
Chapter III

MALmUSIAN POPULATIONS WITH KNOWN MORTALITY FUNCTIONS,
CONSIDERED AS THE LIMIT IN A DEMOGRAPHIC EVOLUTION

A. Introduction

Throughout chapter II, the populations considered
were Malthusian populations, i.e., populations with
constant mortality and age distribution, and in addition
the mortality was assumed to be known for each sub-set
H(r). Finally, knowledge of one additional condition
made it possible to identify one population, or at least
a small finite number of populations in each sub-set H(r).

Let us take, for example, the case of a stable population
corresponding to a constant and known fertility function
while belonging to a sub-set H(r). This stable population
has been defined by the following properties:

(a) Constant age distribution;
(b) Constant and known mortality;
(c) Constant and known fertility.
In another example (the first example in chapter II)

we arrived at a population with the following properties:
(a) Constant age distribution;
(b) Constant and known mortality;
(e) Constant and known rate of increase.
We can easily spell out the conditions corresponding

to the various cases envisaged in chapter II, and in each
case we shall find a constant age distribution associated
with a known and constant mortality, plus one other
condition.

Let us imagine that in each of these cases we dispense
with the first condition, i.e., the constant age distribution.
We are then left with a set of demographic conditions
which can be imposed on a population from a given
arbitrary initial state. We thus set in motion a process of
demographic evolution, but is it possible to bring out the
simple laws of such a process? That is the problem which
we propose to examine next.

It may be recalled that we have already dealt experi­
mentally, in chapter I, with the case where the given demo­
graphic conditions are those of constant mortality and
constant fertility. We have shown in several actual cases
that in a process of demographic evolution under these
conditions the population approaches the stable Malthu­
sian population corresponding to the given laws of
mortality and fertility. This is the case dealt with by Lotka
in the work already referred to.1

VARIOUS PROBLEMS INVOLVED

We can obviously imagine a wide range of problems of
the type which we have defined above and of which the
concept of a limit stable population is an example. All

1 Alfred J. Lotka, Theorie analytique des associations bio­
logiques; J)ell;cieme partie (paris, Hermann, 1939), 149 pp.

the problems in this range are not equally important,
however, and they can be classified in various categories:

(a) Determinate problems. These are problems leading
to population evolution which is not impossible. The
way to find out whether a problem is determinate or not
is to try to compute a population projection, as was
done in chapter I with Lotka's theorem. This theorem
is the very model of the determinate problem. Whatever
the functions PI(a) and qJf(a) and whatever the initial
age structure may be, it is always possible to compute a
projection. Other cases can be envisaged, however,
where the problem is determinate only in general terms.
Let us suppose, for example, that we assume the age
structure CtCa) and the rate of increase r to be independent
of time. The projection will then be calculated as follows:
beginning with a female population Nf{t) having an
age distribution Cf(a) at time t, we calculate the popula­
tion at time t+l by the formula: Nf(t+l)=(l+r)Nf(t)
and we distribute NtCt + 1) according to the distribu­
tion Cf(a). We thus obtain the age distribution of the
population at time t + 1. By repeating the same operation,
we can therefore compute a projection of the age distribu­
tion of the population. If, however, we wish to follow
persons of an initial age group throughout the projection
computed in this way, we must find a number of persons
which will consistently decrease, for if r is too great we
may very well see the number increasing rather than
decreasing. The problem which we have posed is,
therefore, not always determinate. It may, in some cases,
become impossible.

We see at the same time what is meant by "impossible".
What we are referring to is a logical "impossibility"-in
the case in question, a survivorship function which does
not decrease. Provided that there is no logical impossi­
bility, however, we classify a case as "possible", even if
this logical possibility leads to a type of population
development which is very unlikely to occur.

(b) Indeterminate problems. Let us suppose that we
assume a crude birth rate b and a crude death rate d.
Starting from an initial population, we can obviously
compute the total number of persons in the population
at any time in the future, but there are an infinite number
of mortality and fertility functions through which such
results can be attained, and we can hardly make any
definite statement concerning these functions. Thus, the
problem can be considered indeterminate.

(c) Indeterminate problems which become determinate
when it is also assumed that the mortality and fertility
functions form part of the "universe" of model mortalities
andfertilities. When this assumption is made, the preceding
problem, for example, becomes determinate in most
cases. For a given age structure there is, generally
speaking, only one model mortality function giving a
crude death rate equal to d and only one model fertility
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function giving a crude birth rate equal to b. The r~serva­
tion "generally speaking" is necessary because It may
happen, depending on the given age structure, ~~at
either there is no model mortality or model fertIltty
compatible with the values band d or there are several
such functions.

(d) Impossible problems. We cannot, for example,
assume as given the mortality and fertility functions as
well as the rate of variation. The first two functions are
sufficient to determine the problem; the third is superflous
and may make the problem impossible.

Whe shall proceed to consider only problems of the
first type, i.e., determinate problems. It will therefore be
necessary to verify, in each case, that the conditions which
we set are not contradictory or indeterminate at any time
during the evolutionary process.

These "determinate" problems correspond to the
various examples of the determination of Malthusian
populations studied in chapter II. The examples are the
same, in fact, except that the condition of an invariable
age structure has been dispensed with. We shall take
them up successively, after first defining the general
conditions of possibility.

CONDITIONS OF POSSIBILITY

Starting from a given initial population, we assume
that the mortality of both sexes remains constant and
that one other demographic characteristic also remains
constant. In order to see whether the process of demo­
g~~~hic evolution defined in this way leads to impossi­
bIhties or not, we need only show that it is in fact possible
in such circumstances to compute, on the basis of the
initial state (period zero), the population at the next
period (period 1), then at period 2, 3 and so forth or
in other words, to show that a "population projection';
can be computed. For an understanding of how certain
contradictions may arise, it may be best to take a specific
example.

Let us take as our initial state (state zero) the female
population of Eastern Germany according to the 1957
census, which we have already used in chapter 1. This
population is given in five-year age groups in the second
column of table III.1. Starting from this initial state let
us keep the mortality constant at level 80 of the i~ter­
mediate model life table (expectation of life at birth for
both sexes of 60.4 years). The survival ratios from one
~ge group to the next over a five-year period are given
III the last column of table III.1. By multiplying each term
of the second column by the corresponding survival ratio
we obtain the number of survivors five years later:
We can thus determine for each group of five years
the female population aged 5 and over. We thus find
that: Ns & over = 8,351,319 for an initial population of
No & over = 9,031,093 (these two figures are given in the
last line of table III.1).

Let us represent by B the average annual female births
during the five years under consideration, and let b, d
and r represent the average annual female rates of
birth, death and natural increase, respectively, during
those five years.

The survival ratio to the year 5 of mean annual births B
is 0.9208 (the first figure in the last column of table IIL2).
In other words, girls aged 0-4 will number, in year 5:

0.9208 B X 5 = 4.604 B

TABLE IlLl. FIVE-YEAR PROJECTIONS BASED ON TIlE FEMALE popu-
LATION OF EASTERN GERMANY ACCORDING TO TIlE 1957 CENSUS

Female population in year Survival ratio (c)
from one

Age group age group to the

(years) o(a) 5 next 0.920S (d)

0-4 440981 0.9731

5-9 706869 429119 0.9914

10-14 410485 700790 0.9906

15·19 617750 406626 0.9865

20-24 748500 609 410 0.9839

25-29 536107 736449 0.9826

30-34 543514 526779 0.9811

35-39 545370 533243 0.9783

40-44 490705 533535 0.9727

45-49 715494 477309 0.9631

50-54 712084 689092 0.9482

55-59 680800 675198 0.9238

60-64 595017 628923 0.8825

65-69 495159 525103 0.8162

70-74 372 892 404149 0.7197

75-79 240 681 268 370 0.5955

80-84 127718 143326 0.3576 (6)

85 and over 50967 63898

ALL AGES. 9031093 8351 319 (b)

(a) Female population according to 1957 census.
(b) Total population aged 5 and over.
(C) Survival ratios corresponding to the level-SO model life table

(expectation of life at birth for both sexes of 60.4 years).
(d) Survival ratio at the end of the fifth year from births spread evenly

over the five years.
(e) Survival ratio over the five-year period of persons aged SO

and over.

while the total population in year 5 will be:

Ns & over + 4.604 B = 8,351,319 + 4.604 B

The mean population during the five years is:

9,031,093 + 8,351,319 + 4.604 B
2 = 8,691,206 + 2.252 B

and the mean annual increase in population is:

(8,351,319 + 4.604 B- 9,031,093)
5

= - 135,954.8 + 0.9208 B.

We then have the following formulae for the rates b,
d and r:

b= B
8,691,206 + 2.252 B

d = 135,954.8 + 0.0792 B
8,691,206 + 2.252 B

-135,954.8 +0.9208 B
r -

8,691,206 + 2.252 B

Let us examine the variations of b, d and r as a function
of B. These quantities are homographic functions of B
and thus the corresponding curves are branches or
equilateral hyperbolae. In graph III.l, the horizontal axis
represents B and the vertical axis represents b, d, and r.
T~e th!ee curves hav~ in common as asymptote a

straIght hne whose abSCIssa is given by:

B 8,691,206
= - 2.252 = - 3,859,000
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0,2

0,5

0,3

o< b < 0.4440 l
o< dm < d < 0.0352 (lILAbis)

-dm< 0 < r < 0.4088

It should be noted, in passing, that knowledge of the
age-specific female fertility rates determines the mean
annual number of births without ever introducing any
contradiction. In order to obtain B, all we have to
do is to apply the fertility rates to the 15-49 age groups
at year zero and year 5. The average of the results obtained
is the number B which is sought.

Let us suppose that we have taken demographic
characteristics satisfying the conditions under UI.A. We
are thus certain of being able to calculate the population
at year 5 on the basis of the initial state. If we wish to
continue beyond year 5 and calculate the population in
year 10, however, we are confronted with a problem
similar to that described above, and we shall, in fact,
encounter such a problem at each new five-year period.
The horizontal asymptotes of the curves representing
the variation of b, d and r are always the same at each
period, because their ordinates depend only on the
mortality, but the vertical asymptote common to the
three curves changes at each period, although its abscissa
is always negative. The ordinates at the origin of the
curves representing d and r also change at each period.
Hoewever, we always have: do = -ro, and do is always
positive.

Finally, if dm represents the highest value of do in the
process and rim the lowest value of do, then band r must
satisfy the conditions:
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Graph m.l. Determination of the conditions of compatibility of
system m.A in the text

• The fact that human fertility rates cannot exceed certain values
causes further limitation as to the possible variation of b, d and r.
This is a different problem, however. We are concerned only with
logical contradictions.

If the conditions defining the process of demographic
evolution involve values of b, d or r which do not satisfy
system (IlI.A) , then it will not be possible to compute
the projection.2

Each of the curves also has as a horizontal asymptote
whose ordinate is given by a straight line:

ba = 0.440

da = 0.0352

ra = 0.4088

We also, of course, have: ba - da = ra.

Finally, the smallest value that B can have is B = 0,
and for this value of B we have:

bo = 0

do = 0.0156

ro = -0.0156

In addition, of course, we have: bo - do = roo
Finally, b, d, and r can vary over that part of their

curves which is shown as a solid line in graph IlL I.
We therefore see that these three quantities cannot assume
arbitrary values during the five years under consideration.
We must have:

(111.1)

This is the basic equation of the process of demo­
graphic evolution with constant mortality and fertility.

In order to solve this equation, we seek a solution of
the form:

B. Limit stable population

BAt) = Aierit + A2er2t + Aserst +... (III.2)

We can thus write:

In all that follows we shall assume that we are dealing
with a case where these conditions are satisfied.

Let us consider a given initial population in which
female mortality and female fertility remain invariable.
We have seen above that, in such a process, the conditions
under lII.Abis are always satisfied.

Let us consider only the female population. The
females of age a at time t, who are the survivors of the
B(t - a) girls born at time t - a, number Bf(t - a)pJ{a).
Consequently, the total female births at time t are written:

A erit + A r2t + A rst +I 2e se ...

= Allltf:e-rlap/(a)cpAa)da

+ A 2l2
ts:e-r2apf(a)cpf(a)da +...

(lILA)I
0< b< 0.4440
0.0156 < d < 0.0352

-0.0156 < r < 0.4088
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We see that if'l, '2, 's etc., are the roots of the equation:

S:e-rllpl(a)q>t<a)da = I (Ill.3)

formula III.2 is the solution ofIlI.I.
We recognize in equation III.3 formula 1I.14 linking

the rate of natural increase, the mortality and the fertility
in a stable population. We have seen that this equation
has a single real root p, which we termed the intrinsic
rate of natural variation.

This root is associated with an infinity of complex
roots, which possess the following two properties:

(1) Let x + iy be one of these roots. We then have:

J:e-(~(!I)IIP/(a)q>/(a)da = 1

which is written:

f:e-:l:1I [cos y a - i sin y a] P/(a)q>tCa)da = I

Where "i" represents V -1.
In separating the real part from the imaginary part,

we obtain: .

l{"e-:l:1I cos yap/(a)q>/(a)da = 1
S 0

f:e-:l:1I sin yaptCa)q>/(a)da = 0

For a given value of y, we have:

f:e-llfSp/(a)q>/(a)da = 1

we therefore have:

{"e-Illlp/(a)<p!(a)da < JlD

e-:l:IIPtCa)<ptCa)da
o 0

from which it follows that:

(! > x.
The intrinsic rate p is therefore superior to all the

quantities x.
(2) If (x + iy) is a root, then the conjugate complex

number (x - iy) is also a root, since system (S)is satisfied
by both quantities. As the number of births B/(t) is
necessarily a real number, the coefficients An corres­
ponding to the two conjugate roots are equal, and we
finally have for B/(t) the formula:

BtCt) = Alit + A2e:l:2t cos Y2t + Ase:l:st cos yst +...
in which p is higher than X2, X3 etc.

We see that the imaginary roots introduce oscillations
in the number of births. Since p is greater than all the
quantities x, as the time t increases indefinitely the term
AleOt becomes preponderant over all the others, the
latters giving rise to damped oscillations.

In other words, the number of births at time t asympto­
tically approaches:

BtCt)- AleOt

i.e., it tends to follow the law of births in the stable
population corresponding to the laws Pf(a) and rpf(a).
The population itself approaches this stable state. It is
this result, arrived at empirically in chapter I, which
constitutes what may be termed Lotka's theorem.

We showed in the first part of this chapter how to
calculate the intrinsic rate, the death rate and the age
distribution of the stable state. Generally speaking, we
confine ourselves to a consideration of these characte­
ristics. For completeness, however, it is also necessary
to calculate the constants Al' A2, As ... Annex I gives
details of a method which makes it possible to determine
the constant Al corresponding to the intrinsic rate p
and thus permits the complete calculation of the stable
state.

(IlIA)

The formula at which we arrive is the following:

Al = f: K;tC~)O)G(a)eQlIda = f:S{a)da

Where

Sea) = K/(a, 0) G(a)
Plea)

Kf(a, 0) represents the number of women of age a at
the starting point and G(a) is a function of a which does
not depend on the initial conditions and is practically
the same, whatever the human fertility and mortality
functions may be.3

In the stable state, the total population N(t) is obtained
by dividing the births by the birth rate:

b= 1

f:e-QIIp/(a)da

Thus we have:

(111.5)

RECONSIDERATION OF THE SPECIAL CASE OF CHAPTER II

We pointed out earlier that the computation of the
intrinsic rate p becomes very easy when the fertility
function rp,(a) is reduced to a single value rpf(27.5). It
was stated that in such circumstances we were dealing
with the "special case". We shall see that in this case the
oscillations in the number of births corresponding to the
complex roots of the fundamental equation do not
disappear with the passage of time.

The basic equation is written:

(;27.5rRo = 1

If we assume that r = x + iy, the equation becomes:

[cos 27.5y+isin 27.5y]e-27.5:1: = _1_
Ro

a The values of G(a) are to be found in table 111.2 below.

48



or, finally: 4.

which breaks down into two equations:

1

\

e-27 •5 :e cos 27.5y ==Ro

e-27.li:e sin 27.5y == 0

whence we have:
sin 27.5y == 0

1
e-27•6 :e ==-

Ro

27.5y== 2h
x==e

The number of births at time t is therefore:

or:
2nt

B/{t) == ellt Al + ~An cos 27.5

Thus, births oscillate continuously a round the expo­
nential term:

Alellt

There will therefore not be any damping out of the
oscillations. In this case, the stable state no longer
appears as a limit state, but rather as a mean value.
n should be noted that the special case is the only case
where the oscillations due to the complex roots of the
fundamental equation are not damped out.

NUMERICAL APPLICATION

Tables IlI.2 and Il13 give an example of the application
of the formula IlIA (for determining the absolute number

1 The solution 27.5k = An would give a negative value for
cos 27.5y, which is impossible, since we have:

e 11.1",

cos 27.5Y=~

of births, B/(t) in the process of projection making based
on the population of Thailand in 1955.

The annual number of births in the stationary popula­
tion is:

Bf{t) == 275,634

The stationary population is obtained by dividing the
births by the crude female birth rate, which is the sa~e
thing as multiplying the births by the female expectatIon
of life at birth (see table II.ll): 275,634 x 62.05
== 17,103,000.

In the second stable population the annual number
of female births at time t == 0 is B/(O) == 308,380.

If we divide this number by the crude female birth
rate bl == 0.02179 (see table II.ll), we obtain for the
total number of persons in the population at time t == 0:

N (011 _ Bf(O) == 308,380 x 1,000 == 14 152000
f 'J - bl 21.79 "

In the case of the third stable population calculated
in chapter I on the basis of the population of Thailand
and the three stable populations calculated in the same
chapter on the basis ofthe population of Eastern Germany
in 1957, we shall confine ourselves to giving the results
of the computations (table IlIA). It was with the aid of
these results that we plotted the straight lines on graphs 1.2,
lA, 1.9, 1.10 and 111 in chapter 1

C. A limit Malthusian population with coustant mortality
and a constant and given crude birth rate

In this second problem, we shall suppose that, starting
off with a given initial condition, we keep the mortality
Pf(a) and the crude birth rate bf constant. This case
corresponds to the third example in chapter II.

We assume, of course, that the condition imposed on
bl in the system of inequalities lIlA bis above is satisfied;
in fact, the relevant in equality is almost always satisfied
for bj, since the uppser limit of bf is always much higher
than the crude birth rates encountered in the human
species.

TABLE m.2. CoMPUTATION OF TIm ANNUAL NUMBBll OF FEMALE BIRTHS IN TIm STATIONARY POPULATION ON TIm BASIS OF TIm POPULATION
OF 1'HAILAND IN 1955

Stationary Product of the
female two preceding Product

population (&) columns ofpreceding
Initial number L(1') Ratio of the (stationary column

Median age Age group of women (per 100000 two preceding births and median
IX (years) K&(O) births) columns O(a) (1') per 100000) age (0)

2.5 0-4 1809 000 460 386 3.930 0.18 0.70740 1.7685
7.5 5·9 1397000 448010 3.118 0.18 0.56124 4.2093

12.5 10-14 1196000 444150 2.692 0.18 0.48456 6.0570
17.5 15·19 1110000 439970 2.522 0.17 0.42874 7.5030
22.5 20-24 987000 434040 2.274 0.13 0.29562 6.0515
27.5 25·29 824000 427035 1.930 0.09 0.17370 4.7768
32.5 30-34 658000 419610 1.568 0.05 0.07840 2.5480
37.5 35-39 549000 411 672 1.334 0.02 0.02668 1.0005

ALL AGES 2.75634 34.5146

<&) Intermediate model life table corresponding to an expectation of life at birth for both sexes of 60.4 years.
(1)) The function O(a) is the same for all populations. See annex I for more details.
(0) The computation shown in this last colum is used in annex I.

49



TABLE III.3. CoMPUTATION OF THE ANNUAL NUMBER OF FEMALE BIRTIIS IN THEa STABLE POPULATION ON
THE BASIS OF THE POPULATION OF THAILAND IN 1955 ( )

Product of the
Product of thetwo preceding

Age group Stationary columns preceding column

Median age (years) births (b) (initial (C) and the "median

a (a) e~a (per 100 000) stable births) age" column (d)

2.5 0-4 1.0220 0.70740 0.7230 1.8075

7.5 5-9 1.0674 0.56124 0.5990 4.4925

12.5 10-14 1.1159 0.48456 0.5408 6.7600

17.5 15-19 1.1654 0.42874 0.4996 8.7430

22.5 20-24 1.2173 0.29562 0.3598 8.0955

27.5 25-29 1.2702 0.17370 0.2206 6.0665

32.5 30-34 1.3268 0.07840 0.1040 3.3800

37.5 35-39 1.3857 0.02668 0.0370 1.3875

ALL AGES 3.0838 40.7325

(3) Intermediate fertility model with constant distribution corresponding to a gross reproduction rate of
1.50 and model life table corresponding to an expectation of life at birth for both sexes of 60.4 years.

(b) Figures taken from table n.ll.
(C) Figures related to time t = O.
(d) The computation shown in this last column is used in annex I.

I l»e-rap/(a)da = !
o b

The population approaches the Malthusian population
corresponding to the function pia) and the crude birth
rate bf.

Population (millions)
NI(t)

Births
BI(t)

Gross reproduction
rate

TABLE IlIA. ABSOLUTE ANNUAL NUMBER OF FEMALE BIRTHS AND or
ABSOLUTE NUMBER OF WOMEN IN THREE STABLE POPULATIONS
COMPUTED ON THE BASIS OF (a) POPULATION OF EASTERN GERMANY
IN 1957; (b) POPULATION OF THAILAND IN 1955

Thus, we have an equation of the same type as equation
lII.3, and the solution sought is:

At time t, we can write for the total female population
Nf(t):

Nf(t) = I:Bf(t- a)p!(a)da

and the births at time t are written:

BAt) = Al/lt + A2/2
t + Aslst +

we have:

NAt) = I:Bf(t - a)pf(a)da

whence we have the equation:

However, we also have:

Nf(O)lot = Alllt I:e-r1apf(a)da

+ A2e
r2t

I:er2apAa)da + ...

D. A limit Malthusian population with constant mortality
and constant rate of natural variation

r t II»Nf(O)e 0 = 0 Bf(t - a)pf(a)da

If we seek a solution of the form:

Let us now suppose that, starting off with a given
initial state, we keep the mortality pia) and the rate of
natural variation '0 constant. We assume, of course,
that the value '0 selected for the rate of variation satisfies
the relevent inequality in system lII.A his. It should be
noted that, if '0 is positive, this inequality is always
satisfied, since the upper limit of, in system lIJ.A bis
is always much higher than the values encountered in
the human species.

We can write for the female population:

Nf(t) = Nf(O)erot

14152 eO.0087t

17103
27 013 e-O. 0167t

6 802 eO.0087t

8003
12064 e-O.Ol67t

308 380 eO.0087t

275634
228 530 e-O.Ol67t

148980 eO.00871

128980
102060 e-0•01571

Bf(t) = All
t + A 2e

r2t + Aserst + ...
where p is the real root and '2, 's ... are the complex roots
of the equation:

(a) Based on East Germany, 1957

(b) Based on Thailand, 1955

1.50.
1.17.
0.75.

1.50.
1.17 .
0.75.
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(IIl.6)

(III.7)

r = F(r)

\ii! 1/ i'dI!!' ,

If we assume that:

r1 = ro

and

A1S:e-f'Oap/(a)da = N(O)

and if r2, ra, ... are the complex roots of the equation:

f:e-rapf(a)da = 0

then the expression:

B ( ) N(O) rot + A rzt + A erst +ft = e ze a···
f:e-roa pf(a)da

is the solution sought.

The crude birth rate is written:

e(rs-rolt
+ Aa N(O) + ...

There is an upper limit to the crude birth rate, so that
we have in reality:

hf = ro - df' and thus hf < ro

It must therefore be true that: r2 - ro < 0, ra - ro < 0,
and so on. ro is therefore greater than all the r2, ra, r4
and so on, and the population tends towards the Malthu­
sian population of the set Ho(r) connected with PI(a),
whose rate of natural variation is equal to roo

E. A limit Malthusian population with constant mortality
and constant crude death rate

Let us now suppose that, starting from any initial
state, we keep the mortality Pf(a) and the crude death
do constant. This case corresponds to the fourth example
in chapter II.

Here again, we suppose that the value do chosen for
the crude death rate satisfies the corresponding inequality
of system III. A his. We have already seen that the in­
equality corresponding to hf in system lIlA his is prac­
tically always satisfied and that the inequality corres­
ponding to r is very frequently satisfied (in practice, it
is sufficient that r should be positive in order for the
inequality to be satisfied). The same does not apply in
the case of d, however.

In the case given as an example in table III.I (where
the initial population is the female population of Eastern
Germany according to the census of 1957 and the
mortality is that of level-80 of the intermediate model
life table), d had to be under 35.2 per thousand and over
15.6 per thousand, although the latter limit, which was
calculated only on the basis of the first years of the projec­
tion, might prove inadequate in the computations. Thus,
the problem posed is impossible unless do falls within
quite narrow limits.

The study of the conditions governing the possibility
or impossibility of the problem is thus of the greatest
importance here, and it can be carried out only when

the initial state, the mortality and the crude death rate
are known. In succeeding pages it will be assumed that
the compatibility of the conditions imposed has been
verified.

The number of females aged a at time t is :

Kf (a,t) = Bf (t-a) Pf (a)

The number of female deaths at time t is:

f:Bf(t - a)pf(a)qf(a)da

and consequently the crude death rate is:

f:Bf(t- a)Pf(a)qf(a)da
do = ---------

f:BAt - a)pAa}da

We thus have the equation:

f:BAt - a)Pf(a) [do - qf(a)]da = 0

The number of births is of the form:

Bf(t) = A1er1t + Az/Zt + As/St + ...
where r1, r2, ra etc., are the roots of the equation:

f:e-rap/(a)[do - qf(a)]da = 0

Taking account of the formula:

Pf(a)qf(a) = - PI(a)

and integrating by parts, we finally have the equation:

(do + r) J:e-raPf(a)da = 1

This is an r equation which can be written:

do = 1f: e-rapf(a)da

We have already encountered the expression F(r) in
connexion with the fourth example in chapter II.
Graph II.9 gave the form of the curve representing the
variation of F(r) as a function of r. The abscissae of the
points of intersection of this curve with the straight line
of the ordinate do are the real roots of equation (III.7).
There are zero, one or two real points of intersection,
depending on the value of do. Equation IIl7 thus has
zero, one or two real roots. It also has an infinite number
of complex roots conjugate in pairs. Let pI and P2 be
the real roots and Xa + iYa, X4 + iY4 etc., the sequence
of the complex roots. We have the following formula for
the births at time t:

Bf(t) = All! t + Azlzt + Asezst cos yst

+ A4ez4t cos Y4t + ...
When the time increases indefinitely, the term corres­
ponding to the largest of the quantities PI, p2, Xa, X4 etc.,
becomes preponderant over all the others. In the preceding
examples, the term which thus became preponderant over
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all the others was always a real one, but this is not the
case here. This is obvious when equation III.7 does not
have any real roots, but it can happen even when real
roots exist. If it is one of the quantities in x which is the
greatest, the births are expressed in the form:

B = AeZ' cos yt
The births continually oscillate around a mean value,

and the limit population is no longer a Malthusian
population.
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We shall confine ourselves to these few cases of limit
populations, but as in the examples in chapter II it would
be easy to imagine many other cases.

In the next chapter, we shall leave the sub-sets H(r)
associated with a given mortality and revert to the general
subject of all Malthusian populations, considering it this
time as an infinity of sub-sets associated with a given
age structure or, in other words, the sub-sets F(r) to
which we have already referred briefly in chapter I.




