Energy Indicators for Sustainable Development

Alan McDonald

Department of Nuclear Energy, IAEA

Learning Centre CSD-14 • New York • 4 May 2006

International Atomic Energy Agency

Downloadable from the web

- <u>http://www-</u> <u>pub.iaea.org/MTCD/p</u> <u>ublications/PDF/Pub1</u> <u>222_web.pdf</u>
- <u>http://www.blackwell-</u> <u>synergy.com/toc/narf/</u> <u>29/4</u>

Genesis of EISD

- 1995 work initiated by DESA
- Agenda 21, Chapter 40
 - Development and promotion of indicators for sustainable development
- 3 energy indicators
 - Annual energy use per capita
 - Share of consumption of renewable resources
 - Intensity of energy use

IAEA

Capacity building for energy analysis

 Transfer analytic tools tailored to developing countries

- Transfer data on technologies, resources and economics
- Train local experts
- Jointly analyze national options
- Help establish continuing local expertise

IAEA

ISED

- 5 agencies
 - UNDESA, OECD/IEA, IAEA, Eurostat, EEA
- 7 countries
 - Brazil, Cuba, Lithuania, Mexico, Russia, Slovakia, Thailand

Design objectives

- Match UN format
 - Main themes, sub-themes
 - Social, economic, environmental, institutional
- Match data availability in most countries
- Clarity and consistency
- Relevant to policy assessment for sustainability
- Pilot testing / adjustment for usability

30 indicators

- 4 social
- 16 economic
- 10 environmental

Social (SOC1)

- Theme: Equity
- Sub-theme: Accessibility
- Indicator: Share of households (or population) without electricity or commercial energy, or heavily dependent on non-commercial energy

• Components:

- Households (or population) without electricity or commercial energy, or heavily dependent on noncommercial energy
- Total number of households or population

IAEA

Social (SOC2)

- Theme: Equity
- Sub-theme: Affordability
- Indicator: Share of household income spent on fuel and electricity
- Components:
 - Household income spent on fuel and electricity
 - Household income (total and poorest 20% of population)

Social (SOC3)

- Theme: Equity
- Sub-theme: Disparities
- Indicator: Household energy use for each income group and corresponding fuel mix
- Components:
 - Energy use per household for each income group (quintiles)
 - Household income for each income group (quintiles)
 - Corresponding fuel mix for each income group (quintiles)

Social (SOC4)

- Theme: Health
- Sub-theme: Safety
- Indicator: Accident fatalities per energy produced by fuel chain
- Components:
 - Annual fatalities by fuel chain
 - Annual energy produced

Economic (ECO1)

- Theme: Use and production patterns
- Sub-theme: Overall use
- Indicator: Energy use per capita
- Components:
 - Energy use (total primary energy supply, total final consumption and electricity use)
 - Total population

Economic (ECO2)

- Theme: Use and production patterns
- **Sub-theme:** Overall productivity
- Indicator: Energy use per unit of GDP
- Components:
 - Energy use (total primary energy supply, total final consumption and electricity use)
 - GDP

Economic (ECO3)

- **Theme:** Use and production patterns
- **Sub-theme:** Supply efficiency
- Indicator: Efficiency of energy conversion and distribution
- Components:
 - Losses in transformation systems including losses in electricity generation, transmission and distribution

Economic (ECO4)

- Theme: Use and production patterns
- Sub-theme: Production
- Indicator: Rreserves-to-production ratio
- Components:
 - Proven recoverable reserves
 - Total energy production

Economic (ECO5)

- Theme: Use and production patterns
- Sub-theme: Production
- Indicator: Resources-to-production ratio
- Components:
 - Total estimated resources
 - Total energy production

Economic (ECO6)

- Theme: Use and production patterns
- Sub-theme: End use
- Indicator: Industrial energy intensities
- Components:
 - Energy use in industrial sector and by manufacturing branch
 - Corresponding value added

Economic (ECO7)

- Theme: Use and production patterns
- Sub-theme: End use
- Indicator: Agricultural energy intensities
- Components:
 - Energy use in agricultural sector
 - Corresponding value added

Economic (ECO8)

- Theme: Use and production patterns
- Sub-theme: End use
- Indicator: Service/commercial energy intensities
- Components:
 - Energy use in service/commercial sector
 - Corresponding value added

Economic (ECO9)

- **Theme:** Use and production patterns
- Sub-theme: End use
- Indicator: Household energy intensities
- Components:
 - Energy use in households and key energy use
 - Number of households, floor area, persons per household, appliance ownership

Economic (ECO10)

- Theme: Use and production patterns
- Sub-theme: End use
- Indicator: Transport energy intensities
- Components:
 - Energy use in passenger travel and freight sectors and by mode
 - Passenger-km travel and tonne-km freight and by mode

Economic (ECO11)

- Theme: Use and production patterns
- **Sub-theme:** Diversification (fuel mix)
- Indicator: Fuel shares in energy and electricity
- Components:
 - Primary energy supply and final consumption, electricity generation and generating capacity by fuel type
 - Total primary energy supply, total final consumption, total electricity generation and total generating capacity by fuel type

Economic (ECO12)

- Theme: Use and production patterns
- **Sub-theme:** Diversification (fuel mix)
- Indicator: Non-carbon energy share in energy and electricity

• Components:

- Primary supply, electricity generation and generating capacity by non-carbon energy
- Total primary energy supply, total electricity generation and total generating capacity

Economic (ECO13)

- Theme: Use and production patterns
- **Sub-theme:** Diversification (fuel mix)
- Indicator: Renewable energy share in energy and electricity

• Components:

- Primary energy supply, final consumption and electricity generation and generating capacity by renewable energy
- Total primary energy supply, total final consumption, total electricity generation and total generating capacity

Economic (ECO14)

- Theme: Use and production patterns
- Sub-theme: Prices
- Indicator: End use energy prices by fuel and by sector
- Components:
 - Energy prices (with and without tax/subsidy)

Economic (ECO15)

- **Theme:** Security
- Sub-theme: Imports
- Indicator: Net energy import dependency
- Components:
 - Energy imports
 - Total primary energy supply

Economic (ECO16)

- **Theme:** Security
- Sub-theme: Strategic fuel stocks
- Indicator: Stocks of critical fuels per corresponding fuel consumption
- Components:
 - Stocks of critical fuel (e.g. oil, gas, etc.)
 - Critical fuel consumption

Environmental (ENV1)

- Theme: Atmosphere
- Sub-theme: Climate change
- Indicator: GHG emissions from energy production and use per capita and per unit of GDP
- Components:
 - GHG emissions from energy production and use
 - Population and GDP

Environmental (ENV2)

- Theme: Atmosphere
- Sub-theme: Air quality
- Indicator: Ambient concentrations of air pollutants in urban areas
- Components:
 - Concentrations of pollutants in air

Environmental (ENV3)

- Theme: Atmosphere
- Sub-theme: Air quality
- Indicator: Air pollutant emissions from energy systems
- Components:
 - Air pollutant emissions

Environmental (ENV4)

- Theme: Water
- **Sub-theme:** Water quality
- Indicator: Contaminant discharges in liquid effluents from energy systems including oil discharges
- Components:
 - Contaminant discharges in liquid effluents

Environmental (ENV5)

- Theme: Land
- Sub-theme: Soil quality
- Indicator: Soil area where acidification exceeds critical loads

• Components:

- Affected soil area
- Critical load

Environmental (ENV6)

- Theme: Land
- Sub-theme: Forest
- Indicator: Rate of deforestation attributed to energy use
- Components:
 - Forest area at two different times
 - Biomass utilization

Environmental (ENV7)

- Theme: Land
- **Sub-theme:** Solid waste generation and management
- Indicator: Ratio of solid waste generation to units of energy produced
- Components:
 - Amount of solid waste
 - Energy produced

Environmental (ENV8)

- Theme: Land
- **Sub-theme:** Solid waste generation and management
- Indicator: Ratio of solid waste properly disposed of to total generated solid waste
- Components:
 - Amount of solid waste properly disposed of
 - Total amount of solid waste

Environmental (ENV9)

- Theme: Land
- **Sub-theme:** Solid waste generation and management
- Indicator: Ratio of solid radioactive waste to units of energy produced
- Components:
 - Amount of radioactive waste (cumulative for a selected period of time)
 - Energy produced

Environmental (ENV10)

- Theme: Land
- **Sub-theme:** Solid waste generation and management
- **Indicator:** Ratio of solid radioactive waste awaiting disposal to total generated solid radioactive waste
- Components:
 - Amount of radioactive waste awaiting disposal
 - Total volume of radioactive waste

Not a test or a contest

- Unlike some other indicators, ISED are meant to be used for national analyses – UN system.
- They are not meant to set up pass-fail situations or international benchmarking, although others do use indicators in this way.
- Indicators judge according to established criteria they do not judge between good and bad
- Intended to motivate the question, "Why?"

Indicators need context

- Each ISED gives an indication of one aspect of energy use
- Each needs to be read together with other indicators
- Need to be read in the context of each country's economy and resources
- Indicators have proper applications and limitations

Indicators as a tool

- Indicators are not magic, do not generate magic numbers or magic answers
- Need thoughtful interpretation in context to avoid false identification of causality, etc.
- Can inform policy decisions, help gauge policy effectiveness and unintended consequences

Electricity access in Ghana

IAEA

Energy intensities in Thailand

IAEA

Energy intensity of GDP

TPES/GDP (toe per thousand \$)

Traditional energy use

Share of Traditional Energy Use in Total Energy (%)

Commodity prices

IAEA

Brazil net import reduction (1/2)

Brazil net import reduction (2/2)

FIG. 8.1. Net energy import dependency (EISD ECO15) [10].

Checking assumptions

 One case study checked the assumptions and results of a national energy plan by analysing the ISED.

 The plan makes separate and inconsistent assumptions for electricity/GDP intensity, electricity supply and GDP growth.

The assumptions

• The plan assumes a reduction in electricity intensity per unit of GDP.

 The assumed level of reduction implies a dramatic and sudden reversal of the long term trend in electricity consumption per unit of GDP.

Electricity intensity of GDP

Electricity/GDP

National plan - implied decoupling

- Current National Electricity Plan
 - Ratio of growth rates 0.43 between 2011 & 2015
 - Low compared to Japan & U.S.A

	GDP growth rate (A)	Electricity demand growth rate (B)	Ratio of growth rates (B/A)	U.S.A	Japan
1971-1980	7.5	15.6	2.09	1.03	1.13
1981-1990	8.7	11.2	1.29	0.78	0.95
1991-1995	7.5	11.6	1.55	0.77	-
1996-2000	5.0	8.1	1.64		
2001-2005	5.1	5.4	1.05		
2006-2010	5.0	2.7	0.54		
2011-2015	4.0	1.7	0.43		

IAEA

Effect of assumed intensities

- These ratios imply an unrealistic rate of GDP/electricity decoupling, inconsistent with growth aspirations.
- The kind of efficiency ratios assumed could probably only be achieved through extremely high taxes, neither acceptable nor feasible to impose.
- Such taxes would result in inefficient factor substitution, major sectoral shifts, ultimately capital flight, and lower GDP.

The consequences

- If the intensity goals are enforced, the supply of electricity will be reduced, and GDP growth will dampen.
- GDP growth as assumed can never be attained, and in fact falls over time.
- Electricity /GDP intensity may in fact settle into a new equilibrium close to its original value, but at a lower level of economic growth.

Brazil: matching indicators to policies

IAEA

QC tool for analytical thinking

- In summary: ISED have multiple uses:
 - Clarifying statistical information
 - Checking progress of past policies
 - Providing a reality check on SD policies
 - All three, combined with energy system modelling, can be of great benefit. This marriage of indicators and scenario modelling is now our focus.

Current implementation

- Add indicators to IAEA analytic tools
 - Models calculate indicators
 - Include in databases
 - Include in transfer and training
- Two more possibilities
 - CDM assessment by countries
 - Used by individual partnerships where appropriate

New Brazil and South Africa studies

- "Designing Country Profiles on Sustainable Energy Development"
 - Partnerships Fair
 - Thursday, May 4
 - 4:30 5:10 pm
 - Conference Room 6

IAEA

...atoms for peace.

IAEA