

Transport, Energy and CO₂: Moving Toward Sustainability François Cuenot, IEA Expert Group Meeting on Transport for Sustainable Development, 27 August 2009

Moving Toward Sustainability

OFCD/IFA - 200

Index

- Transport Sector in the big picture
 - Oil demand, sectoral reduction targets
- Scenarios introduced in the IEA publication
 - Brief description
 - Key variables' evolution
 - Energy use and GHG emissions in 2050
 - Land transport : switching away from liquid fuels?
 - Urbanisation key to transport dual evolution
 - Electrification
 - Issues with low-GHG individual transport
 - Manufacturing emissions might become predominant
 - The current hype in dedicated line for surface mass transit might reverse => Mode shifts appears less useful

Freight land transport : rail vs trucks on long distances

OFCD/IFA - 2009

Where are we headed? World **Energy Outlook 2008**

World energy demand expands by 45% between now and 2030 – an average rate of increase of 1.6% per year – with coal accounting for more than a third of the overall rise

TRANSPORT,

Noving Toward

Sustainability

OFCD/IFA - 200

ENERGY

AND CO₂

WEO 2008 Reference Scenario: Incremental oil demand, 2006-2030

Around three-quarters of the projected increase in oil demand comes from transportation

World transport sector relies (almost) entirely on oil

Source: IEA Statistics.

The proportion of petroleum products use in the transport sector has increased in the last decade; energy diversification is failing

TRANSPORT,

ENERGY

AND CO₂

Aoving Toward Sustainability

OFCD/IFA - 2009

World oil production by source in the Reference Scenario

64 mb/d of gross capacity needs to be installed between 2007 & 2030 – six times the current capacity of Saudi Arabia – to meet demand growth & offset decline

TRANSPORT,

ENERGY

A New Energy Revolution? ETP 2008 Cost Curve

2050 CO₂ emissions reduction (Gt CO₂/yr)

Reducing emissions by 50% would require options with a cost up to USD 200/t, possibly even up to USD 500/t CO₂

AND CO₂ Moving Toward

OECD/IEA - 2009

Sustainability

IEA's New Transport Publication

- For release Mid November 2009
- Builds on ETP 2008, will feed into ETP 2010
- Transport analysis based on on-going development of IEA Mobility Model, supporting research
 - **Book features:**
 - Indicator update and extension to more countries
 - Technology potential and cost updates
 - Fuel and Modal assessments (LDV, truck, aviation, shipping)
 - Detailed scenario analysis with regional detail – Baseline, High Baseline, Modal Shift, **BLUE technology scenarios**
 - Role of future technologies, modal shift
 - More regional detail than in ETP
 - Continuing development of CO2 mitigation cost analysis
 - **Policy considerations**

Moving Toward Sustainability

Scenarios adopted in the book

- Baseline: follows the IEA World Energy Outlook 2008 Reference Case to 2030 and then extends it to 2050. It reflects current and expected future trends in the absence of new policies.
 - **High Baseline:** Non-OECD countries follow more closely OECD passenger LDV ownership trends.
 - **BLUE CO₂ reduction scenarios:** developed based on achieving the maximum CO_2 reduction measures costing up to USD 200/tonne. These scenarios will require strong policies to achieve.
 - BLUE Map: achieves CO₂ emissions by 2050 that are 30% below 2005 levels. Greater use of biofuels, deployment of EVs, FCVs.
 - **BLUE EV Success:** Dominant EVs for LDVs and light trucks
 - BLUE Shifts: No advanced technology deployment, gain through modal shifting only. Compared to the Baseline in 2050, BLUE Shifts results in a 20% reduction in energy use and CO₂.
 - BLUE Map/Shifts: BLUE Map + BLUE Shifts. It results in a 40% reduction in CO₂ below 2005 levels by 2050.

High Baseline – Car ownership projections The difference between 2 and 3 billion cars in 2050...

TRANSPORT, ENERGY AND CO₂

Ioving Toward Sustainability OFCD/IFA - 2009

TRANSPORT,

BLUE Map – Strong Technology Penetration **GHG intensity by mode and scenario** Through a combination of efficiency and fuel switching, surface modes become extremely low CO2 by 2050 in BLUE

Rail Bus 2Ws **PLDVs** Air 50 150 0 100 200 250 300 350 WTW gCO2/p.km Baseline 2050 Baseline 2005 Blue Map 2050

ENERGY AND CO₂

OFCD/IFA - 2009

Changes from Baseline to BLUE Shifts case in 2050

Shifting 25% of LDV and air travel can cut total energy use by 20% in 2050

ENERGY AND CO₂

TRANSPORT,

Moving Toward Sustainability

Energy use by scenario

In BLUE Map/Shifts, energy use returns to 2005 level, and with more than 50% very low CO2 fuels

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

Transport CO2 reductions in BLUE Map/Shifts A 3-part evolution...

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

Land transportation - Passenger

Air to grow in OECD countriesCars to grow in non-OECD countries

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

Moving Toward Sustainability

OFCD/IFA - 200

LDV sales profile to 2050 in the BLUE Map scenario Unprecedented rates of change to advanced technologies

Moving Toward Sustainability

OFCD/IFA - 2009

What will all this cost?

The price tag is very uncertain, but by 2050 it might be pretty affordable...

- Oil price impacts all the other alternative prices, at different rates, depending on "oil content"
- FCVs seems to be the most expensive option, likely to be too expensive without significant technological breakthroughs

Notes: SI = spark ignition (gasoline) vehicle; CI = compression ignition (diesel) vehicle; ICE = internal combustion engine vehicle; "hybrid" refers to hybrid-electric vehicle; BTL = biomass-to-liquids biodiesel.

Moving Toward Sustainability

IEA EV/PHEV Roadmapping Effort

- Develop a common view on how an EV/PHEV "roll-out" could occur over next 10-20 years
- Identify key actions for governments, stakeholders
- Understand where international collaboration/coordination is needed
- Cover R&D, vehicle deployment infrastructure, investment requirements
- Workshop held in January 2009; draft report by end of June; publication of report by October

Electricity CO₂ content today share of low CO₂ electricity A few countries are ready for Evs to spread without negative GHG impacts

Units: gCO₂/kW.h

Possible EV Sales trajectory to 2025 – can we do this?

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

OFCD/IFA - 200

2015: 250,000: 10 models selling 25,000 each?
2020: 1.5 million: 20 models selling 75,000 each?
2025: 3.6 million: 30 models selling 120,000 each?

Moving Toward Sustainability

OFCD/IFA - 200

Incremental electricity generation for EVs and PHEVs in BLUE Map Requires 7-10% more generation, but what kind will we get?

Moving Toward Sustainability

OFCD/IFA - 200

Issues with low-GHG / km LDVs

Manufacturing emissions then are not marginal any longer

	CO ₂ emitted during vehicle lifetime (in tCO ₂)	2005	2030	2050
Baseline	GHG From Production	5	5	4
	GHG from Use	50	33	32
	Share from production	10%	15%	14%
BLUE Map	GHG From Production	5	3	2
	GHG from Use	50	14	2
	Share from production	10%	22%	100%

Note: GHG from production of vehicles in BLUE map represents a rough estimate. GHG from production for Baseline, vehicle lifetime, average fuel economy and annual travel from IEA Mobility Model.

- WTT emissions are also getting more important as alternative fuels spread (especially with EVs and FCVs)
- Labelling and energy consumption information to consumer will need to take that into account

Issues with low-GHG / km LDVs

Tramways / metro projects

Rail system Type Region Total Metro LRT / Tram OECD Europe 25 62 87 OFCD NA 12 OECD Pacific Africa Other Asia China Eastern Europe India Middle Fas Russia Grand Total 50 90 140

Source: Railway-Technology.com.

Numerous BRT projects expanding or being created

Ensure long-term sustainability of mass transit vs. clean personal vehicles

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

OFCD/IFA - 200

Freight Land Transport

Rail dominates land freight transport (in tkm), but :

It is concentrated in a few countries

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

OECD/IEA - 2009

It concerns a few raw materials, mainly coal
It is losing ground over trucks

Note: includes road, rail and inland waterway. Source: Eurostat.

Freight Land Transport

Rail freight energy use is a fraction of Road freight energy use

TRANSPORT, ENERGY AND CO₂

Moving Toward Sustainability

Moving Toward Sustainability

OFCD/IFA - 200

Key Findings

- Baseline (WEO Reference Case) transport fuel use 80% higher by 2050; a new High Baseline reaches 25% higher energy use in 2050
 - Mainly dependent on car sales projections and freight sensitivity to economic growth
- Fuel economy improvement remains among most cost-effective measures
 - Can reach 50% improvement for LDVs and 30-50% for other modes by 2050 or before
- Alt fuels still critical, though biofuels concerns growing; electrification may be key
 - Biofuels still important but concerns about sustainability are growing; a roadmap for achieving 2050 levels in BLUE is needed
 - Costs for batteries and fuel cells are dropping; EVs may reach commercial production very soon
 - PHEVs appear to be a promising transition strategy

Moving Toward Sustainability

Key Findings (cont.)

- Additional reductions can come from changes in the nature of travel
 - Modal shift analysis suggests that a 25% reduction from 2050 Baseline is feasible (almost 50% compared to High Baseline), though more work is needed on the costs and policies to get there
 - Technologies such as Bus Rapid Transit will be important, but ultimately its about land use planning and a comprehensive approach to travel policies.
- Together modal shift, efficiency improvements and alt fuels could cut transport CO2 by 70% compared to baseline in 2050 (30% below 2005)
 - More technology cost work is needed for aviation and shipping, but initial assessment suggests that many relatively low cost opportunities may be available.
 - For LDVs, 80% reduction in CO2 by 2050 at under 200 USD/tonne in that year

Moving Toward Sustainability

OFCD/IFA - 200

Um, Policies?

- Clearly we will need strong policies both internationally and at national levels (and local!)
 - (cross sectoral) cap and trade yes, but time to implementation might be long
 - Carbon price, yes but \$50/tonne is only \$0.12/litre for gasoline

National measures should include:

- Fuel economy standards on all types of vehicles

 30-50% reductions in energy intensity by
 2050 seem possible for most
- 2nd Gen Biofuels yes but we should not push this too fast! Low carbon fuel standards can help
- EVs/FCVs but relatively high cost and massive infrastructure investments and coordination will be needed
 - PHEVs as an incremental approach
- Local level land use/ modal shift policies (but national gov's can encourage)