

Presentation Outline

- Design
- Implement - Monitor

Climate Change

- Climate change presents an urgent challenge to the well-being of all countries...
-and particularly to the poorest countries and the poorest people (especially women and children) in vulnerable regions.
- Addressing climate change is central to the development and poverty reduction agenda.
- Tackling climate change is feasible...
- ...but who bears how much of the costs remains the key issue [UNFCCC estimates \$100b for mitigation + ~\$40b for adaptation in <u>addition</u> to ODĂ]

- A few important areas drier (Mediterranean, southern South America, northern Brazil, west and south Africa)

Climate Variability & Weather

- Erratic Patterns Result in: Flooding, Drought, Increased Desertification, Tropical Storms, etc.
- Consequences of poor risk management—Socioeconomic costs, greater risks for communities:
- Flooding, storms, etc. results in excess water, whereas drought results in water deficits.
- Unpredictable food and forage crop, livestock, and tree yields
- Displacement of communities, loss of livelihood and assets
- Management needs—Improved water and land management
 - Consider/value "buffer zones" that can buffer excess water and/or store water for times of drought—watershed/basin scale.
 - Other "value-added" tools and methodologies, at field scale.

Impact of 20			bique ls on		econo	my	
	Act	Actual		Projection			
4.0			Before the Floods		After the Floods		
	1998	1999	2000	2001	2000	2001	-
Real GDP (ann. Growth rate)	12.0	9.0	7.0	7.2	5.4	76	%
Inflation (ann. average, %)	0.6	2.0	6.6	5.0	9.5	50 -	4%
External current account:							r
Before grants	-20.5	-31.7	-23.0	-15.7	-31.5	-18.4	
After grants	-12.4	-21.5	-16.3	-9.1	-19.7	-11.0	
Fiscal Balance:			1.				16
Before grants	-10.7	-12.1	-12.1	-10.7	-16.0	-11.5	
After grants	-2.4	-1.2	-5.2	-4.4	-7.0	-5.1	
Memorandum:							f.
GDP (Mt billion)	46,134	52,913	60,177	67,790	61,471	69,673	
Source: Sta	aff estimates	MF and (Government of	Mozambique			

 Document and conserve traditional knowledge baselines and assets. 	-
✓ Government national databases	and the second
on Settlements, Land-Cover and Land-Use Change (LCLUC) dynamics, biodiversity, soils, agriculture potential, hydrology, climate. → Dynamic Information	- Andrew States
Framework [DIF]	A AND A AND AND AND A
 Tools to assess and manage risks Enhance agricultural and natural resource management capacity through training 	
 Develop national capacity to model the interactive impacts of climate change and prioritize adaptation & mitigation measures. 	Zambezi Floods, Jan-Feb, 200

Project Goals

- Work with Govt. of Mozambique (GOM)
 - Assess and integrate climate change risk in current development plans/investments
 - Strengthen National Action Plans on Climate Adaptation and Mitigation Activities
- Develop outreach projects with Stakeholders that will help them meet their needs
- Empower small land holders to plan for sustained ecosystems that provide valuable services (carbon sequestration, eco-hydrology, agro-biodiversity, native biodiversity)

 - Loss of above- and below- ground biodiversity

Using Adaptive Management

- Applying Science for Society
- Adaptive Management (Conservation)

Adaptive management incorporates research into conservation] action.

It requires an explicitly experimental — or "scientific" — approach to managing [conservation] projects.

•Specifically, it is the integration of design, management, and monitoring to systematically test assumptions in order to adapt and learn.

Source: http://fosonline.org/resources/Publications/AdapManHTML/Adman_1.html#

Assess the Problem

- How does the Zambezi watershed/basin function?
- What information and models will help to inform GoM about transboundary water and other national environmental issues?
- How can the output from the data-collection and research efforts be transformed into applied information technologies (land, biodiversity, and water management tools) with local, national, regional, and global relevance?
- Market-led Smallholder Development in the Zambezi Valley of Mozambique but with 'Upstream-Downstream' Focus

Project Hypothesis

"Evaluating the hydrologic, landuse, soil conditions, and weather patterns of the Zambezi River Basin will help to predict the characteristics of the basin, ultimately creating a risk reduction plan that communities, and developers can use to reduce risk, improve resource management and improve livelihoods."

Biophysical Factors in Model (associated tools)

- -Precipitation (GIS, stream monitoring, dam assessment)
- -Soil moisture (soil testing, irrigation assessment)
- -Stream flows (stream gauges)

Adaptive Management

- [Zambezi River Case Study]
 - Assess Problem
 - Design
 - Identify Tools
 - · Identify Stakeholders
 - Allocate Roles
 - Implement
 - Monitor
 - Evaluate
 - Adjust

http://www.cmar.csiro.au/research/mse/images/adaptive_cycle.gif

Major Tools

Dynamic Information Framework
Geographical Information Systems
Good site specific, local, regional data

Stakeholder Involvement

- · World Bank Staff
- Government of Mozambique (GOM)
- Ministry of Agriculture, Natural Resources, Environment
- National/Local Experts
- International Resource experts
- University (Eduardo Mondlane University in Maputo) • - Faculty
 - Post-doc
 - Graduate students
- Land managers—Farmers, Fishery Managers
- Small Land Holders

Stakeholder Training

- •
- Hands-on training: For local Ministerial staff, and Faculty, Post-doc and Graduate students from Eduardo Mondlane University in Maputo. Field Collection:

- Soil sampling Water sampling Geographic Position Systems (GPS)
- technologies Participatory Interviews: Local small land holder communities

Adaptive Management

- [Zambezi River Case Study]
 - -Assess Problem
 - -Design
 - -Implement
 - -Monitor
 - -Evaluate
 - -Adjust

http://www.cmar.csiro.au/research/mse/images/adaptive_cycle.gif

Design Implementation

Start Data Collection:

- 1st Step develop Digital Elevation Model (DEM) of the basin using NASA's Shuttle Radar Topographic Mission (SRTM) dataset.
- 2nd Step develop Hydrology Model of whole basin, a Variable Infiltration Capacity (VIC) model.
- 3rd Step characterize Land-use and Land-cover dynamics (1995-2005)
- S project districts of Mozambique's portion of the Zambezi basin.
- 4th Step assess vegetation by Georeferencing plant diversity.
- Rapid appraisal methods: low-cost, high-return, gradient directed transects (gradsects).

Non Constant of Constant of Constant

- Overcame Constraint
 - Data records from the World Meteorological Organization (WMO), and the daily re-analysis product (ERA40), from the European Center for Medium Range Weather Forecast (ECMWF).

GIS Tools for Data Analysis

Scaling-up the hydro portion to the other basin countries is highly desirable given the dynamic land use changes (agricultural expansion, new forest plantations, natural forest logging).

Adaptive Management

- [Zambezi River Case Study]
 - -Assess Problem
 - Design
 - -Implement
 - Monitor
 - -Evaluate
 - Adjust

http://www.cmar.csiro.au/research/mse/images/adaptive_cycle.gif

Empowering the 'Community'

Workshops, Seminars, Classes
Field training: methods, data analyses
Community surveys and data/knowledge sources
Access to data bases, attribution, return to source
Capital city, provinces, districts

Capital city, provinces, districts, community associations, fields

Adaptive Management

- [Zambezi River Case Study]
 - Assess Problem
 - Design
 - Implement
 - Monitor
 - Evaluate
 - Adjust
 - Review and renew

http://www.cmar.csiro.au/research/mse/images/adaptive_cycle.gif

"Site-specific" Development

- ✓ Field Scale
- ✓ Watershed Scale
- ✓ Water Quality
- ✓ Crop Management
- Conservation Activities
 Forest Systems
 Grasslands Management

- ✓ Wetlands Preservation

		-						
		Average hydrologic components (1995 – 2000)						
Landcover scenarios		Annual yield, mm (m³/s)	High flow, m³/sª	Low flow, m³/s	Annual evapotranspiration, mm			
Veg 2000		215 (26.2)	54.7	7.6	762			
	NI	249 (30.5)	58.6	12.0	727			
cenario I	NI	223 (27.2)	53.3	11.1	752			
Scenario II	H	202 (24.7)	53.6	5.8	781			
	NI	261 (31.8)	61.2	12.5	715			
Scenario III		220 (25.6)	56.8	7.0	759			
	NI	269 (32.8)	63.1	12.7	707			
Scenario IV		193 (23.6)	51.6	5.6	786			
	NI	251 (30.7)	59.1	12.2	724			

