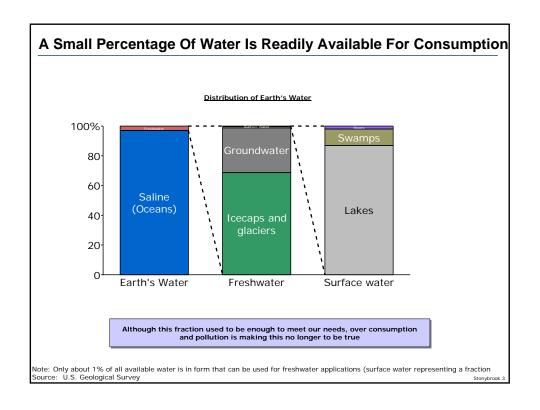
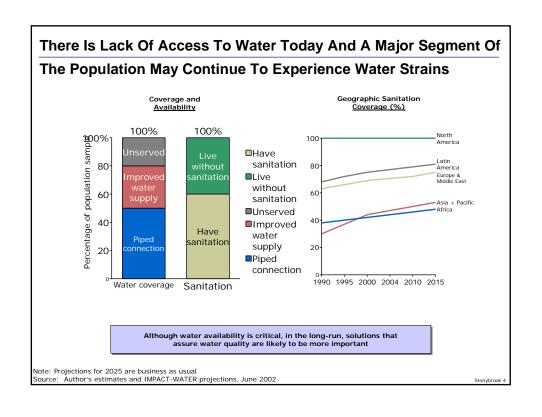
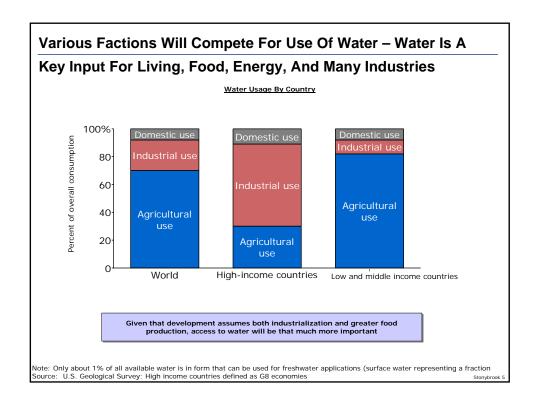
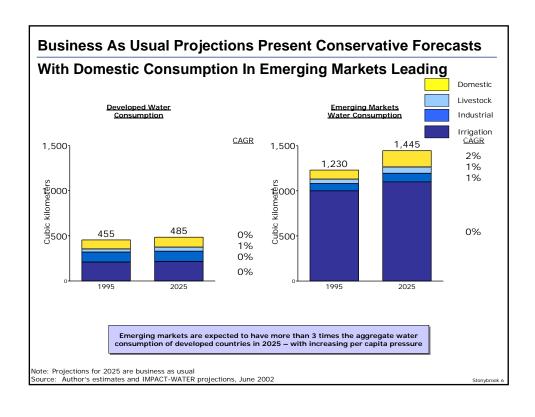
Water Market Analysis, Business Model, and Go-To-Market Perspectives

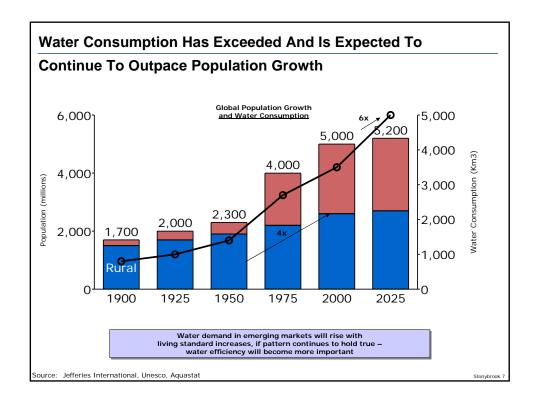
Board Meeting Presentation

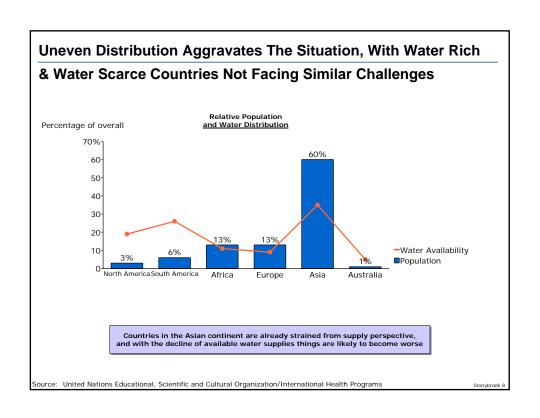

Thursday May 15th, 2008




Agenda


- Water Market Overview
- Value Capture Drivers
- Business Model Levers
- Working Recommendations
- Appendix


stonybrook 2



Infrastructure Investment And Upgrades Are Needed To Assure Both Water Quality And Quantity

Surface or well water contamination

- More and more of our sources of water are becoming polluted by contaminants (organic and inorganic)
- Reliable access to surface water is becoming difficult to secure with increased industrialization

Infrastructure failure or lack of delivery to point of use

- After delivery and storage, water often becomes too contaminated to use because of outdated infrastructure
- In emerging markets water consumption (for residential and industrial applications) is outpacing development, planned improvements, and expected new investments

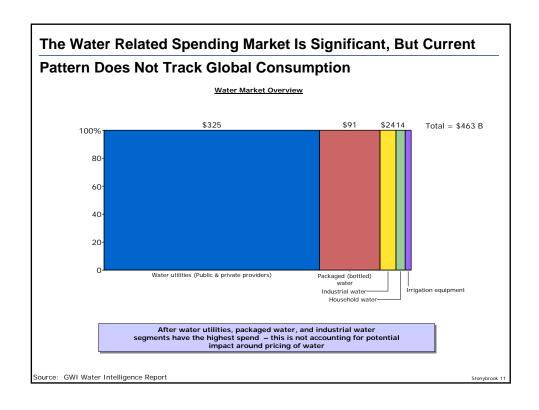
Waste water generation

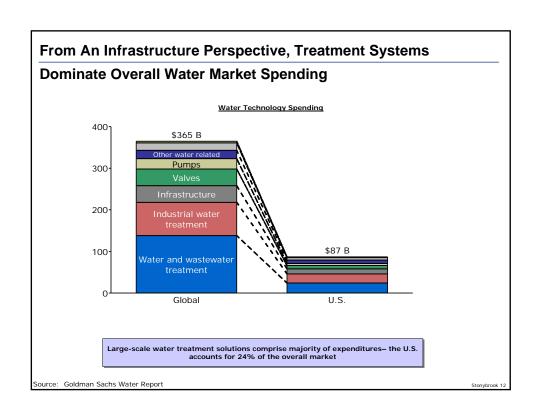
- In developing countries, 80% of all waste water is discharged
- In G8 Countries, wastewater is processed primarily to remove biological loads – not treating for more advanced contaminants

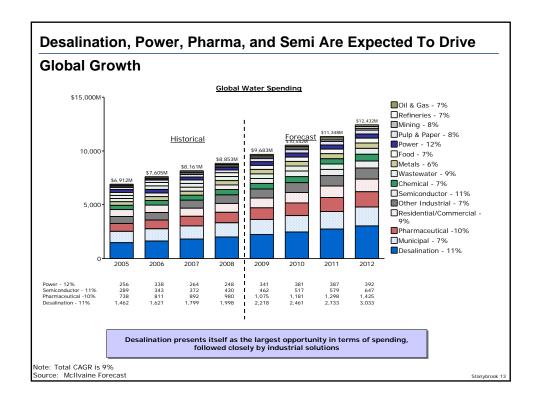
The above drivers together impact the water availability and quality profile of a specific regions, further guided through regulations

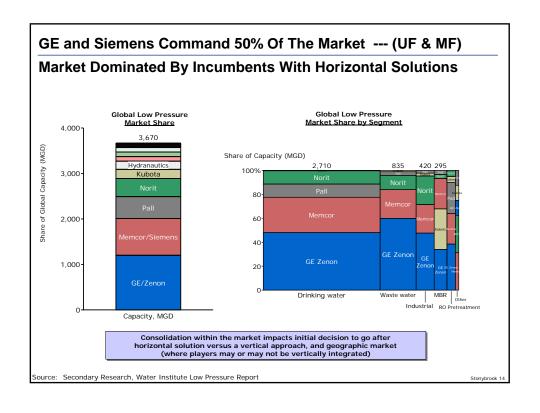
Source: WHO Water Report

Stonybrook

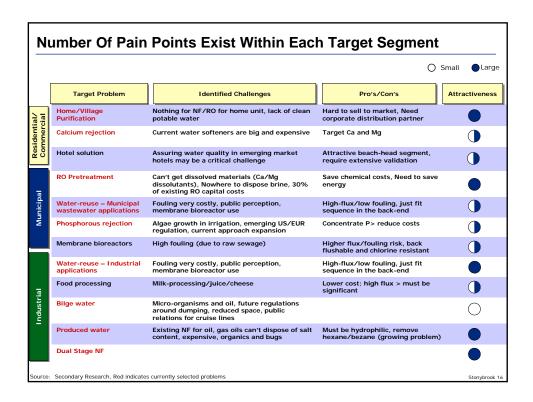

Global Regulations Are Strong Influencers, But Global Water Standards Only Vary Slightly Across Key Attributes

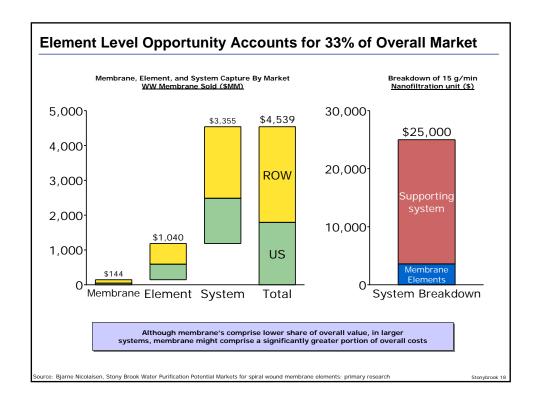

Attribute	EPA Standards	EUR Standards	WHO Standards		
Conductivity	250 micro S/cm	250 micro S/cm	250 micro S/cm		
Aluminum 0.2 mg/l		0.2 mg/l	0.2 mg/l		
Antimony (Sb)	0.005 mg/l	0.005 mg/l	0.005 mg/l		
Arsenic (As) 0.01 mg/l		0.01 mg/l	0.01 mg/l		
Boron (B)	0.3 mg/l	1.00 mg/l	0.5 mg/l		
Cadmium (Cd)	0.003 mg/l	0.005 mg/l	0.003 mg/l		
Copper (Cu)	2 mg/l	2 mg/l	2 mg/l		
Lead (Pb)	0.01 mg/l	0.01 mg/l	0.01 mg/l		
Manganese (Mn)	0.5 mg/l	0.05 mg/l	0.4 mg/l		
Mercury (Hg)	0.001 mg/l	0.001 mg/l	0.006 mg/l		
Nickel (Ni)	0.02 mg/l	0.02 mg/l	0.07 mg/l		
Selenium (Se)	0.01 mg/l	0.01 mg/l	0.01 mg/l		
Sodium (Na)	<200 mg/l	<200 mg/l	<200 mg/l		
Chloride (CI)	<250 mg/l	<250 mg/l	<250 mg/l		
Fluoride (F)	1.5 mg/l	1.5 mg/l	1.5 mg/l		
Sulfate (SO4)	500 mg/l	250 mg/l	250 mg/l		

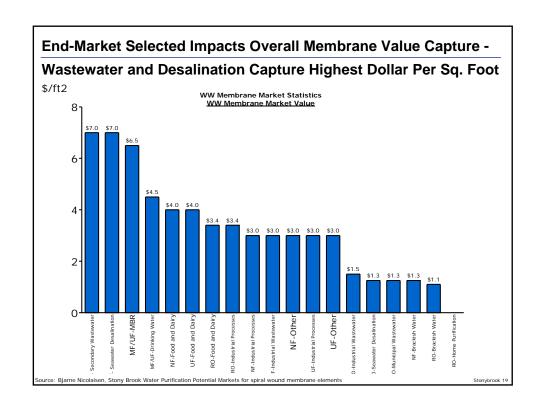

Similarity of global water standards indicates the potential for widespread and global solutions

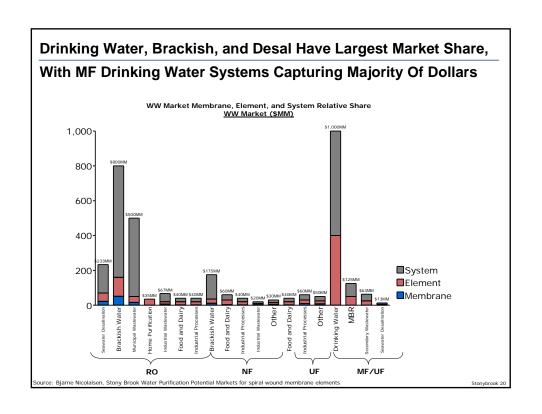

Source: Secondary Research (EPA & WHO Websites)

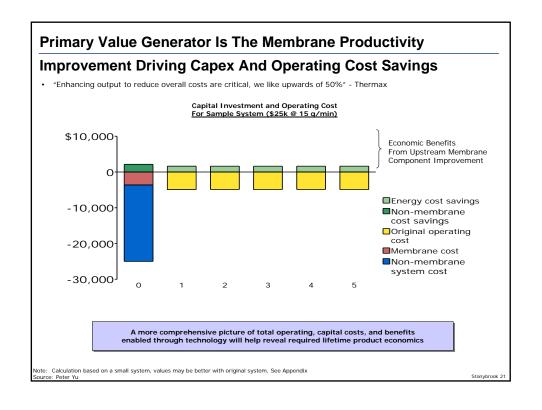
Stonybrook 10

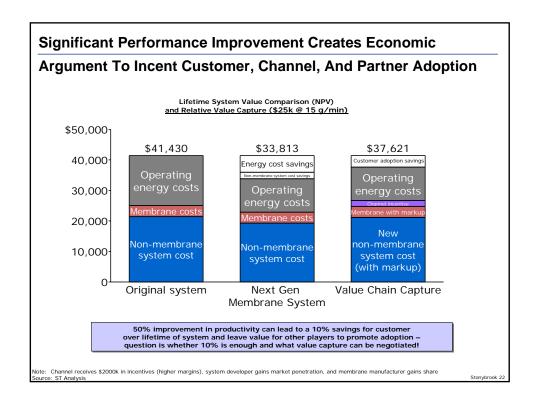


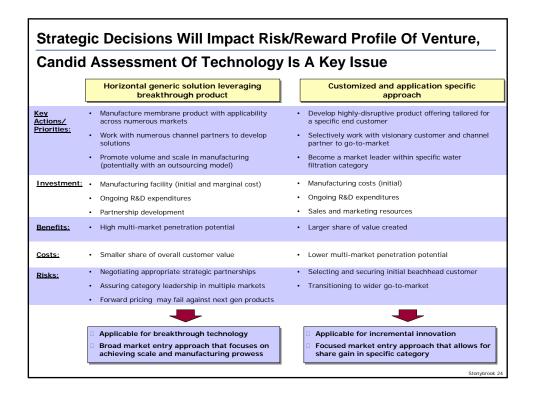


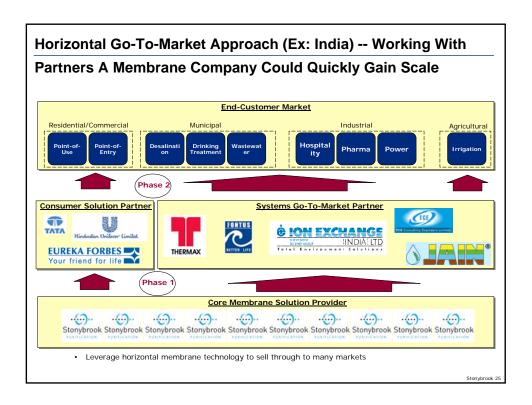


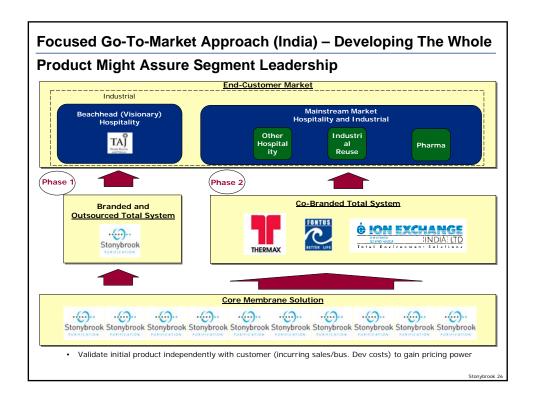

Αt	tractive N	larket	Metric	cs							O Lov
	Market	2008 Market Size (M)	2012 Market Size (M)	Global Growth	US Growth	China Growth	India Growth	Element Value Capture		Pain Points	Rating
Com	Residential /Commercial	825	1167	9%	9%	9%	9%			Performance	
Municipal	Desalination	1,998	3,033	11%	11%	9%	35%		•	Cost	
	Municipal	1320	1752	7%	6%	11%	10%	35%			
	Wastewater	389	551	9%	8%	13%		10%	٠	Fouling, Decrease reuse costs	0
Industrial	Pharmaceutical	980	1,425	10%	10%	23%	15%	50%			
	Power	248	392	12%	8%	4%	65%	50%			
	Semiconductor	430	647	11%	13%	13%	8%	50%			
	Food and Beverage	345	453	7%	7%	7%	7%	50%	٠	Sanitation	•
	Mining	122	166	8%	2%	12%	5%	50%	٠	Effluent pollution	
	Refineries	124	165	7%	6%	5%	7%	50%			Ó
	Metals	394	492	6%	4%	10%	8%	50%			Ō
	Chemical	492	633	7%	5%	15%	6%	50%			Õ
	Other Industrial	797	1035	7%	6%	11%	12%	50%			




Water Market Overview Value Capture Drivers Business Model Levers Working Recommendations Appendix







Water Market Overview Value Capture Drivers Business Model Levers Working Recommendations Appendix

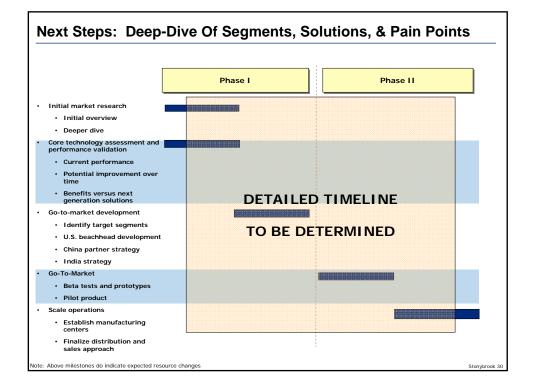
Agenda

- · Water Market Overview
- Value Capture Drivers
- Key Business Model Levers
- Working Recommendations & Next Steps
- Appendix

Stonybrook 2

Conclusions (page 1 of 2)

- A storm is brewing that will help drive customer adoption for new water technologies in select markets
 - Demand for water in "water scarce" countries like China and India is expected to increase with industrialization and development (water market could grow from 10-15% in select markets)
 - Globally, views on water are changing, and new regulations around usage, pricing, etc will only push for more efficient use of available infrastructure capital
 - Available supply of water is declining from over-consumption, pollution, and potential impacts of climate change
 - Single focus on developed economies does not accurately portray the urgency of the situation (we must think global and act local)
- Market data reveals some end-market segments to be fundamentally more attractive than others
 - Attractive segments include desalination, residential (point-of-use), commercial, and industrial (pharma, semi, and food)
 - In contrast, the refinery segments has least attractive market metrics (small size and low growth)


Stonybrook 28

Conclusions (page 2 of 2)

· Value capture driven by potential cost savings of system within a segment

- Even though membrane players capture, 5% to 30% of system value across various applications, market penetration of a horizontal solution can be significant enough to justify a "partner for a solution" approach
- Incumbent players currently dominate high-attractiveness membrane markets (top 4 have 80% of global market share)
- Depending on performance of system (energy savings, CO2 reduction, membrane replacement, etc) there can be enough value to incent customers, channel, and solution partner to adopt new solution – confirm minimum customer requirements (and performance of alternatives)
- A technology assessment (performance today & improvement over time) should drive business model and longer-term investment decision
 - Strategic decision needs to be made on the specific approach that should be used to goto-market (based on relative uniqueness of underlying technology)
 - Selectively partnering with players in the value-chain is critical for the overall success of the venture and accelerate development of the right "whole product"
 - Performance of underlying technology will determine addressable market size, and capital raised needs to match the size of this potential opportunity to create a plan with acceptable venture returns

Stonybrook 29

Water Market Overview Value Capture Drivers Key Business Model Levers Working Recommendations & Next Steps Appendix

Water Problem	Description	Geographies Affected	Segments influence	
Salting of Water Supply	Measure of dissolved solids in water which are also cause of hardness (some regions have dissolved solids higher than median >75%). Salt water is intruding into aquifers around coast	US (Southwest, Mid-west, Texas, parts of Northeast), Global coastal issue	Municipal, Industrial	
Acid Rain	Conversion of nitrogen and sulphur oxide emissions from industrial factories into nitric and sulphuric acid US (Northeast ar Southeast)		Municipal, Industrial	
Aquifer Depletion	Water levels in many aquifers are dropping and areas where there are high water withdrawals (> 1.120 billion gallons per day)	Municipal, Industrial		
Arsenic Contamination	Arsenic entering water supply because of use in industry and metallurgy (and from bedrock)	US (Southwest, Central, Midwest, parts of Northeast), India	Municipal, Industrial	
Elevated Nutrient Contamination	Runoff from fields adds nutrients (nitrate, phosphorous) from fertilizer applications to streams and other surface water impacting health and algal growth	US (West, Midwest, Southeast), India, China	Municipal	
Energy Production Demand	Areas where water usage due to energy is increasing (over 50% or more water withdrawals go to ward energy production)	US (Midwest and Northeast)	Municipal	
Mercury Contamination	Mercury released from burning fossil fuels or from natural processes (methylmercury)	US (West, Northeast, Southwest), India	Municipal, Industrial	
Mining Pollution	Strip mining causes increased of dissolved solids and toxic metals	US (California, Northwest, and Pennsylvania), Africa	Municipal	
Organic and Industrial Toxins	PCV (polychlorinated vinyls) and VOCs (volatile organic compounds) contamination from industrial coolants	US (West, Northeast, Southeast)	Industrial	
Radioactive and Radon Contamination	Industrial and military activities, and presence of uranium ore near water aquifers. Radon increases risk of lung cancer	US (West)	Industrial	
Pesticide Contamination	DDT contamination (EPA has not set maximum standard)	US (West, Central, Midwest, Southeast, parts of Northeast)	Municipal, Industrial	

Water Membrane Technologies Initial Overview

MF (Microfiltration) 0.1 to 1.0 microns

- MF is used to remove submicron suspended materials on a continuous or semi-continuous basis.
- The size range is from approximately 0.01 to 1.0 microns (100 to 10,000 angstroms). By definition, microfiltration does not remove dissolved materials.

UF (Ultrafiltration) 0.01 to 0.1 microns

- UF is a membrane process which removes dissolved non-ionic solute, typically organic materials (macromolecules).
- Ultrafiltration membranes are usually rated by "molecular weight cut-off," the maximum molecular weight of the dissolved organic compound (in Daltons) that will pass through the membrane into the permeate stream.
- These compounds are generally considered smaller than 0.01 micron (100 angstroms) in size.

NF (Nanofiltration) 10 to 100 angstroms

- · NF can be considered "loose" reverse osmosis.
- It rejects dissolved ionic contaminants but to a lesser degree than RO. NF membranes reject multivalent salts to a higher degree than monovalent salts (for example: 90% vs. 20%).
- These membranes have molecular weight cut-off limits for non-ionic solute in the range of 400 to 1000 Daltons

RO (Reverse Osmosis) <10 angstroms

- RO produces the highest quality permeate of any pressure driven membrane technology.
- Certain RO polymers will reject above 99% of all ionic solute, and have molecular weight cut-offs in the range of 50 to 100 Daltons.

Source: Pennet Stonybrook 3

Technology Assessment And Entry Approach Will Drive Returns

Potential Approach Rate of customer adoption Revenue Growth Signing application or territory specific exclusive licensing agreements Channel partner decision and go-to-market approach Developing product to provide performance against key water · Selected beachhead market Negotiated partnership Signing a perpetual agreement with initial customer to gain scale Margin Expansion agreements Moving to adjacent markets to gradually drive to higher price Price expansion Forward building scale to lower price points · Pushing economies of scale Developing product specifications so that existing manufacturing facilities can be used Manufacturing system Capital Invested requirements Deciding to outsource supporting materials · Outsourcing decisions Agreeing to a mini-multinational model for geographic access · Market access decisions · Minimizing R&D investment and instead relying on an Ongoing R&D investments **Operating Costs** Distribution expenses across multiple locations · Other operating costs Sales and marketing strategy Allowing co-branding to reduce marketing expenses · Comparable market multiples Water problem pushes higher public market multiples Exit Multiple · Synergies to potential buyers Opportunities to integrate product with other solutions drives higher prices Generic nature and (horizontal) solutions will assure longer · Technology assets longer-term revenue generation potential

	Analysis					
<u></u> Variables						
System capacity	15 g/min					
Total System cost	\$25k (\$3.6k membrane cost and \$21.4 non-membrane system costs)					
Assumed operating power	7.5 horsepower					
Assumed operating hours	24 hours per day (100% of time)					
Conversion variables	746 W per horsepower, 0.10 cents /KWh, 15% discount rate					
Membrane productivity improvement	50% (improvement in flux over existing solution) – directly linked to productivity					
<u>Steps</u>						
1. Calculate Dollars per year on energy	7.5 horsepower x 746 W/horsepower x 24 hours/day x 1/1000 x 0.10 cents/Kwh x 365 days					
2. Determine realized efficiency of system	=1/(1+membrane productivity improvement)					
3. Calculate new dollars per year on energy	Old dollars/year * efficiency factor					
4. Discount other costs	10% lowering of price on non-membrane system costs					
4. Continue to NPV calculation	Assume discount rate 15%, calculate discount factor, include energy savings					