Probabilistic Projections of the Total Fertility Rate

Leontine Alkema¹, Adrian Raftery², Patrick Gerland³, Sam Clark², François Pelletier³ and Thomas Buettner³

¹National University of Singapore, Singapore, ²University of Washington, Seattle, ³United Nations Population Division, New York

Funded by NICHD grant number 1 R01 HD054511 01 A1

2

イロト イヨト イヨト イヨト

TFR time series since 1950 can be described with 3 phases:

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

.∋...>

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

∃ →

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

 We modeled the 5-year changes in the TFR in Phase II and III, using UN estimates 1950-2010

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

- ×

- We modeled the 5-year changes in the TFR in Phase II and III, using UN estimates 1950-2010
- The observation period is split into the different phases:

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

(人間) トイヨト イヨト

3 Phases

• The observation period is split into the different phases: Start of Phase II is before 1950 (if max TFR is below 5.5 children), or at latest local max. within 0.5 child of global max.

- Pre-transition high fertility
- Pertility transition
- Ost-transition low fertility

- We modeled the 5-year changes in the TFR in Phase II and III, using UN estimates 1950-2010
- The observation period is split into the different phases: Start of Phase II is before 1950 (if max TFR is below 5.5 children), or at latest local max. within 0.5 child of global max.
 → All countries are currently in phase II or III

2

・ロト ・四ト ・ヨト ・ヨト

• Formal definition is based on model parameters (later in presentation)

э

(日) (周) (三) (三)

- Formal definition is based on model parameters (later in presentation)
- Within observation period: Start of phase III is approximated by the midpoint of earliest two subsequent increases below 2

∃ ► < ∃ ►</p>

- Formal definition is based on model parameters (later in presentation)
- Within observation period: Start of phase III is approximated by the midpoint of earliest two subsequent increases below 2

- Formal definition is based on model parameters (later in presentation)
- Within observation period: Start of phase III is approximated by the midpoint of earliest two subsequent increases below 2

- Formal definition is based on model parameters (later in presentation)
- Within observation period: Start of phase III is approximated by the midpoint of earliest two subsequent increases below 2
- Start of phase III before 2005-2010 observed in 20 countries

⁽Singapore, Bulgaria, Czech Republic, Russian Federation, Channel Islands, Denmark, Estonia, Finland, Latvia, Norway, Sweden, United Kingdom, Italy, Spain, Belgium, France, Germany, Luxembourg, Netherlands, United States of America)

Phase II: The fertility transition

2 Phase III: Post-transition low fertility

(日) (周) (三) (三)

Phase II: The fertility transition

2 Phase III: Post-transition low fertility

(日) (周) (三) (三)

- 4 週 ト - 4 三 ト - 4 三 ト

∃ >

• UN projects TFR will decrease to 1.85 children/woman

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - heta parameter vector chosen from $\{ heta_{SS}, heta_{FS}, heta_{FF}\}$

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - heta parameter vector chosen from $\{ heta_{SS}, heta_{FS}, heta_{FF}\}$

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - heta parameter vector chosen from $\{ heta_{SS}, heta_{FS}, heta_{FF}\}$

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - $\boldsymbol{ heta}$ parameter vector chosen from $\{ \boldsymbol{ heta}_{SS}, \boldsymbol{ heta}_{FS}, \boldsymbol{ heta}_{FF} \}$

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - $\boldsymbol{ heta}$ parameter vector chosen from $\{ \boldsymbol{ heta}_{SS}, \boldsymbol{ heta}_{FS}, \boldsymbol{ heta}_{FF} \}$

- UN projects TFR will decrease to 1.85 children/woman
- Deterministic projection model: $f_{c,t+1} = f_{c,t} d(\theta, f_{c,t})$
 - $f_{c,t}$ the TFR for country c, 5-year period t
 - $d(\theta, f_{c,t})$ the 5-year decline given by decline function $d(\cdot, \cdot)$
 - $\boldsymbol{ heta}$ parameter vector chosen from $\{ \boldsymbol{ heta}_{SS}, \boldsymbol{ heta}_{FS}, \boldsymbol{ heta}_{FF} \}$

Post-transition low fertility

Results

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

(日) (周) (三) (三)

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

Deterministic model: No uncertainty assessment

イロト 不得下 イヨト イヨト

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

- Oeterministic model: No uncertainty assessment
- **2** Related to $\boldsymbol{\theta} \in \{\boldsymbol{\theta}_{SS}, \boldsymbol{\theta}_{FS}, \boldsymbol{\theta}_{FF}\}$:
 - 5-year decrements are not country-specific
 - 3 sets of parameter values do not capture the variation in past

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

- Deterministic model: No uncertainty assessment
- **2** Related to $\theta \in {\theta_{SS}, \theta_{FS}, \theta_{FF}}$:
 - 5-year decrements are not country-specific
 - 3 sets of parameter values do not capture the variation in past

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

- Deterministic model: No uncertainty assessment
- **2** Related to $\theta \in {\theta_{SS}, \theta_{FS}, \theta_{FF}}$:
 - 5-year decrements are not country-specific
 - 3 sets of parameter values do not capture the variation in past

Room for improvement on $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$

Deterministic model: No uncertainty assessment

2 Related to $\theta \in {\theta_{SS}, \theta_{FS}, \theta_{FF}}$:

- 5-year decrements are not country-specific
- 3 sets of parameter values do not capture the variation in past

Extend the UN model $f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$:

3

イロト イポト イヨト イヨト

Extend the UN model

$$f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$$
:

• Estimate θ in $d(\theta, f_{c,t})$ for each country

(日) (周) (三) (三)

B ▶ < B ▶

Extend the UN model

$$f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$$
:

• Estimate θ in $d(\theta, f_{c,t})$ for each country

- Include uncertainty assessment:
 - Allow for random distortions
 - Assess uncertainty in $heta_c$

Probabilistic projection model

Extend the UN model

$$f_{c,t+1} = f_{c,t} - d(\theta, f_{c,t})$$
:

• Estimate θ in $d(\theta, f_{c,t})$ for each country

- Include uncertainty assessment:
 - Allow for random distortions
 - Assess uncertainty in $heta_c$

 $ct - f_{ct+1}$

Probabilistic projection model

• Estimate θ in $d(\theta, f_{c,t})$ for each country

- Include uncertainty assessment:
 - Allow for random distortions
 - Assess uncertainty in $heta_c$

Random walk with drift:

$$f_{c,t+1} = f_{c,t} - d(\theta_c, f_{c,t}) + \varepsilon_{c,t},$$

with
$$\begin{cases} f_{c,t} & \text{TFR for country } c, \text{ 5-year period } t \\ d(\theta_c, f_{c,t}) & \text{ 5-year decrement} \\ \varepsilon_{c,t} & \text{ Random distortions} \end{cases}$$

2

イロン イヨン イヨン イヨン

$$d(\theta_c, f_{c,t}) = {}_{d_c} \left(\frac{-1}{1 + \exp(-\frac{\ln(81)}{\triangle_{c1}}(f_{ct} - \sum_i \triangle_{ci} + 0.5 \triangle_{c1}))} + \frac{1}{1 + \exp(-\frac{\ln(81)}{\triangle_{c3}}(f_{ct} - \triangle_{c4} - 0.5 \triangle_{c3}))} \right)$$

2

イロン イヨン イヨン イヨン

$$d(\boldsymbol{\theta}_{c}, f_{c,t}) = d_{c} \left(\frac{-1}{1 + \exp(-\frac{\ln(81)}{\Delta_{c1}}(f_{ct} - \sum_{i} \Delta_{ci} + 0.5 \Delta_{c1}))} + \frac{1}{1 + \exp(-\frac{\ln(81)}{\Delta_{c3}}(f_{ct} - \Delta_{c4} - 0.5 \Delta_{c3}))} \right)$$

f_{ct} (decreasing)

2

<ロ> (日) (日) (日) (日) (日)

• $\theta_c = (\triangle_{c1}, \triangle_{c2}, \triangle_{c3}, \triangle_{c4}, d_c)$

5-year decrements

$$d(\theta_{c}, f_{c,t}) = d_{c} \left(\frac{-1}{1 + \exp(-\frac{\ln(81)}{\triangle_{c1}}(f_{ct} - \sum_{i} \triangle_{ci} + 0.5 \triangle_{c1}))} + \frac{1}{1 + \exp(-\frac{\ln(81)}{\triangle_{c3}}(f_{ct} - \triangle_{c4} - 0.5 \triangle_{c3}))} \right)$$

f_{ct} (decreasing)

э

通 ト イヨ ト イヨト

$$d(\boldsymbol{\theta}_{c}, f_{c,t}) = {}_{d_{c}} \left(\frac{-1}{\frac{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c1}}(f_{ct}-\sum_{i}\bigtriangleup_{ci}+0.5\bigtriangleup_{c1}))}} + \frac{1}{\frac{1}{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c3}}(f_{ct}-\bigtriangleup_{c4}-0.5\bigtriangleup_{c3}))}} \right)$$

f_{ct} (decreasing)

- $\theta_c = (\triangle_{c1}, \triangle_{c2}, \triangle_{c3}, \triangle_{c4}, d_c)$
- Start level $U_c = \sum_i \triangle_{ci}$ is observed, or estimated if decline started < 1950,

B ▶ < B ▶

$$d(\boldsymbol{\theta}_{c}, f_{c,t}) = {}_{d_{c}} \left(\frac{-1}{\frac{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c1}}(f_{ct}-\sum_{i}\bigtriangleup_{ci}+0.5\bigtriangleup_{c1}))}} + \frac{1}{\frac{1}{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c3}}(f_{ct}-\bigtriangleup_{c4}-0.5\bigtriangleup_{c3}))}} \right)$$

f_{ct} (decreasing)

- $\theta_c = (\triangle_{c1}, \triangle_{c2}, \triangle_{c3}, \triangle_{c4}, d_c)$
- Start level $U_c = \sum_i \triangle_{ci}$ is observed, or estimated if decline started < 1950,
- Other parameters:

 d_c , \triangle_{c4} , and for i = 1, 2, 3proportions $p_{ci} = \frac{\triangle_{ci}}{\sum_{j=1}^{3} \triangle_{cj}}$

· · · · · · · · ·

$$d(\boldsymbol{\theta}_{c}, f_{c,t}) = {}_{d_{c}} \left(\frac{-1}{\frac{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c1}}(f_{ct}-\sum_{i}\bigtriangleup_{ci}+0.5\bigtriangleup_{c1}))}} + \frac{1}{\frac{1}{1+\exp(-\frac{\ln(81)}{\bigtriangleup_{c3}}(f_{ct}-\bigtriangleup_{c4}-0.5\bigtriangleup_{c3}))}} \right)$$

f_{ct} (decreasing)

- $\theta_c = (\triangle_{c1}, \triangle_{c2}, \triangle_{c3}, \triangle_{c4}, d_c)$
- Start level $U_c = \sum_i \triangle_{ci}$ is observed, or estimated if decline started < 1950,
- Other parameters:

 d_c , \triangle_{c4} , and for i = 1, 2, 3proportions $p_{ci} = \frac{\triangle_{ci}}{\sum_{j=1}^{3} \triangle_{cj}}$

• Estimate these parameters with a Bayesian hierarchical model

・ 何 ト ・ ヨ ト ・ ヨ ト

Bayesian hierarchical model

æ

イロン イヨン イヨン イヨン

 Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)

A D A D A D A

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:

通 ト イヨ ト イヨト

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:
 - Unknown decline parameters are distributed around a "world average"

• • = • • = •

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:
 - Unknown decline parameters are distributed around a "world average"
 - For a specific country, its parameters estimates are determined by its observed declines, as well as the world level experience

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:
 - Unknown decline parameters are distributed around a "world average"
 - For a specific country, its parameters estimates are determined by its observed declines, as well as the world level experience
- Example: maximum 5-year decrement d_c

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:
 - Unknown decline parameters are distributed around a "world average"
 - For a specific country, its parameters estimates are determined by its observed declines, as well as the world level experience
- Example: maximum 5-year decrement d_c
 - Use a transformation of d_c to restrict it to between 0.25 and 2.5 child:

$$d_c^* = \log\left(rac{d_c-0.25}{2.5-d_c}
ight).$$

- Bayesian inference: unknown parameters have probability distributions, which are "updated" with new information (prior distribution + data and model → posterior distribution)
- Exchange information between countries using a hierarchical model:
 - Unknown decline parameters are distributed around a "world average"
 - For a specific country, its parameters estimates are determined by its observed declines, as well as the world level experience
- Example: maximum 5-year decrement d_c
 - Use a transformation of d_c to restrict it to between 0.25 and 2.5 child:

$$d_c^* = \log\left(rac{d_c-0.25}{2.5-d_c}
ight).$$

• Assume that d_c^* 's are exchangeable between countries

$$d_c^* \sim N(\chi, \psi^2),$$

with χ the world mean, and ψ^2 the variance of the d_c^* 's.

< 注→

Bayesian hierarchical model

3

イロン イヨン イヨン イヨン

• The model is given by:

э

(日) (周) (三) (三)

Post-transition low fertility

Results

Bayesian hierarchical model

• The model is given by:

•
$$f_{c,t+1} = f_{c,t} - d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$$

э

(日) (周) (三) (三)

Post-transition low fertility

Results

Bayesian hierarchical model

• The model is given by:

- $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Hierarchical distributions for country-specific parameters $heta_c$

イロト 不得下 イヨト イヨト

Bayesian hierarchical model

• The model is given by:

- $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Hierarchical distributions for country-specific parameters θ_c
- Prior distributions on the hierarchical parameters, and variance parameters of the distortion terms

イロト 不得下 イヨト イヨト

Bayesian hierarchical model

The model is given by:

- $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Hierarchical distributions for country-specific parameters θ_c
- Prior distributions on the hierarchical parameters, and variance parameters of the distortion terms
- Use Markov Chain Monte Carlo (MCMC) algorithm to get many samples of the set of model parameters

イロト 不得下 イヨト イヨト

Bayesian hierarchical model

The model is given by:

- $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Hierarchical distributions for country-specific parameters θ_c
- Prior distributions on the hierarchical parameters, and variance parameters of the distortion terms
- Use Markov Chain Monte Carlo (MCMC) algorithm to get many samples of the set of model parameters
- Each set of model parameters gives a future TFR trajectory

・ロト ・ 同ト ・ ヨト ・ ヨト

Bayesian hierarchical model

• The model is given by:

- $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Hierarchical distributions for country-specific parameters θ_c
- Prior distributions on the hierarchical parameters, and variance parameters of the distortion terms
- Use Markov Chain Monte Carlo (MCMC) algorithm to get many samples of the set of model parameters
- Each set of model parameters gives a future TFR trajectory
- Many sets
 - \rightarrow Many TFR trajectories
 - \rightarrow Median projection and projection intervals

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Post-transition low fertility

Results

How to construct a future TFR trajectory?

• • = • • = •

3

How to construct a future TFR trajectory?

• To get future $f_{c,t+1}$ for country c in Phase II:

A B F A B F

How to construct a future TFR trajectory?

• To get future $f_{c,t+1}$ for country c in Phase II:

∃ →

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)

•
$$f_{c,t+1} = f_{c,t} - d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)

•
$$f_{c,t+1} = f_{c,t} - d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

Results

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

Results

How to construct a future TFR trajectory?

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

Results

How to construct a future TFR trajectory?

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

Results

How to construct a future TFR trajectory?

- To get future $f_{c,t+1}$ for country c in Phase II:
 - Outcome of θ_c gives decrement $d(\theta_c, f_{c,t})$
 - Sample a distortion $\varepsilon_{c,t}$ (use outcomes of its variance parameters)
 - $f_{c,t+1} = f_{c,t} d(\theta_c, f_{c,t}) + \varepsilon_{c,t}$
- Repeat until start of Phase III: earliest t such that $\min\{f_{c,s} : s = 1, ..., t\} \le \triangle_{c4}$, AND $f_{c,t} > f_{c,t-1}$

(日) (周) (三) (三)

Phase III: What happens post-fertility-transition?

(日) (周) (三) (三)

Results

Phase III: What happens post-fertility-transition?

Phase III: What happens post-fertility-transition?

$$\begin{array}{rcl} f_t &=& f_{t-1} + (1-\rho)(2.1-f_{t-1}) + e_t \\ e_t &\sim& \mathcal{N}(0,s^2) \end{array}$$

Phase III: What happens post-fertility-transition?

$$\begin{array}{rcl} f_t &=& f_{t-1} + (1-\rho)(2.1-f_{t-1}) + e_t \\ e_t &\sim& \mathcal{N}(0,s^2) \end{array}$$

Phase III: What happens post-fertility-transition?

$$\begin{array}{rcl} f_t &=& f_{t-1} + (1-\rho)(2.1-f_{t-1}) + e_t \\ e_t &\sim& \mathcal{N}(0,s^2) \end{array}$$

Phase III: What happens post-fertility-transition?

$$\begin{array}{rcl} f_t &=& f_{t-1} + (1-\rho)(2.1-f_{t-1}) + e_t \\ e_t &\sim& \mathcal{N}(0,s^2) \end{array}$$

TFR projection that starts at 1.5 in 2005-2010

э

(日) (周) (三) (三)

Post-transition low fertility

Results

TFR projection that starts at 1.5 in 2005-2010

AR(1) simulations

UN (Dec 4, 2009)

∃ → (∃ →

Post-transition low fertility

Results

TFR projection that starts at 1.5 in 2005-2010

AR(1) simulations

э

- ∢ ≣ →

- ×

Post-transition low fertility

Results

TFR projection that starts at 1.5 in 2005-2010

4 Median 95% PI Traiectories e TFR 2 -TFR = 2.1 TFR = 1.850 2010 2035 2060 2085 2110 2135

Period

AR(1) simulations

Asymptotic 95% projection interval (PI) given by [1.7,2.5]

Increased uncertainty in long range Phase III projections

通 ト イヨ ト イヨト

Increased uncertainty in long range Phase III projections

• Use all below-replacement TFRs to estimate uncertainty in long-term projections

 $(s^{(a)} = 0.203 \text{ after 4 periods in phase III})$

Increased uncertainty in long range Phase III projections

- Use all below-replacement TFRs to estimate uncertainty in long-term projections $(s^{(a)} = 0.203 \text{ after 4 periods in phase III})$
- In far future, the 95% projection interval is given by [1.2,3.0]

Increased uncertainty in long range Phase III projections

- Use all below-replacement TFRs to estimate uncertainty in long-term projections $(s^{(a)} = 0.203 \text{ after 4 periods in phase III})$
- In far future, the 95% projection interval is given by [1.2,3.0]

AR(1) simulations

UN (Dec 4, 2009)

4 E 6 4 E 6

2 Phase III: Post-transition low fertility

(日) (周) (三) (三)

Projections

æ

・ロト ・四ト ・ヨト ・ヨト

Projections

æ

<ロ> (日) (日) (日) (日) (日)

Projections

æ

イロト イポト イヨト イヨト

Decline curve; world level

3

<ロ> (日) (日) (日) (日) (日)

Decline curve; world level

→ < Ξ →</p>

ም.

∃ →

Decline curve; world level

∃ →

3 ×

ም.

Decline curve; country-specific

3

イロト イポト イヨト イヨト

Decline curve; country-specific

∃ →

Decline curve; country-specific

A.

.∃ →

∃ →

Decline curve; Burkina Faso

æ

(日) (周) (三) (三)

Decline curve; Burkina Faso

æ

<ロ> (日) (日) (日) (日) (日)

• Use data until 1980, and project until 2005-2010:

• • = • • = •

• Use data until 1980, and project until 2005-2010:

∃ >

• Use data until 1980, and project until 2005-2010:

∃ ► < ∃ ►</p>

• Use data until 1980, and project until 2005-2010:

• Summary of model validation results:

Project	Above	Coverage	
	Median	95%PI	80%PI
from 1980	43%	91%	77%
from 1995	36%	93%	79%

1 1

Summary Bayesian TFR Projection Model

э

(日) (周) (三) (三)
• Probabilistic projection model for 5-year changes during and after the fertility transition

A D A D A D A

- Probabilistic projection model for 5-year changes during and after the fertility transition
- During the fertility transition:
 - the 5-year decreases are modeled as a function of TFR level and decline parameters, with random distortions added to it
 - the decline parameters are estimated with a Bayesian hierarchical model

- Probabilistic projection model for 5-year changes during and after the fertility transition
- During the fertility transition:
 - the 5-year decreases are modeled as a function of TFR level and decline parameters, with random distortions added to it
 - the decline parameters are estimated with a Bayesian hierarchical model
- After the fertility transition the TFR will converge to/fluctuate around 2.1, using an AR(1) model

- Probabilistic projection model for 5-year changes during and after the fertility transition
- During the fertility transition:
 - the 5-year decreases are modeled as a function of TFR level and decline parameters, with random distortions added to it
 - the decline parameters are estimated with a Bayesian hierarchical model
- After the fertility transition the TFR will converge to/fluctuate around 2.1, using an AR(1) model
- Results: Country-specific projections that include an uncertainty assessment