
TABLE 9. UTILIZATION OF STATISTICS ON DEATHS IN BRINGING DATA ON COSTA
RICAN POPULATION AGED 5 AND OVER IN i950 FORWARD TO 1955

Ses 4114 og. '" Populotion D.aths Estimoted Ag. of cohort
cohort in 1950 .numerot.d, Som., otIributed to populotion, in 1955

(years) 1950· smoothedb cohort 1955 (yeors)

Males

5- 9.......• 56,789 594 56,195 10-14
10-14 ........ 49,734 48,814 364 48,450 15-19

15-19 ........ 40,418 41,773 448 41,325 20-24
20-24 ........ 37,671 36,212 478 35,734 25-29
25-29 ........ 28,647 29,327 460 28,867 30-34

30-34........ 23,851 24,297 530 23,767 35-39
35-39........ 22,908 22,184 557 21,627 40-44
40-44........ 18,310 18,446 574 17,872 45-49

45-49.•..•... 14,140 14,568 704 13,864 50-54
50-54•••....• 12,313 11,579 764 10,815 55-59
55-59 ........ 7,889 8,747 859 7,888 60-64

60-64.•.....• 7,667 6,965 990 5,975 65-69
65-69..•..... 4,716 5,088 1,031 4,057 70-74
70-74•.•..... 3,331 3,180 980 2,200 75-79

75-79 ........ 1,860 763 1,097 8Q-84

80-84 ........ 1,073 1,046 746 85 and over
85 and over ... 719

Females

5- 9........ 55,367 502 54,865 10-14
10-14 •.•••..• 48,555 48,611 310 48,301 15-19

15-19 ........ 43,826 44,010 429 43,581 20-24
20-24 ........ 39,386 38,679 492 38,187 25-29
25-29 ........ 30,491 30,595 470 30,125 30-34

30-34........ 23,705 24,830 541 24,289 35-39
35-39 ........ 23,930 22,622 598 22,024 40-44
40-44 ........ 18,074 18,548 536 18,012 45-49

45-49........ 13,966 14,226 564 13,662 50-54
50-54 ........ 11,853 11,274 645 10,629 55-59
55-59 ........ 7,827 8,518 770 7,748 60-64

60-64........ 7,248 6,649 880 5,769 65-69
65-69 ........ 4,420 4,782 960 3,822 70-74
70-74.. ...... 3,227 3,039 904 2,135 75-79

75-79 ........ 1,768 737 1,031 80-84
80-84........ 1,147} 1,280 707 85 and over
85andover... 840

• Exclusive of individuals whose ages were not reported.
b By smoothing formula presented in p. u. Smoothing appears desirable owing to irregulari-

ties probably due to inaccurate age reporting, such as the apparent excess of women aged 35-39
over women aged 30-34.

III. SOME CONCEPTS OF ABRIDGED LIFE TABLES
AND LIFE-TABLE CONSTRUCfION

131. The core of the methods of population projec
tions described here consists in the use of a system of
model life tables to calculate the numbers of persons in
each cohort of a population who will survive during
successive time intervals in the future. The derivation
of these model tables is briefly described in the appendix,
where the survival ratios, needed for the population
projections, as well as other functions of the life tables
are tabulated.
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132,. Though the actual population projection may be
carried out entirely by the tabulated survival ratios, it is
first necessary to establish which of these ratios are
appropriate to the given case, i.e., which ratios express
most nearly the current and expected future mortality
conditions. Survival ratios are not given directly in
official statistics but must be calculated or otherwise de
rived by reference to the statistical information which
exists. In almost every case, at least one step in the



general procedure of life-table construction is involved,
despite all simplifications of the procedure. Some knowl
edge of the relevant mortality functions and of their
interrelations will therefore usually be needed. The pur
pose of this chapter is to establish the concepts, in sim
plified form, which are needed to describe the relation
ship of survival ratios to other statistics relating to
mortality.

133. Part A introduces and illustrates the main life
table functions, In part E, consideration is given to those
interrelations of the several functions which have to be
taken into account in particular situations. Only
"abridged" life tables, i.e., tables with functions by five
year groups rather than for each year of age, are con-

sidered. The emphasis in the presentation is on simplicity
and expediency, abstraction being made from the more
rigorous mathematical techniques used in actuarial
science.

A. THE CHIEF FUNCTIONS COMPRISED IN A LIFE TABLE

134. The starting point for the calculation of life
table values is usually the computation of death rates
for the various age groups.: From these rates other
functions are derived, and from the latter functions
survival ratios are derived, expressing the proportion
of persons, among those who survive to a given age,
who live on and attain the next age level.

TABLE 10. DERIVATION OF SPECIFIC DEATH RATES (m,,) FROM STATISTICS OF

DEATHS AND POPULATION BY SEX AND AGE, LUXEMBOURG, 1946-1949

DftIM B."fItWGI4tl A_o..~Suo.o,. .ur;:,'ioII .,m/u dI rllt..
i. (;or, 1946 IHl 1948 IH' A_a...

1 __
1946-1H1

s) 1946-1H' 1947 (1.000 -.>

Males
0••.•.•••.•......•... 188 145 142 116 148 2,082 71.1
1- 4................• 27 25 19 23 24 7,640 3.1
5- 9................. 18 19 8 9 14 9,714 1.4

10-14•..•....••....... 15 10 7 13 11 9,947 1.1

15-19................. 20 20 20 21 20 12,437 1.6
2()-24................. 39 24 23 24 28 11,843 2.4
25-29.•........•...... 34 29 25 13 25 10,057 2.5

3()-34•.........•...... 34 30 33 31 32 10,143 3.2
35-39•.•..•....•.•••.. 39 61 50 47 49 12,227 4.0
40-44••...•.•..•.•...~ 61 75 64 79 70 12,226 5.7

45-49.............•... 113 98 112 101 106 11,071 9.6
50-54...••.•.......... 101 99 108 102 102 8,996 11.3
55-59................. 114 144 151 141 138 7,430 18.6

60-64••.••..•.••••...• 173 160 190 189 178 6,470 27.5
65-69.•.•............. 198 246 252 228 231 5,432 42.5
70-74••.•............. 224 250 259 292 256 3,928 65.2

75-79••••...•..•.••••. 204 217 220 264 226 2,185 103.4
80-84 .••••.•••..•....• 150 166 153 187 164 946 173.4
85 and over.••••..••.• 75 80 77 103 84 322 260.9

PemtUes
0............•....... 139 113 103 78 108 1,946 55.5
1- 4.......••........ 27 34 19 22 26 7,347 3.5
5- 9.•...•........... 12 9 5 6 8 9,466 0.8

10-14.......•......... 11 10 13 10 11 9,568 1.1

15-19....•...........• 23 17 16 13 17 11,378 1.5
20-24.•.•........•..•. 23 22 20 21 22 11,468 1.9
25-29................. 31 27 25 18 25 10,327 2.4

30-34.•....•...•...••. 37 28 16 16 24 10,049 'Z.4
35-39..•.•...........•. 35 36 27 27 31 11,925 2.6
40-44 .•..••..•........ 57 49 36 36 44 11,956 3.7

45-49.•........•...... 68 62 64 63 64 11,300 5.7
50-54.•............... 76 14 88 86 81 9,548 8~S
55-59•.•.............. 100 99 103 101 101 7,808 12.9

60-64 ...••............ 144 153 147 125 142 7,048 20.1
65-69.•..•...•........ 197 191 166 205 190 6,OI~ 31.6
70-74................. 228 248 233 275 246 4,473 55.0

75-79................. 235 224 201 !54 228 2,563 89.0
80-84 .•••.••..•.••..•. 174 176 165 218 183 1,218 150.2
85 and over........... 142 130 96 151 130 497 261.6
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135. Some life tables have been constructed by in
vertinJ this sequence of calculations. Where adequate
statistics on deaths by age were not available, survival
ratios have been inferred from statistics of the popu
lation by sex and age according to two successive census
enumerations; and by working backward from these
ratios, other life-table functions, including the age
specific death rate, has been obtained.

136. The functions in this sequence of computations
to be considered first are: (1) mz, i.e., the death rate for
persons of a given age, x; (2) qz, the probability of
dying within a given age interval; (3) 1z, the number of
survivors to a specified age from an assumed initial
number of births; (4) Lz, the numbers of years lived
collectively by those survivors within the given age
interval; and (5) Pz, the survival ratio from one age
interval to the next-higher age interval. Other functions
which will be taken up subsequently are: (6) dz, the
number of deaths in the given age interval; (7) Pz, the
probability of surviving during the age interval; (8) Tz,
the collective number of years yet to be lived by the
survivors to a given age; and (9tez, the expectation of
life of an individual of given age.

137. In all these symbols, the suffix "x" denotes age.
Since we are dealing with abridged life tables, by five
year groups of ages, it denotes either the lower limit of
an age group or the entire age group, depending on the
nature of the function."

1. Functions in the basic sequence for computation of
survivalratios

138. Table 10 illustrates the derivation of age-specific
death rates from statistics for the Grand-Duchy of
Luxembourg for the years 1946 to 1949. A census was
taken at the end of 1947, a date which is central for the
1946-1949 period. Dividing the average annual number
of deaths in each sex-age group by the population of
each group at the middle of the penod, and multiplying
by 1,000, the first function of the sequence, namely the
age-specific death rates, 1,000 mz, is obtained. Owing to
sharp differences in mortality .immediately after birth
and in subsequent ) ears of age, it is of some importance
to compute separately ms, i.e., the rate for the first year
of life, and mN , i.e., the rate for the following four
years. Beginning with age 5, the rates are computed by
five-year groups.

139. Averaging the numbers of deaths during four
years in this Instance, is desirable both because of the
smaU'numbers of deaths in some age groups and because
of year-to-year fluctuations in the factors, of .mortality.
Where ages at death are frequently misreported, fluc
tuations can be smoothed out by the same formula sug
gested previously for smoothing a population age dis
tribution. In the case of deaths, however, the formula
cannot be applied to the first two age groups because the
characteristic shape of the distribution would produce a
major distortion.

140. When the mz-values have been obtained, the re
maining functions can be calculated as will presently be

If Notations suchas .q",.Lz, etc., are in actuarial usage, where
the suffix "n" refers to the width of the age group. Thus, for a
five-year group, n becomes 5, while for single-year ages it
equals 1. This qualification is important for mathematical dem
onstrations, but need not complicate the presentation of the
subject in thischanter.
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explained. The results of the calculations are shown for
Luxembourg males, in Table 11. A brief explanation
for each column is given below.

TABLE 11. SoME FUNCTIONS OF AN ABRIDGED LIFE
TABLE FOR LUXEMBOURG MALES, 1946-1949

AJ:-Ir:,ifie Li/,-ltJble SfU"liflO/l'llo SfU"liflO/l'l in
SfU"lillOl

A"i" '"'I
ratio

at rate deathrate 'SIJ&14" 4" vovp (P.)
(S) (1,000-.,) (1.000 Qs) (1.) (La) (Pb-O.93S~

0 .......... 71.1 63.0 100,OOO} 467,715 0.98621-4........ 3.1 12.0 93,700

5-9 ........ 1.4 7.0 92,576 461,260 0.9937
10-14....... 1.1 5.5 91,928 458,375 0.9933

15-19....... 1.6 8.0 91,422 455,282 0.9901
20-24 .... '" 2.4 11.9 90,691 450,755 0.9879
25-29 ....... 2.5 12.4 89,611 445,278 0.9859

30-34 ....... 3.2 15.9 88,500 438,982 0.9822
35-39 ....... 4.0 19.8 87,093 431,155 0.9761
40-44 ....... 5.7 28..! 85,369 420,848 0.9626

45-49 ....... 9.6 47.0 82,970 405,100 0.9490
SO-54.••.... 11.3 55.1 79,070 384,458 0.9284
55-59 .•..... 18.6 89.1 74,713 356,922 0.8918

60-64 .•..... 27.5 129.1 68,056 318,315 0.8412
65-69 ....... 42.5 192.9 59,270 267,768 0.7676
70-74 ....... 65.2 281.3 47,837 205,545 0.6649

75-79 ....... 103.4 410.0 34,381 136,662 0,5224
80-84. . . . . .. 173.4 592.2 20,284 71,390} 0.307585 and over.. 260.9 1,000.0 8,272 31,406

141. The first column, x, indicates the age groups to
which the functions apply. The second column, age
specific death rates, is taken from table 10. In keeping
with conventions in demography, these rates are ex~

pressed per 1,000, though this IS usually not done in
actuarial tables. As in all life tables, this function de
creases sharply from birth onward to attain a minimum
near the age of 10; it then rises with increasing age, at
first gradually, then more sharply.

142. The third column shows the "life-table death
rate", 1,000 qz. In actuarial usage, this function ex
presses the probability that an individual about to enter
an age group will die before reaching the upper limit of
that age group. Thus, of 1,000 children born, it is ex
pected that 63.0 will die before attaining one year of
age; and of 1,000 individuals aged exactly 15 years,
8.0 are expected to die before attaining the precise age
of 20.

143. From the demographic point of view, a life
table is regarded as a theoretical model of a population
which is continuously replenished by births and depleted
by deaths. In this context, the qz values can be regarded
as being in the nature of death rates, though different
from the specific death rates symbolized by mx • Whereas
m, relates the number of deaths to the persons living
within each age group, qz relates the same number of
deaths to the persons who, within a particular year, enter
that age group. If the age group is of one year only,
as in the case of age 0, qz is somewhat smaller than m,
because there are more entrants into the age group dur
ing each year than persons living within it at any time,



since some of those who enter die while in the group.
In the case of a five-year group, q,.has a value approach
ing five times the value of m,., because there are nearly
five times as many persons living in the group as enter
it during anyone year. For the terminal age group,
1,000 q,. is 1,000 because all individuals die eventually.

144. The fourth column, survivors to the given exact
age, is symbolizedby 1,., but here the suffix "x" indicates
the lower limit of each age group. As in most life tables,
100,000 births are assumed and the 1,. function shows
how many of the 100,000 reach each age. When the
tables are used for demographic purposes, the same
100,000 births are assumed to occur every year.

145. The fifth column, L,.,has two different meanings,
depending on whether an actuarial or a demographic
viewpoint is taken. From the actuarial point of view,
the L,.-values represent the numbers of years that will
be lived collectively within anyone age interval by a
cohort numbering 100,000 at. birth and subject to the
given mortality conditions. For example, if no deaths
occurred up to age 5, the 100,000 children collectively
would live 500,000 years up to that age. The ravages of
mortality are reflected by the diminution of the L,. func
tion from one age interval to the next. From a demo
graphic point of view, the L,. function represents the
age composition of a population which is constantly re
plenished by births at the rate of 100,000 per year and
depleted by mortality at the rates represented by the
q,.or m, function. Owing to the assumed constant num
ber of births, this hypothetical population, and every
one of its age groups, will be of a constant size; it is
therefore described as the "stationary" population corre
sponding to the particular life table. In this case, it would
total 6,207,216 individuals.

146. The last column, P,., shows the proportion of
persons, among those living in the indicated age groups
of the "stationary" population, who survive until they
are 5 years older. This ratio attains its maximum near
the age of 10 and then declines, at first gradually and
then more rapidly. At the top of the column, the ratio
Pb is given, that is, the proportion of survivors to age
groups 0-4, at the end of a five-year period, out of a
cohort of births occurring at a constant rate during the
five-year period. The remaining values of P,. shown in
the column apply to five-year age groups, with the ex
ception of the last value, Pso+, which represents the pro
portion of persons, among the group aged 80 and over,
who survive 5 more years, being 85 and over at the end
of the period.

2. Derivation of the sequence of functions from
age-specific death rates

147. The mathematical interrelations among the sev
eral functions in some instances can be expressed accu
rately only in terms of integral equations. Since this is
not a treatise on actuarial techniques, however, the pre
cise mathematical relations need not detain us here.
The transformation of the age-specific rates, mx, into
life-table death rates, qx, is of such a nature. The age
specific rates relate to population segments some of
which have already died as a result of the mortality con
dition expressed by the rate itself. In addition, for the
most part, they relate to five-year age groups, whereas
the qxvalues relate to the annual number of entrants into
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each of these groups. There is no simple arithmetical
procedure for accurate conversion of m,.-values into the
corresponding qx-values or vice versa, but tables have
been constructed with the aid of which the transforma
tion can be effected very rapidly." If such tables cannot
be readily obtained, the somewhat less accurate short
cut procedure described in part B of this chapter can
be used.

148. A direct arithmetical procedure is used to obtain
the numbers of survivors (Ix) to exact ages on the basis
of the life-table death rates (qx). Beginning with the
assumed 100,000 births (10), qo (in this example, 63.0
per 1,000) is applied to calculate the deaths in the first
year of life (6,300 in this case), and these are sub
tracted from the original 100,000 to compute the num
ber of survivors at the exact age of one year. The
process of multiplication and subtraction is repeated for
the successive age groups until all values of Ix are
obtained.

149. The transformation of I, into L,.is mathematically
complex if a very high degree of accuracy is sought.
Fortunately, a few simple arithmetical procedures are
quite sufficient if only a close approximation is required;
the errors involved in this simpler procedure are, on the
whole, slight and for the most part negligible. One pro
cedure can be used with respect to all age groups from
5-9 to 80-84. Separate procedures apply to the calculation
of the two extreme values, Lo-. and L85+.

150. For age groups 5-9 to 80-84, it is quite sufficient
to assume that L,.equals five times the arithmetic average
of 1+ and 1x+5•

151. Owing to the very unequal distribution of deaths
over the first five years of life, this procedure would be
quite unsatisfactory for the computation of Lo-,' A
reasonably good approximation, however, is obtained by
assuming L, (i.e., for the first year of life only) to equal
0.25 10+0.75 11 (in the given example, 25,000 plus 0.75
times 93,700, which is 95,275) ; and by assuming that
~_. equals 1.9 11+2.1 15 (in the present example, 1.9
times 93,700 plus 2.1 times 92,576, which is 372,440).
These assumptions, taken together, lead to the formula
Lo_. = 0.25 10+2.65 11+2.1 15 (and to the calculated
result, in this instance, of 467,715).

152. Experience has justified the use of a very simple
formula for an approximate computation of L8 5+. Ac
tually, as will be explained further on, the Lx-value for a
terminal age group equals the lx-value for the initial age
of the group multiplied by the expectation of life at that
age. It happens by a mere coincidence that, in most avail
able life tables, the expectation of life at the age of 85
very nearly equals the common logarithm of 185 when
185 is expressed for 100,000 births. An estimate of Lu +

is therefore easily obtained by multiplying 185 by its own
logarithm. In the present example, 185 amounts to 8,272

.. Among the best tables of this kind are those of Reed and
Merrell, which were used in the calculation of the example
shown here. For the original publication of these tables, see
Lowell J. Reed and Margaret Merrell, "A Short Method for
Constructing an Abridged Life Table", The American Journal
of Hygiene, Vol. 30, No.2, September 1939. The original publi
cation has been reproduced in full in A. J. Jaffe's Handbook of
Statistical Methods for Demographers, United States Bureau of
the Census, Washington, D.C., 1951.



and the logarithm of that figure amounts to 3.91761
which may be assumed to be the approximate expecta
tion of life, in years, at this age. The product of these
two figures is 32,406, the required value for Lss+.

153. The derivation of survival ratios (Ps) from sur
vivors in age groups (1....:) merely requires division of
successive pairs of I....:-values. Thus, dividing L I -o
(461,242 in this example) by Loo4 (467,715), we obtain
0.9862, the required figure for P0-4' In other words, of
1,000 persons living in the age group 0-4, 986.2 are ex
pected to be alive five years later when their ages are
5-9. The values of P, (survival from births) and Pso+
require separate mention. The first of these is computedbr dividing Lo-t by 500,000, the assumed number of
births during a five-year period. The second is obtained
by dividing Lso+, i.e., the sum of Leo-St and Lel+' by Lel+'

3. Other functions of the life table

154. Table 12 shows those functions which are usually
presented where a life table is published for actuarial
uses. The first three columns, relating to age groups,
survivors to specified ages, and life-table death rates
have already been discussed. Another function, not
shown here, is that of px, or the probability of survival
from one specified age to another, which is simply ob
tained by subtracting qx from unity (or, where the rates
are expressed per 1,000, 1,000 px= 1,000-1,000 qx).

155. Column (4) of table 12presents the d.-function,
which is the number of deaths occurring within an age
group, from the lower to the upper limit of age, on the
assumption of 100,000 initial births. The sum of the
d, values for all ages equals 100,000, representing ex
tinction of the cohort of 100,000 births. Near age 10,
the dx-function attains a minimum. It then rises towards
a maximum at some relatively advanced age, after which
it falls off again. This function can beobtained by sub
traction of successive values of Ix. The function can

also be conceived as an age distribution of deaths in a
/Istationary" population.

156. Column (5), which represents the Tx-function,
indicates ·the number of years that will be lived collec
tively, from the given age onward, by the survivors to
that age from the cohort of 100,000 births. This function
is obtained by cumulative addition of the I....:-function
(column 5 in table 11), from the bottom up, i.e., begin
ning with Lu+ and adding Leo~I4' 1...,1-'10' and so forth.·'

157. The last function, °ex, represents the individual
expectation of life. If, as in this example, 100,000 in
dividuals at their birth are expected to .live, collectively,
6,207,216 years, then the average individual can expect,
at birth, to live 62.1years. Similarly, expectations of life
at other ages are obtained by dividing the corresponding
Txby the corresponding 1x. In the first few years pf life,
expectation of life rises until the relatively heavy risks
of dying in infancy and early childhood are past. There
after, with advancing age, the expectation of life de
clines though never by as much as the increase in age.
For instance, an' individual aged 60 years may expect
to live another 15years (Oeeo being 15.2), i.e., up to about
the age of 75. But those who do reach 75 years of age
have a further expectation of 7 years of life uJl to the
age of 82.

B. PRACTICAL DERIVATIONS OF LIFE-TABLE FUNCTIONS

158. The comparatively simple procedures so far de
scribed are adequate for the construction of an approx
imate abridged life table. The detailed procedures can,
of course, be modified, but the general sequence of cal
culations should be retained.

.. In order to obtain a separate value for T., it was also neces
sary to compute Le and L_ by the separate formulas given On
p. 23. The resulting values of Le and L.-. were 95,275 and
372,440, respectively.

TABLE 12. ABJUDGED LIFE TABLE FORLUXEKBOURG KALES, 1946-1949

0...................... 100,000
1- 4................... 93,700
.5- 9 " . 92,576

10-14 _. . .. . .. .. . . .91,928

(1)
s

15-19 ..
20-24 ..
25-29 .

30-34.•••............•..
35-39 .
40-44 ..•..•.•........•...

45-49 .
50-54.•.•.•........••....
55-59 , ..",..•........

60-64 .
65-69 : •....•.
70-74 ....•....... '.•.••..

75-79 .
80-84...........•••....•.
85 andover .

91,422
90,691
89,611

88,500
87,093
85,369

82,970
79,070
74,713

68,056
59,270
47,837

34,381
20,384

8,272

J)/J ", ~ ~
(6)
•••

63.0 6,300 6,207,216 62.1
12.0 1,124 6,111,941 65.2
7:0 648 5,739,501 62.0
5.5 506 5,278,241 57.4

8.0 731 4,819,866 52.7
11.9 1,079 4,364,584 48.1
12.4 1,111 3,913,829 43.,7

15.9 1,407 3,468,551 39.2
19.8 1,724 3,029,569 34.8
28.1 2.,399 2,598,414 30.4 ,

47.0 3,900 2,177,566 26.2
55.1 ',357 1,772,466 22.4
89.1 6,657 1,388,008 18.6

129.1 8,786 .,031,086 15.2
192.9 11,433 712,771 12.0
281.3 13,457,' 445.003 9.3

410.0 14,096 239,458 7.0
592.2 12,012 102,796 5.1

1,000.0 8,272 31,406 3.9
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159. This manual provides a scheme of model life
tables, in which survival ratios as well as certain other
functions are tabulated. Where these model tables can
be adapted to the purpose of a specific population projec
tion, it is not necessary to go through the entire proced
ure of constructing a life table. Quite often, the appro
priate survival ratios can be inferred from the scheme
presented here, by reference to some other function for
which values have been obtained from available statistics.

160. Rough calculations will often suffice as a basis
for the selection of survival ratios.

1. Ratio functions and cumulative functions of the
life table

161. It is useful to distinguish those functions of the
life table which are in the nature of ratios from those
which are the results of cumulative addition or subtrac
tion. The first type comprises age-specific death rates
(mx), life-table death rates (qx), and survival ratios
(Ps ). All these rates, though differently derived, are
closely related to each other. If one of these functions is
known, reference to a system of model life tables makes
it possible to estimate immediately the approximate
levels of the other two functions, without any further
calculations. For instance, supposing that m, has been
determined with respect to all age groups, the model life
tables can be used to assess the approximate mortality
levels which these particular rates represent. The sur
vival ratios, Px, corresponding to the same general mor
tality levels can then be located in the tables, without
much further computations (see chapter IV).

162. Other functions, like the specific values of Is,
L, and Tx, do not provide an equally good indication of
the corresponding values of Ps. For example, a given
value of 120 (survivors to the age of 20) may be the
result of high mortality in infancy and low mortality in
adolescence, or vice versa. Since the function required
for population projections is Ps, given values of Is,
Lx or Tx have to be 'converted into corresponding values
of qll or PII before direct reference can be made to the
model life tables.

2. Functions corresponding to a "general" level of mor
tality under average conditions

163. The expectation of life at birth, Deo, can be con
sidered in a different cate~ory. It is both the result of
cumulation of specific values (TC/.) and a ratio (by divi
sion by 10 ) , And it is the one synthetic measure by which
the "general" level of mortality can be summarized in a
single figure, The model life tables pr~ent those com
binations of life-table functions which, under average
conditions, are likely to be found if expectation of life
at birth attains a certain value. Actually, such average
conditions never occur and deviations from the pattern,
as implied in the model, must be expected. For example,
though °eo may be SO years, mortality rates at some ages
may be higher, and at other ages lower, than indicated
by the model life table for Deo equal to SO. By and large,
deviations from the average pattern may be relatively
small, but unusual situations occur as where adult mor
tality is unusually high and infant mortality low, etc.

164. If specific information on mortality conditions
by age is not available and there are no special reasons
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to suppose that the conditions are unusual, perhaps the
best estimate that can be made is that given in one of
the model tables. A model table may be found, for
example, which in the given instance would yield the
same annual number of deaths as actually recorded. It
may then be assumed that the distribution of death rates
by age is the same as that of the model table.

3. Derivation of required specific functions whereratio
functions are not given

165. The model tables can be used directly to deter
mine survival ratios for each age, if the age-specific IDa
or qll values are determined. Even where specific infor
mation on mortality is available, however, these ratio
functions are sometimes not determined.

166. It may be that an incomplete life table is at hand,
giving only the Ill-values. In that case, by taking succes
sive differences, the dll-values can be obtained, and divi
sion of dll by III yields the qll values, from which corre
sponding survival ratios can be inferred by means of
the model tables.

167. Again, it may happen that the Lx-values are
available. In that event, the specific survival ratios should
be computed from the given Lx-values, instead of being
inferred from the Lx-values in the model life tables. The
same applies if the given values are those of T ll, from
which Lll-values are obtained by successive subtractions.

168. It may also be that only Dell-values are available.
These cannot very readily be converted into other life
table functions, though approximate values for some
other function might be estimated by repeated trials,
using some of the values tabulated 10 the model life
tables.

169. This case is much simplified if, as sometimes
happens, the two functions for which values are given in
the available incomplete life table are Dell and Ill' Ts can
be calculated by multiplying Dell with Ill; from Ts, Lx is
obtained by successive subtractions, and Ps, the age
specific survival ratios, by successive divisions of La.

4. Useof survival ratios computed from census statistics

170. In paragraph 135 of part A of this chapter, it
was mentioned that life tables are sometimes constructed
by calculating Ps values from census data. This method
is advantageous where adequate statistics on deaths by
age are not available, but where the ~e composition of
the population has been determined 10 two successive
censuses. No survival ratios can be obtained by this pro
cedure in respect of children born during the census
interval. The details of the procedure are sometimes
highly complex, involving refined methods of interpola
tion and graduation. In the present context, however,
only the survival ratios themselves are of immediate in
terest and there is no need to be detained with the com
plexities of computing other functions of the life table.

171. In computing the ratios of survival from one
census to another, care must be taken that the numbers
ascertained at the more recent census represent as nearly
as possible the survivors of the cohorts enumerated at
the previous census. Where migration has been impor
tant, something must be done to avoid distortion of the
ratios by this factor. In a population mainly affected by



immiwation, this is sometimes effectively done by re
stricting the inter-censal comparison to persons born
within the country. Other factors which can vitiate the
computations are faulty enumeration of some or all age
groups, and mis-statement of ages. For graduation to
eliminate the effects of age mis-statements, the formula
presented in part B of chapter II may suffice if further
adjustments are made at a later stage by reference to
model life tables (as will be shown in the next chapter) ;
however, the age mis-statements may be such that an
other more refined formula should be employed.

172. If the interval between the two censuses is five
years, it is possible to compute directly the five-year
survival ratios for five-year time periods which are re
quired for the population projections. But additional
problems arise if the census interval is longer or shorter
than five years. If the interval is ten years, survival ratios
for five-year age groups over ten-year periods can be
calculated. A method for transforming such ratios into
ratios for five-year periods is presented in the next Chap
ter. The transformation in this case is relatively easy
because the ratio for the ten-year period equals the prod
uct of ratios of two successive age groups for five-year
periods. If the census interval is not a multiple of five
years, the procedure becomes more complicated, but it
is still possible to obtain rough estimates for survival
ratios corresponding to five-year time periods."

5. Short-cut procedures
173. For an approximate computation of P,,-values

(survival ratios) from m,,-values (age-specific death
rates), only two steps are required. Though it is sug
gested to find P,,-values from the model life tables, this
short procedure may sometimes be used as an alternative
approximate computation.

174. As a first step, m, may be converted into q" with
out recourse to detailed tabulations of the relatiortships
between these functions." This may be necessary, where
sucntabulations cannot be readily obtained. The approx
imate conversion can be made by means of factors by
which m, must be multiplied to result in the required q".

175. It has been noted in paragraph 143 of part A of
this chapter that qo is always somewhat smaller than mo.
Actually, qo is in the nature of an infant mortality rate,
since infant deaths are related to births. The infant mor
tality rate, if known, may very well be substituted as an
approximate value of qo'SI Otherwise. the following con
version table may be used:

CotI§icialfor &OlIo
l.()()()"" _riorIlo l.ootJt-
29.................................... 0.925
55 '............ O.~O

110.................................... 0.85
170.................................... 0.80
240..................... 0.75
II The procedure then involves age cohorts which do not coin

cide with conventional five-year groupings at both censuses, as
well as the use of survival ratios for a fraction of a five-year
period. With the help of some subsidiary estimates, however,
the procedure can be adopted for the present purposes.

II Such as the Reed-Merrell tables referred to above.
II The infant mortality rate is not precisely q.. because: deaths

are here related to births occurring at the same time, e.g., in the
same year. Not all infants dying in one calendar year were born
in the same year, and some of the infants born in a given year
will die, before reaching one year of age, during the next year.
Nevertheless, the difference between the infant mortality rate
and ql is usually slight.
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Other conversion factors can be interpolated for differ
ent values of mo. In the example of Luxembourg, 1,000
m, for males was found to be 71.1 ; the corresponding
value of 1,000 q, would be about 0.89 times this figure,
i.e., about 63.3. This is a fairly close estimate since,
according to the Reed-Merrell tables. 1,000 qo in this
case is 63.0.

176. The relationship between mN and qt-, can simi
larly be summarized. As has been noted, the latter will
always be somewhat less than four times the former,
since this is a four-year age group. The following con
version table will suffice for rough estimates:

CotI~iaIftw_
1.OOOmS-f 111,_10 1.OOO!ls-f
8..................................... 3.8

21..................................... 3.6
36..................................... 3.4
55..................................... 3.2

For Luxembourg males, 1,000 mN was found equal to
3.1; by extrapolation from the conversion table the ap
propriate factor is found to be about 3.9, which gives an
estimate of 12.1 for 1.000 qx-nearlY the same as the
figure 12.0 obtained with the use of the Reed-Merrell
tables.

177. For five-year age groups, finally, q" will always
be'less than five times mx. This difference will be slight
when m, is small, but appreciable for large values of mx.
The following conversion table may be used, with inter
polations where required:

Cotilidftd/or _
1.~ _riorIlol.000ra
10...... . . . . . .. . . .. .. . . . .. . .••. . .. . 4.9
45............ 4.5

100.................................... 4
160.................................... 3.5
240.................................... 3

178. With these three conversion tables, values of qx
for all age groups can be estimated very rapidly. Once
these have been obtained, they can be rapidly trans
formed into corresponding values of px. i.e., the prob
ability of surviving each exact age interval. since Px
equals 1-q". This being accomplished, approximate
estimates of P '" i.e., survival ratios trom one age group
to the next. can be obtained very directly, as follows.

179. For five-year age groups, Px approximates the
arithmetic average of Px and Px+I' The approximation is
quite close where p" is large, i.e., where qx is small. For
age groups affected by relatively high mortality, i.e.,
especially at advanced ages, this short-cut computation
results in a more or less appreciable underestimate of
Px. This is a defect of the method, but not a severe one
for the present purposes. All values for P,., from PI"
to P11-70' can thus be approximately established without
any intermediate computations. The values ofP, (sur
vival from births to ages 0-4) and Pso+ (survival from
ages 80 and over to ages 85 and over), and also of P0-.'
must be estimated differently. The following empirical
formulae are approximately correct:

1. Pb=0.05+po (0.53+0.42 Pt-c)

2 P PO·Pl-. (l+ps-o)
• 0-' 2 P

b

3. Pso+=0.8 PrI-re-OJ

180. Table 13 presents the results of the computation
of q" and Px-values by these short-cut procedures. com
pared with the q" and Px-values previously obtained.



TABLE 13. LUXEMBOURG MALES, 1946-1949. COMPUTATION OF SURVIVAL
RATIOS BY SHORT-CUT AND BY LONG PROCEDURE

EsI,_tes by slwrkul procedure
Resultsofc01IIPullJlion

by long procedure
A,. 1.000",," COIlNrsion
(~) factor 1,000 lr. P. p. p.d Pe<

(P6- 0.9351)· (P6- 0.9354)

0 ............. 71.1 0.89 63.3 0.9367} 0.9861b 0.9370} 0.9862
1- 4 .......... 3.1 3.9 12.1 0.9879 0.9880
5- 9 .......... 1.4 5 7.0 0.9930 0.9938 0.9930 0.9937

10-14.......... 1.1 5 5.5 0.9945 0.9932 0.9945 0.9933

15-19 ....•..... 1.6 5 8.0 0.9920 0.9900 0.9920 0.9901
20-24.......... 2.4 5 12.0 0.9880 0.9878 0.9881 0.9879
25-29 .......... 2.5 5 12.5 0.9875 0.9858 0.9876 0.9859

30-34.......... 3.2 5 16.0 0.9840 0.9820 0.9841 0.9822
35-39.......... 4.0 5 20.0 0.9800 0.9758 0.9802 0.9761
40-44 .......... 5.7 5 28.5 0.9715 0.9622 0.9719 0.9626

45-49.......... 9.6 4.9 47.0 0.9530 0.9488 0.9530 0.9490
50-54.......... 11.3 4.9 55.4, 0.9446 0.9276 0.9449 0.9284
55-59.......... 18.6 4.8 89.3 0.9107 0.8908 0.9109 0.8918

60-64.......... 27.5 4.7 129.2 0.8708 0.8398 0.8709 0.8412
65-69 .......... 42.5 4.5 191.2 0.8088 0.7642 0.8071 0.7676
70-74 .•..••.... 65.2 4.3 28D.4 0.7196 0.6530 0.7187 0.6649

75-79.......... 103.4 4 413.6 0.5864 0.4984 0.5900 0.5224
80-84 ..•• , •.... 173.4 3.4 589.6 0.4~~: } 0.2987 • 0.4~:~} 0.3075
85+ ........... 260.9 1,000

• Computed by formula 1 in the accompany- d Computed from the qs values in table 11,
in~ text. column 3.

P O- f , computed by formula 2. • From table 11, column 6.
• Pao+, computed by formula 3.

IV. ESTIMATING CURRENT LEVELS AND FUTURE TRENDS OF
SURVIVAL RATIOS WITH THE USE OF MODEL LIFE TABLES

181. The main part of the procedure of a population
projection by sex-age groups consists in multiplying the
numbers of various cohorts living at a given time by
appropriate survival ratios. The needed ratios can often
be worked out individually for a particular population
projection, but the procedure is greatly simplified when
reference is made to a system of model life tables.

182. Tabulated values for a system of model life
tables are found in the appendix, with a note explaining
how they were constructed. To facilitate their use in
formulating assumptions relating to the future trend of
mortality, the tables have been so arranged that they can
be regarded as representing successivestages in a process
of declining mortality.

183. The idea of a coherent system of model life tables
and of some of its uses is developed in part A of this
chapter. Part B describes how, with this system, under
various conditions and with varying amounts of statis
tical information, suitable survival ratios can be quickly
obtained. The application of survival ratios to an actual
population project is illustrated in part C, considera
tion also being given to possible variations in the system
atic assumption of future changes in mortality.

A. THE MODEL LIFE TABLES CONCEIVED AS ONE SYSTEM

184. Each model life table is designed to represent a
typical combination of age-sex specific functions of mor-
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tality, or survival, corresponding to a given general level
of mortality. For present purposes, the general mortality
level has been determined in terms of °eo, the expectation
of life at birth, for both sexes combined. Actually, the
combination of mortality rates, age group by age group,
in any given instance, will always differ more or less
from any pattern taken as typical for the same general
mortality level. It may therefore be necessary to refer
to more than one model life table, and perhaps also to
make interpolations between two successive tables in
estimating the appropriate combination of rates for a
given case.

185. A generalization is here made as to the manner
in which mortality may decline, during successive five
year time periods, from the conditions of one model life
table to those of the next table in the sequence. This gen
eralization requires a rather liberal interpretation. It is
not asserted that mortality will always decline in this
particular way. It may decline more slowly, more rap
idly, or with different rapidity for different age groups.
The model assumption is merely one which is plausible
under some of the more typical conditions to be found
in the world today, and it can be modified as required.
Apart from its uses in the estimation of future mortality
trends, this model assumption also serves as the link by
which the several model life tables are tied together into
a coherent sequence.




