

Practical Issues Resulting From Having Different Energy Performance Test Standards For Domestic Refrigerators

Pradeep Bansal

Department of Mechanical Engineering The University of Auckland NEW ZEALAND Fisher & Payke

Overview

An ideal test standard

- Lessons Learned from R&D Efforts at The University of Auckland
- Issues and difficulties with current test standards
- Ideas of how they can be "rectified"?
- Future work to be done...

An IDEAL Test Standard ...

- Three Features (?)
 - Repeatable door openings
 - Reproducible same result in other labs,
 - Inexpensive

 $E_{lab} \approx E_{in-field}$

- Results applicable to different climates/users
- Consumer can make cost effective decisions
- Possible to forecast electricity demand
- Encourages product "innovation" and "free trade"

Current Test Standards...

- Energy consumption results differ from one standard to another due to --
 - different test ambient temperatures and relative humidities
 - compartment internal air temperatures
 - food loading
 - door openings
- Unfair comparisons of refrigerators from different regions by media
- Current test procedures have major weaknesses...
- Systematic comparisons between different test standards - currently no conversion algorithms!

Test Standards and Their Differences

General testing requirements for various test standards

Cabinet Type	Parameters	AS/NZS	ISO	ANSI	JIS [#]	CNS
Testing Parameters	Ambient (T _A -°C)	<i>32±0.5°</i>	25±0.5°	<i>32.2±0.6</i> °	<i>15/30±1°</i>	30±1°
	Relative Humidity	-	45 - 75 %	-	75±5%	75±5%
	Door Openings	No	No	No	Yes	No
All – Deficience to r	Fresh-Food	3 ±0.5°	5°	3.3 °	3±0.5 °	3 ±0.5°
Reirigerator	(T _{FF} - °C)					
Refrigerator - Freezer	Fresh-Food (°C)	3 ±0.5°	5°	<i>7.2</i> °	3±0.5°	-
	Freezer (°C)	-15±0.5°	-18°	-15°	-18±0.5°	-18±0.5°
Freezers	Freezer (T _{FR})	-15±0.5°C	-18 °C	-17.8 °C	-18±0.5°C	<i>-18±0.5</i> °
Energy		Lesser of	≥24 h	3h <t <24h<="" td=""><td>= 24 h of</td><td>= 24 h of</td></t>	= 24 h of	= 24 h of
Measurement		1 kWh or		2 or more	testing	testing
Period		16h		cycles		
		operation				

73% of the consumption is weighted at an ambient of 15°C and 27% at 30°C.

R&D Efforts at the University of Auckland ...

- Effect of different variables on Energy Consumption
- Cabinets were divided into two sets to assess-
 - ? reliability and repeatability of test data
 - ? variability in energy consumption in the same model by the same manufacturer

Tested models and their reference numbers

Cabinets	Set 1	Set 2	Features
All-	C190_1	C190_2	Frost-free
Refrigerators	C270_1	C270_2	Frost-free
	C370_1	C370_2	Frost-free
Refrigerator-	N169_1	N169_2	46+108 L
Freezers	N249_1	N249_2	46+181 L
	N375_1	N375_2	85+278 L

niversity Aucklan

General Testing Requirements

Cabinets	Testing	AS/NZS	ISO	Variation (AS/NZS)		
	Parameters			I	П	Ш
	Ambient (T _A)	32±0.5 °C	25 ±0.5 °C	32±1 °C	25 ±1 °C	10 ±1 °C
	Relative	-	45 -75 %	40 -	40 -	40 -
	Humidity			80±5%	80±5%	80±5%
All-	Fresh-Food (T _{FF})	3 ±0.5 °C	5 °C	3 ±0.5 °C	3 ±0.5 °C	3 ±0.5 °C
Refrigerator	Door Openings	No	No	No	No	No
	ΔΤ (T _A – Τ _{FF})	29°C	20°C	29°C	22°C	7°C
Refrigerator	Freezer (T _{RF})	≤-15°C	≤-18°C	≤- 15°C	≤ - 15°C	≤ - 15°C
- Freezer	Door Openings	No	No	No	YES ^{\$}	No
	$\Delta T (T_A - T_{FR})$	>47°C	>43°C	>47°C	>40°C	>35°C

^{\$} Two door-opening schemes were used for refrigerator-freezers as discussed.

Testing Scheme For R/Fs

Refrigerator-Freezers

- ? ISO: food packs in freezer but no door openings
- ? JIS: No food loads but door openings of both the compartments
- ? Current approach: load both the compartments and test with door openings of both the compartments

- Test empty cabinets with "no" door openings at AS/NZS 25/3°C
- Food packs in freezer but empty food compartment and test at AS/NZS 25/3°C
- Food packs in freezer + water bottles (~22% volume) in food compartment and test at AS/NZS 25/3°C
- Both compartments loaded + door openings as per JIS, and
- Both compartments loaded BUT with *Real* door openings scheme.

Door Opening Schemes

The University of Auckland

Door Opening for the Japanese Industrial Standard

Туре		Rate	No. of Openings	Opening Time
All- Refrigerator		Every 12 Min	50	10 s [#]
Refrigerator -Freezer	Fresh-Food Compartment	every 12 Min	50	10 s [#]
	Freezer Compartment	every 40 Min	15	10 s #
Freezer		every 40 Min	15	10 s [#]

[#]The doors were fully opened at 90° for 10 s (during first 10 hours of testing).

Real Door Opening Scheme for AS/NZS

Times during	Time period	Door Openings		Total Openings	
The day ^{\$}		F. Food	Freezer	F. Food	Freezer
Breakfast	0 – 2 hours	10 min.	40 min.	12	3
Morning	2 – 4 hours	20 min.	60 min.	6	2
Lunch	4 – 6 hours	15 min.	60 min.	8	2
Afternoon	6 – 8 hours	20 min.	60 min.	6	2
Dinner	8 – 11 hours	10 min.	40 min.	18	4
Evening	11 – 14 hours	12 min.	40 min.	15	4
Total	Openings	in 24	Hours	65	17

The doors were fully open for 10 s and testing was done for at least 24 hours.

R/Fs(1) - ANZS Vs. ISO

The University of Auckland

AS/NZS Vs. ISO

- For N169_2 and N375_2; AS/NZS 32/3° is 19% and 24% higher than AS/NZS 25/3° and ISO 25/5°
- ISO 25/5° is about 6% lower than AS/NZS 25/3°

Cabinet Size

 For AS/NZS 32/3°, energy increases by 10% and 28% as size increases from 154 to 227L; and from 227 to 363 L respectively.

R/Fs(2)- Ambient Temp.

Ambient Temperature

- Relative humidity=60%
- Energy consumption increases by
 - 40% as T ? from 10° to 25°C
 - 20% as T ? from 25° to 32°C
 - 50% as T ? from 10° to 32°C
 - these variations are very similar to all-refrigerators

R/Fs(3)- Relative Humidity

Energy Consumption increases by less than 5% with RH.

R/Fs(4) - Door Openings

EC for N169_2

- *Real DO* > JIS by 6.5%
- Real DO > AS/NZS 25/3° (food packs and bottles) by 10.5%
- Real DO < AS/NZS 32/3° (closed door; no food) 16%
- Meier ~ 15% in USA

• EECA ~ 25% in NZ

Re-capping

- Refrigerator/Freezers
 - EC in Real DO is about 7% more than JIS,
 - EC in ANZS32/3° is 24% and 20% more than ISO 25/5° & AS/NZS 25/3°,
 - EC in AS/NZS 32/3° is about 15% more than Real DO at AS/NZS 25/3°,
 - EC in AS/NZS 32/3° is about 25% (in NZ) and 10% (in Australia) more than in-field use energy.

Auckland

Issues With Current Test Standards (1)

Current Test Procedures are Obsolete!

- Can't accommodate "smart" advancements in refrigerator technology e.g.
 - » microprocessor controllers,
 - » variable speed compressors,
 - » adaptive defrost heaters etc.
- Microprocessors may command R/Fs to operate through Internet and/or at night for demand side management!
- New generation test procedures are required, which MUST capture both the hardware and software performance - Alan Meier (Berkley)

Issue (2): Externalities

- Separate testing of export models
 - Expensive and time consuming
- Hypothesis that "European Union" R/Fs are more efficient than locals or others?
 - Quite the contrary (!) because EC of a R/F in AS/NZS or ANSI is about 20% more than ISO because
 - AS/NZS or ANSI are more "stringent" standards
 - External heat load is much higher, so that the cabinet is more efficient to meet those specifications.
- Imported model may NOT work in Darwin due to high ambient conditions as opposed to ISO's temperate classification?!

Issues (3): Algorithms

Actual Performance

- Don't help the consumer-
 - » Either to make cost effective decisions to buy a product,
 - » or make electricity demand forecasts, because

$$E_{label} \neq E_{in-field}$$

- Urgent need to develop Conversion Algorithms to
 - Avoid "cost and time" intensive testing on every model,
 - Facilitate 'free trade' among various economies,
 - Assess R/F performance under different in-service conditions,
 - Help consumer to make 'cost' and 'performance' effective decisions,
 - Enable electricity demand forecasts

Issue (4): Refrigerants

- It is claimed that HCs (iso-butane) are not necessarily better than R134a at low evaporating temperatures but are better at high temperatures
 - This means that a cabinet (using iso-butane) may consistently perform better in ISO than AS/NZS or ANSI
 - » less heat load
 - » high evaporating temperature
 - This raises two issues-
 - » Energy Consumptions would be specific to the refrigerant used,
 - » Energy consumption conversion from one standard to another may be difficult using "traditional" approaches.
 - Specific conversion algorithms may need to be developed.

uckland

Issue (5): Harmonisation of Test Standards

Compartment Temperatures: Most Standards use

- » -18°C for the freezer except AS/NZS (-15°C)
- » 3°C for the food compartment except ANSI and ISO (5°C)
- » All standards should use -18°C (freezer) and 3°C (fresh food).
- Food Packs In Frost Free R/Fs In ISO-
 - » Unstable conditions, especially with frequent defrosts (~10 h apart!)
 - » "warmest" food pack temperature for energy calculation-
 - leads to freezer running a lot colder (~ -22°C)
 - » Two recommendations-
 - Freezer should be tested unloaded, and
 - "Average" temperature of -18°C should be used to be consistent with other standards

Issue (6): Ambient Temperature And Door Openings

The University of Auckland

- Most standards specify a "static" test at a single ambient temperature with 'doors' closed
 - "unsatisfactory results" because-
 - » high ambients (in AS/NZS or ANSI) crudely compensate for door opening loads since kitchens rarely exceed 20°C,
 - » This compensation is less realistic as cabinet insulation is improved -
 - well insulated cabinets that perform well in AS/NZS would be less impressive in the "real world" use,
 - slope of EC Vs T_{ambient} differ for each model type,
 - cabinets optimised around a "static" point may be less impressive at other ambients,
 - » door openings have poor repeatability and are expensive.
 - Therefore, a new standard should be evolved that has the realism of JIS (with door openings) PLUS the simplicity of AS/NZS.

A Generic Approach

Total Energy Consumption

Testing Approach

- Total of 48 Energy Consumption Tests
- Extrapolate results for lower ambients (say 20°C).

Experimental Setup

The University of Auckland

Resistance Heater

Effect of Testing Variables

Annual Energy Consumption for Various Parameters

• EC is about 25% higher at 32°C.

• EC increased by about 7.5% with every 10W additional heat load.

• EC with (10W + moisture) = EC with (20W).

Effect of Testing Variables

Annual Energy Consumption with Various Parameters

Future Direction ...

- Closed door tests at lower ambients with additional heat load are demonstrated to be very useful for MEPS
- R&D is required to
 - Formulate a test procedure that is simple, repeatable, reproducible and inexpensive,
 - Design closed door tests that can yield energy consumption a true representative of the in-field data (as shown here)
 - Develop EC Vs T_{ambient} profiles for different cabinet models
 - Develop Energy Consumption Algorithms
- New standard is needed with the realism of *Real door* openings of the JIS plus the simplicity of AS/NZS
 - Harmonised standards for reasons of free trade,
 - New standards MUST capture both the hardware and software performance

Acknowledgments

The University of Auckland

- Gareth Jones
- R Kruger, O Stobbe, A Patel, C Ng, A Wong

• Fisher & Paykel Ltd.

- Lindsay Roke and Ian McGill

EECA

– David Cogan