
How to efficiently manage food production systems under water and land constraints

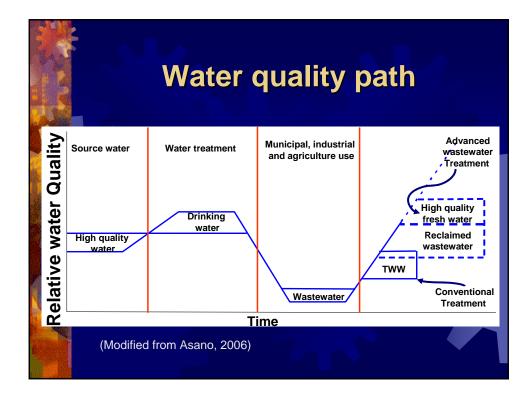
Learning Centre 16th Session of the Commission on Sustainable Development United Nations, New York May 2008

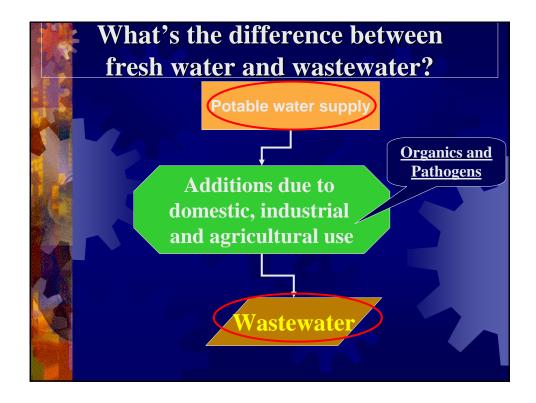
Dr. Jorge Tarchitzky Director – Soil and Irrigation Division National Advisor for Salinity and Effluent Water Irrigation

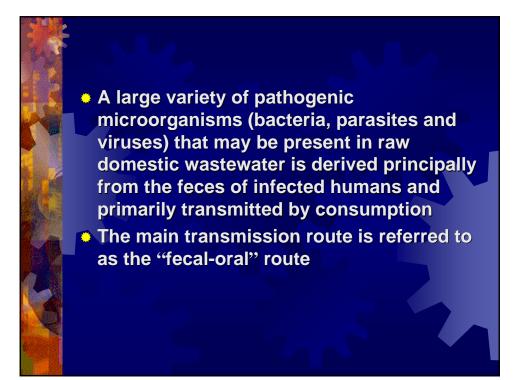
The Reasons for Purifying Wastewater

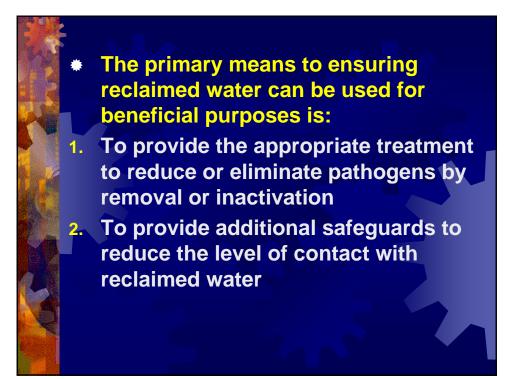
 Treated Wastewater (TWW) disposal through reuse prevents underground and surface water pollution

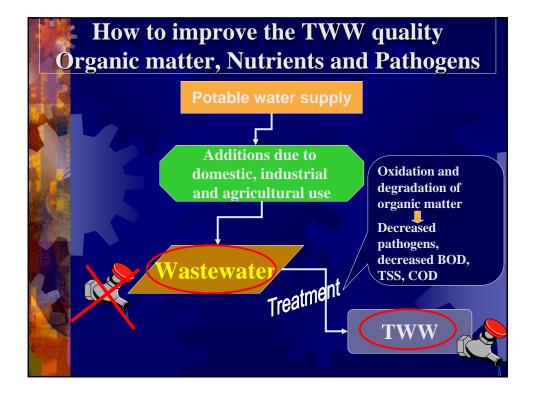
A win-win situation

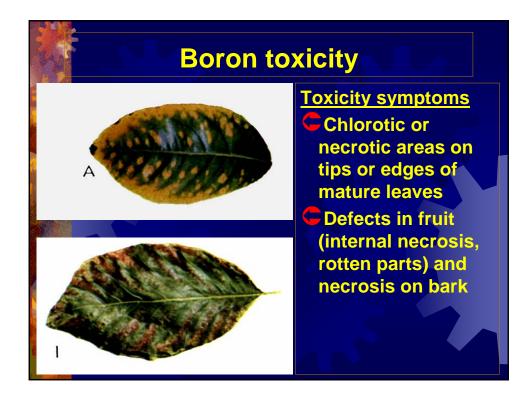

 TWW contribute a significant amount of water for all purposes (mainly agricultural), especially in water scarcity conditions

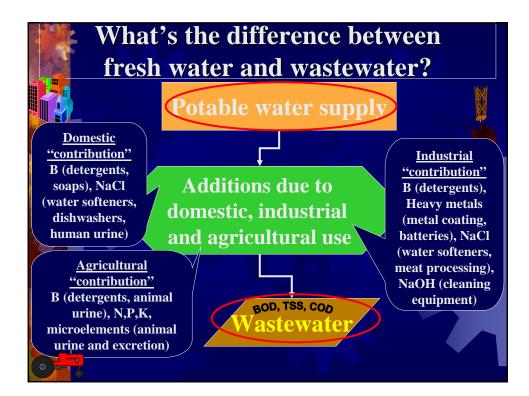


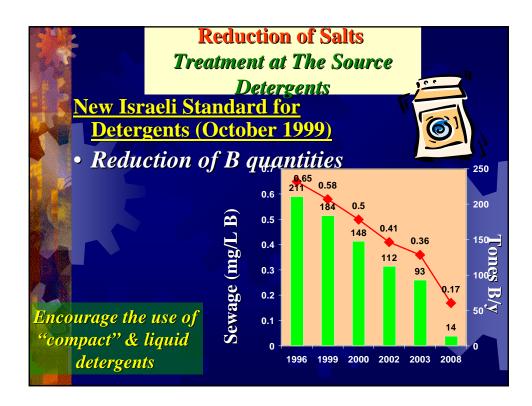



- Health considerations: to the people who eat the agricultural product and for the farmers who come in contact with the water
- TWW chemical quality : nutrients content and salinity parameters (total salt content, sodium, chloride, boron, heavy metals and SAR) in order to prevent land degradation and damage to crops
- TWW storage and distribution (environmental considerations)
- The irrigation system selected , filtration, monitoring, clogging potential









	Sewage and Effluent composition as a function of treatment degree (mg L ⁻¹)					
		Sewage	Primary	Secondary	Tertiary	
<u> </u>	BOD	100-350	70-220	10-40	1-3	
1	N Total	20-85	20-50	10-40	1-5	
	N-NO ₃	0-1.5	0-1.4	0-10	0	
	N-NH ₄	10-50	12-40	1-40	1-5	
	P Total	4-36	6-25	7-14	0-1	
1 A	Cl	+(40-300)	+(40-300)	+(40-300)	+(40-300)	
	Na	+(50-250)	+(50-250)	+(50-250)	+(50-250)	
	В	+(0.3-1.0)	+(0.3-1.0)	+(0.3-1.0)	+(0.3-1.0)	
	EC (dS/m)	+(0.5-1.0)	+(0.5-1.0)	+(0.5-1.0)	+(0.5-1.0)	
N.						

Reduction of SaltsTreatment at The SourceDetergents						
Contributio Sodium	<u>on of Detergen</u> 41%	ts to TWW				
Chloride Boron	7% 80-90%					
Boron	80-90%					

Boron excretion in wastewater from cowsheds					
Sample	Boron concentration (mg/kg)				
Urine	3.02				
Effluents – cowshed 1	0.96 4.69				
Effluents – cowshed 2					
Milk	6.51				
Humans and animals excrete 30-90% of all boron in food eaten Dairy cows excrete about 0.45 g of boron per					
day, about 57-71% of the boron from food					

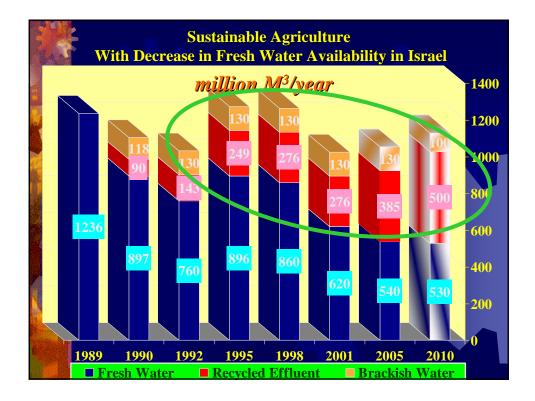
Organics, Nutrients & Pathogens					
Parameter	Units	Irrigation	Stream		
BOD	ррт	10	10		
TSS	ррт	10	10		
COD	ррт	100	70		
Fecal coliforms	MPN/100m	10	200		
Dissolved Oxygen	ppm	>0.5	>3		
Residual Chlorine	ррт	1	0.01		
Total Oil	ррт		1.0		
рН		6.5-8.5	7.0-8.5		
Total Nitrogen	ррт	25	10		
Ammonia	ррт	20	1.5		
Total phosphorus	ррт	5	0.2		
Treatment at the Waste Water Treatment Plant					

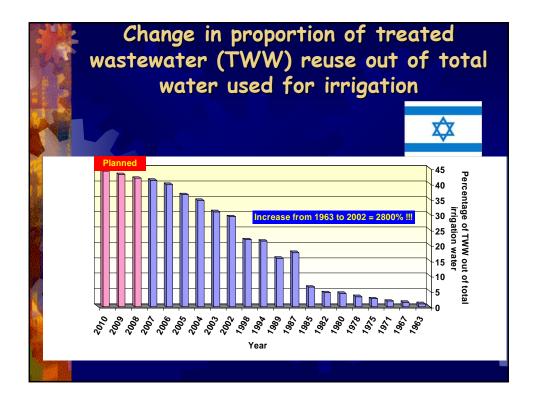
		Salts		
	Parameter	Units	Irrigation	Stream
	Electrical Conductivity	dS/m	1.4	
	SAR	(<i>mmol/L)</i> ^{0.5}	5	
10	Chloride	ррт	250	400
	Sodium	ррт	150	200
	Boron	ррт	0.4	
	Fluoride	Ррт	2	
2	Treatmen			
	Can't be trea	ated at	the WW	TP

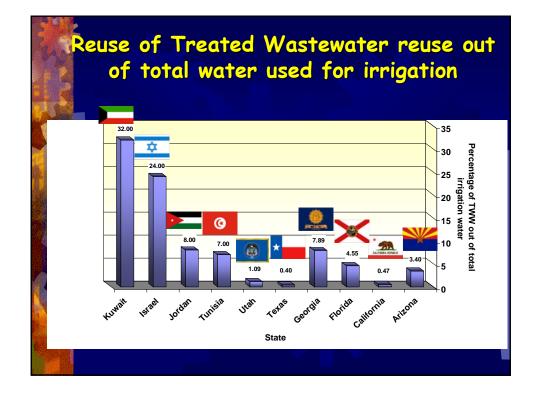
Parameter	Units	Irrigation	Stream
Arsenic	ррт	0.1	0.1
Barium	ррт		50
Mercury	ррт	0.002	0.0005
Chromium	ррт	0.1	0.05
Nickel	ррт	0.2	0.05
Selenium	ррт	0.02	
_ead	ррт	0.1	0.008
Cadmium	ррт	0.01	0.005
Zinc	ррт	2	0.2
ron	ррт	2	
Treatment at the Source			

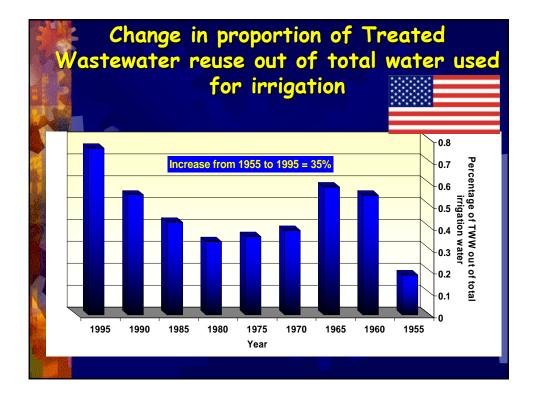
Research and Development

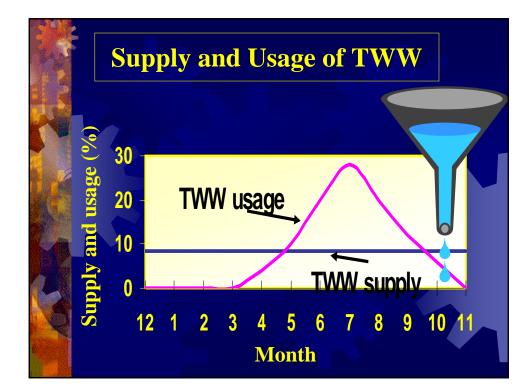
Enhancement of Research and Development on wastewater treatment and reuse – High priority :

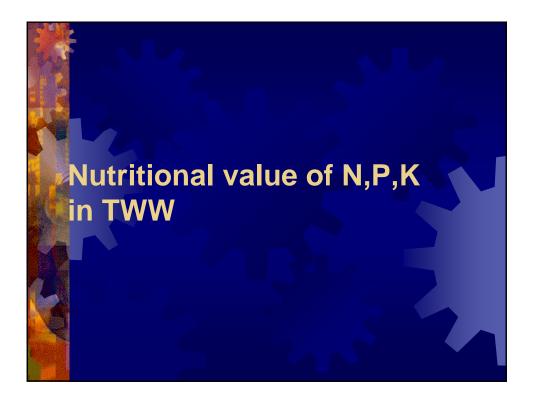

A special budget was budgeted by the Ministry of Agriculture Chief Scientist;

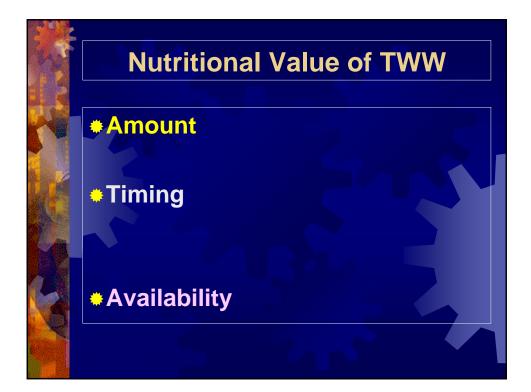

Wastewater influence on soil structure, water movement and hydrophobic conditions;

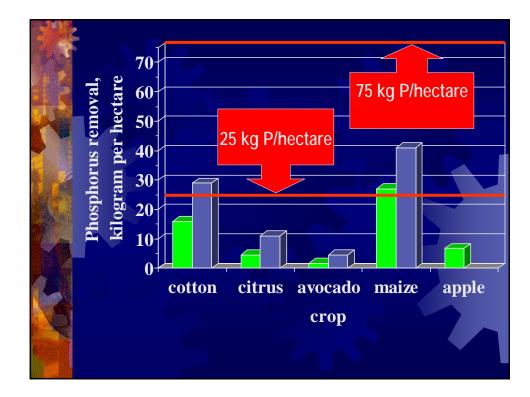

The reactions and movement of phosphorus in soils (Total phosphorus in in wastewater);

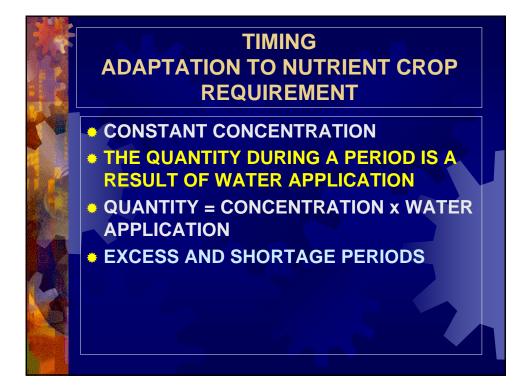

Adsorption, desorption of Boron in soils

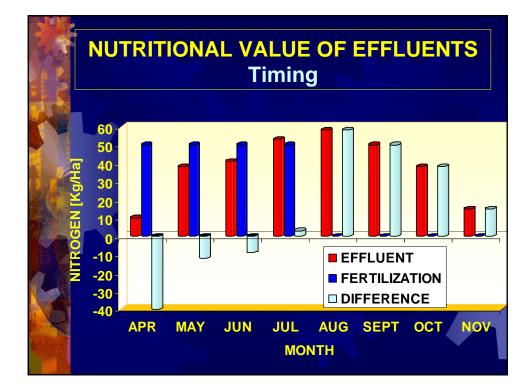












AMOUNTS OF AVAILABLE NUTRIENTS IN EFFLUENTS (Kg/Ha) (domestic sewage, secondary treatment)					
Irrigation Application (mm)	Ν	P ₂ O ₅	K ₂ O		
300	132	72	72		
500	220	120	120		
700	310	170	170		
(N= 50 ppm; P= 11 ppm; K= 20 ppm)					

Main findings – Nutritional value of N,P,K

N,P,K in effluent should be taken into account, according to their availability, and be part of the fertilization/fertigation program.
Timing and concentration can not be controlled (newly built plants can change N and P concentrations).

Take a Home Message

- TWW reclamation systems could be a solution for big metropolitan areas with intensive wastewater treatment plants, and big farms with advanced irrigation systems, as well as for family farms with extensive wastewater treatment plants and simple irrigation systems.
- Investment in TWW reclamation in agriculture means investment in health, sanitation and environment, obtaining a "new" water source and resulting in a winwin situation.

Take a Home Message

 However, since we deal here with a "new" water source, in order to use it successfully and in a sustainable manner, the circle of investment in research, technology, capacity building, extension and monitoring is needed.