP272	-159.714432	-4.055217	1.0	FOS + 60M
CI ECS FP273	-159.713547	-4.071941	1.0	FOS + 60M
CI ECS FP274	-159.712936	-4.088678	1.0	FOS + 60M
CI ECS FP275	-159.712601	-4.105422	1.0	FOS + 60M
CI ECS FP276	-159,712540	-4.122170	1.0	FOS + 60M
CI_ECS_FP277		-4.138918	1.0	FOS + 60M
CI_ECS_FP278		-4.155659	1.0	FOS + 60M
CI ECS FP279		-4.172390	1.0	FOS + 60M
CI_ECS_FP280		-4.189103	1.0	FOS + 60M
CI_ECS_FP281	-159.716431	-4.205799	1.0	FOS + 60M
CI ECS FP282	-159.718033	-4.222468	1.0	FOS + 60M
CI_ECS_FP283		-4.239110	1.0	FOS + 60M
CI_ECS_FP284		-4.255718	1.0	FOS + 60M
CI ECS FP285	-159.724518	-4.272287	1.0	FOS + 60M
CI_ECS_FP286	-159.727234	-4.288813	1.0	FOS + 60M
CI_ECS_FP287	-159.730209	-4.305288	1.0	FOS + 60M
CI ECS FP288		-4.321714	1.0	FOS + 60M
CI ECS FP289	-159.737000	-4.338085	1.0	FOS + 60M
CI_ECS_FP290		-4.354391	1.0	
CI ECS FP291	-159.744873	-4.370633	1.0	FOS + 60M
CI_ECS_FP292	-159.749222	-4.386805	1.0	FOS + 60M
CI_ECS_FP293	-159.753830	-4.402900	1.0	FOS + 60M
CI ECS FP294	-159.758713	-4.418918	1.0	FOS + 60M
CI_ECS_FP295	-159.763855	-4.434850	1.0	FOS + 60M
CI_ECS_FP296	-159.769257	-4.450696	1.0	FOS + 60M
CI_ECS_FP297	-159.774933	-4.466446	1.0	FOS + 60M
CI ECS FP298			1.0	FOS + 60M
CI_ECS_FP298	-159.780853 -159.787048	-4.482102 -4.497656	1.0	FOS + 60M
CI_ECS_FP299 CI_ECS_FP300	-159.787048	-4.513104		FOS + 60M
CI_ECS_FP300			1.0	
	-159.800201	-4.528441	1.0	FOS + 60M
CI_ECS_FP302	-159.807159	-4.543665	1.0	FOS + 60M
CI_ECS_FP303	-159.814362	-4.558772	1.0	FOS + 60M
CI_ECS_FP304	-159.821823	-4.573754	1.0	FOS + 60M
CI_ECS_FP305	-160.179764	-5.465560	57.4	FOS + 60M

CKI-ES-DOC-ANNEX 1