Overview of the work of the United Nations Population Division

François Pelletier
Population Estimates and Projections Section

www.unpopulation.org
Work of the Population Division

- (a) Providing substantive support to United Nations bodies, especially to the Commission on Population and Development, and assessing progress made in the implementation of the Programme of Action of the International Conference on Population and Development;
- (b) Facilitating the discussion of key or emerging population issues by experts or Government representatives;
- (c) Preparing comprehensive and sex-disaggregated studies on population issues and population trends relating to fertility, mortality, international migration, HIV/AIDS, urbanization, population growth, population ageing, population prospects, population policy and population in relation to development;
- (d) Disseminating population information and policy-relevant findings in the area of population;
- (e) Supporting capacity development to address population issues through workshops or the dissemination of technical material.
The 2015 Revision of World Population Prospects is the twenty-fourth round of official United Nations population estimates and projections that have been prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. The main results are presented in a series of Excel files displaying key demographic indicators for each development group, income group, major area, region and country for selected periods or dates within 1950-2100. A publication labelled Key findings and advance tables, which provide insights on the results of this latest revision, is also made available here.

Disclaimer: This web site contains data tables, figures, maps, analyses and technical notes from the current revision of the World Population Prospects. These documents do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities; or concerning the delimitation of its frontiers or boundaries.
Population Estimates and Projections

1. Overview of the UN Methodology

2. Cohort-component method and data required

3. Some brief examples on data quality
Overview of the UN methodology

World Population Prospects
(the 2015 Revision was released in July 2015)

- Estimates and projections of population and demographic components for all countries of the world, 1950-2100
- Estimates vs. Projections (focus will be on estimates)
- Demographic components: Fertility, mortality, migration
- De facto concept
Population estimates by age and sex

- We do not “copy” the estimated population from a given country within a time-series.

- We basically start our estimation process in 1950 and generate populations by age and sex using the cohort-component method and information on the different components of the population (e.g. fertility, mortality and migration) while checking for consistency with population counts that are made available overtime.

- This process enables us to maintain some consistency between the different components and the overall population. On the basis of the observed data, adjustments are sometimes required.
Accounting framework and interpolation issues

- It should be stressed that the Population Division, as part of its official population estimates and projections, produces populations by age and sex by five year age groups (e.g. 0-4, 5-9,80+ or 100+) and every 5 years (e.g. for 2005, 2010, 2015 etc.) using the cohort-component method. Values between the 5 year intervals are interpolated; this can make it difficult to accurately reproduce data for intermediary years, especially when the trends fluctuate.

- Though we strive to use or approximate national data, it is sometimes difficult for us to reconcile official national estimates over time. In some cases it is because the estimates have been revised and/or are not consistent over time, or because fluctuating trends are occurring between 5 years intervals (e.g. between 2010 and 2015).
Cohort-component method

- Most commonly used method that accounts for age distribution

a) Population accounting concept

b) Data required

c) Model implementation for closed and open populations
What is population accounting?

\[P_{t+n} = P_t + B_{t,t+n} - D_{t,t+n} + I_{t,t+n} - E_{t,t+n} \]

\[P_{t+n} - P_t = B_{t,t+n} - D_{t,t+n} + I_{t,t+n} - E_{t,t+n} \]

\(P_t \) is the population at time \(t \)

\(B_{t,t+n} \) and \(D_{t,t+n} \) are number of births and deaths occurring between \(t \) and \(t + n \).

\(I_{t,t+n} \) and \(E_{t,t+n} \) are number of immigrants and emigrants from the country during the same period.
Data Required

• Base year **population** by age and sex

• Age-specific **fertility** rates

• Sex-specific life tables (**mortality**)

• Age and sex specific net **migration** rates for the period (**absolute numbers / open populations**)
Computation-closed population

Three important steps to follow!

STEP 1.
Project forward the population in each subgroup at the \textbf{beginning of the time interval} (single/abridged) in order to estimate the \textbf{number still alive} at the beginning of the next interval accounting for those who survive each specific age interval

\[P_{x+n}(t+n) = P_x(t) \times S_{x,x+n} \]

where \(S_{x,x+n} \) is the period-cohort \textbf{survivorship ratios} of persons aged \(x \) to \(x + n \)
Computation-closed population

STEP 2.
Compute the **number of births** for each subgroup over the time interval and add them across groups

\[B(t, t + n) = \sum_{x=\alpha}^{\beta} f_x(t, t + n) \times \frac{n}{2} [P_x^f(t) + P_x^f(t + n)] \]

- \(f_x(t, t+n) \) is the age specific fertility rate in the age interval \(x \) to \(x + n \)
- \(n \) is the width of the age interval
- \(\alpha \) and \(\beta \) are the lower and upper bounds of the childbearing ages
STEP 3
Compute the number of those births who survive to the beginning of the next interval (consider sex ratio assumptions).

\[P^f_0(t+n) = B^f (t, t+n) \times S_{b,0}(t, t+n) \]

Where \(S_{b,0} \) is the survivorship ratios at birth.

The survival ratio from birth to the first age group is:

\[S(b,0) = \frac{nL_0(t)}{n*L_0} \]
IMPORTANT

• The age groups should be of the same width except for the last one

• The projections period is divided into time intervals of the same length as the age intervals (e.g. 5X5)

• Sex ratio assumption (e.g. 105 males per 100 females)
Open Populations

- Dealing with emigration is relatively easy
 => two-exits: two-decrement life table combining the risks of death and emigration

- Dealing with immigration is more difficult, since immigrants are added to the population

A. Assumptions are more often formulated in terms of **absolute numbers** and not by rates (related to policies)

B. Migrants are also exposed to giving births and dying
A few examples of “data issues”
Under-reporting in censuses

Population by age and sex, Males 2001, CANADA
Census vs. Official Estimates
Observing cohorts over time

Comparison of projected and observed male population by age: First set

<table>
<thead>
<tr>
<th>(Cohort) Age group</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1990) 0-4</td>
<td>500,000</td>
</tr>
<tr>
<td>(1995) 5-9</td>
<td>1,000,000</td>
</tr>
<tr>
<td>(1990) 10-14</td>
<td>1,500,000</td>
</tr>
<tr>
<td>(1995) 15-19</td>
<td>2,000,000</td>
</tr>
<tr>
<td>(1990) 20-24</td>
<td>2,500,000</td>
</tr>
<tr>
<td>(1995) 25-29</td>
<td>3,000,000</td>
</tr>
<tr>
<td>(1990) 30-34</td>
<td>3,500,000</td>
</tr>
<tr>
<td>(1995) 35-39</td>
<td>4,000,000</td>
</tr>
<tr>
<td>(1990) 40-44</td>
<td>4,500,000</td>
</tr>
<tr>
<td>(1995) 45-49</td>
<td>5,000,000</td>
</tr>
<tr>
<td>(1990) 50-54</td>
<td>5,500,000</td>
</tr>
<tr>
<td>(1995) 55-59</td>
<td>6,000,000</td>
</tr>
<tr>
<td>(1990) 60-64</td>
<td>6,500,000</td>
</tr>
<tr>
<td>(1995) 65-69</td>
<td>7,000,000</td>
</tr>
<tr>
<td>(1990) 70-74</td>
<td>7,500,000</td>
</tr>
<tr>
<td>(1995) 75-79</td>
<td>8,000,000</td>
</tr>
<tr>
<td>(1990) 80-84</td>
<td>8,500,000</td>
</tr>
<tr>
<td>(1995) 85-89</td>
<td>9,000,000</td>
</tr>
<tr>
<td>(1990) 90-94</td>
<td>9,500,000</td>
</tr>
<tr>
<td>(1995) 95+</td>
<td>10,000,000</td>
</tr>
</tbody>
</table>

Comparison of projected and observed male population by age: Second set
Total fertility estimates in Ethiopia based on different censuses and surveys

- 1964-67 NSS
- 1969-71 NSS, 1st Round, Rural
- 1969-71 NSS, 2nd Round, Rural
- 1981 DS (CBS/unadjusted)
- 1984 Census
- 1990 NFFS
- 1994 Census/adjusted
- 1998 HNS, Direct
- 2000 DHS
- 2005 DHS
Total fertility estimates in Ethiopia based on different censuses and surveys
References

Indirect techniques – Main references

- Available in PDF:
 - http://demographicestimation.iussp.org/content/get-pdf-book-website
Indirect techniques – Main packages

• **MORTPAK** – The United Nations software package for demographic measurement, available online:

Excel templates provided with each chapter of Moultrie et al. (2013), available online:
Thank you

Questions?

>> until 9 October:

>> After 9 October: pelletierf@un.org
spoorenberg@un.org