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Abstract:   Empirical research in the study of economic growth routinely assumes that 
growth is a linear and separable function of its underlying determinants.  The key policy 
implication of such an assumption is that the effects of policy changes on economic 
growth can be derived independently from a country’s structural or institutional 
characteristics.  This paper explores the theoretical and empirical underpinnings of this 
assumption.  I argue that the conditions necessary to derive a linear growth function are 
theoretically unreasonable.  I also show that existing methods for handling non-
linearities – such as the addition of a small number of multiplicative and interaction 
terms – will be inadequate when the form of the non-linearity is not known ex ante.  
Appropriate non-parametric and semi-parametric methods are used to evaluate the 
relevance of strong non-linearities in commonly used growth data sets.  These tests 
decisively reject the linearity hypothesis.  A preponderance of the tests also rejects the 
hypothesis that growth is a separable function of its regressors.  Absent separability, the 
data requirements necessary to make inferences about the growth effects of regressors 
increase substantially.  I show that appropriate non-parametric tests are commonly 
inconclusive as to the effects of policies, institutions and economic structure on growth.  
These results shed doubts on the validity of the cross-country empirical framework for 
policy analysis. 
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1. Introduction 
 

During the past fifteen years, a voluminous body of literature has been written 
using the linear growth regression framework to study the effect of variables as diverse 
as fiscal policy, the rule of law, the incidence of malaria and a country’s past colonial 
regime on economic performance.  The papers in this literature commonly study the 
coefficient on a variable or a subgroup of variables of interest in a regression where per 
capita GDP growth is the dependent variable and the regressors include a list of 
country-specific controls such as log of initial per capita GDP, investment rates, the 
stock of human capital and the growth rate of population. 

Growth regressions have become an ubiquitous form of policy analysis.  
Empirical work in this literature is often geared towards reaching (or rebutting) a 
conclusion that a certain variable of interest – say a particular economic policy or one of 
a variety of institutional arrangements – is harmful or beneficial for growth.  It is not 
uncommon for research in this area to conclude with phrases such as “We find clear 
evidence that the institution and policy variables play a significant role in determining 
economic growth.”2 Even the widespread practice of inspection of partial scatter plots 
and correlations between growth and policies is, in essence, the use of a growth 
regression framework.  

A standard assumption in this analysis is that growth is a linear and separable 
function of its underlying determinants.  Formally, the estimated equation often looks 
like: 
 kktY zxy γγααγ +++++= − ...... 11110    (1.1) 

where Yγ  is the rate of per capita GDP growth,  is the log of initial GDP, 

and  refer to a set of country-specific controls that can include variables such as 

investment in physical and human capital, the rate of population growth and other 
potential production function shifters such as policies, institutions, and economic 
structure.  

1−ty

kzz ...1

A linear growth specification like (1.1) rules out the possibility that the growth 
effect of changes in any of the right-hand side variables will depend on a country’s initial 
conditions.  This is because all second partial derivatives are by definition equal to zero 
in a linear function, ruling out any interactions between two determinants or even 
between a determinant and its own initial value.  The limitations of this framework to 
evaluate the growth effects of the variables often considered in growth empirics are 
evident.  Consider the hypothesis that increases in tariff rates do not have much of an 
adverse effect on growth when starting from an initial level of relative openness, but that 
completely isolating an economy from world trade can be very harmful to a country’s 
capacity to sustain adequate living standards.  Such a hypothesis would find no place in 
a regression such as (1.1).  Alternatively, think of the idea that the effect of openness may 
depend on whether the economy’s initial comparative advantage lies in manufactures or 
in agricultural goods.  This type of interaction would also be ruled out by the linear 
framework. 

                                                 
2 This particular phrase is taken from DeGregorio and Lee (2004). 
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This problem has not gone undetected in conventional growth analysis.  The most 
common approach has been to explore non-linearities with respect to the variable of 
interest, assuming linearity in the remaining regressors (Barro, 1996, Banerjee and 
Duflo, 2003). A number of authors have introduced elements of non-parametric 
estimation to consider more general non-linearities (Liu and Stengos, 1999, Kalatzidakis 
et. al., 2001).  This approach has centered on understanding the effects of non-linearity 
in a particular dimension rather than studying the implications of a more general 
breakdown of the assumption.3  Despite these explorations, the standard workhorse 
regression model is still that of the linear regression framework.  For example, in Sala-i-
Martin, Doppelhoffer and Miller’s (2004) recent Bayesian exploration of robustness 
issues, all of the approximately 89 million regressions studied are linear. 
 If the functional form taken by existing non-linearities were known ex-ante and 
limited to a small number of variables, the approach taken in these papers would be 
adequate.    As I discuss below, however, if the non-linearity is more complex than what 
can be captured by a set of simple quadratic and linear interaction terms or its form is 
not known ex ante, most of the regressions currently estimated suffer from 
misspecification bias, making the type of inferences commonly drawn from their 
estimation invalid.  Furthermore, the data requirements of estimating non-linear 
unknown functions can be quite demanding and far outstrip the availability of data in 
currently existing data sets. 
 This problem is more than a theoretical curiosum.  A systematic exploration of 
the theoretical foundations of the linear growth specification reveals that the set of 
assumptions necessary to justify fitting a linear function to the data is so restrictive as to 
practically make the linear specification the true theoretical curiosum.  I suggest that the 
starting framework for an exploration of the growth evidence should be a specification 
that allows for a general set of interactions between the set of potential production 
function shifters. 
 The importance of interactions among different dimensions of potential 
regressors has become the focus of recent attention in the academic literature.  In a 
recent paper, Hausmann, Rodrik and Velasco (2004) point out that basic economic 
theory would actually lead us to expect that the reduction of a particular distortion may 
have very different effects on welfare (and growth) depending on the initial levels of 
other distortions. Their theoretical examples illustrate the potentially complex 
interactions that can arise even in relatively simple models.  They also present a 
discussion of a number of cases in which similar policies appear to have had very 
different growth effects and suggest that they may be due to the fact that the countries 
faced different binding constraints on economic growth.4

                                                 
3 An alternative approach has been to study models of parameter heterogeneity (Durlauf and Johnson, 
1995, Durlauf, Kourtellos and Minkin, 2001) in which countries are characterized by different linear 
models.  These exercises commonly make strong assumptions as to the form that the underlying 
heterogeneity or non-linearity takes.  There is a subtle distinction between non-linearities and parameter 
heterogeneity.  In principle, parameter heterogeneity can refer to all countries having a linear model but 
with different parameters, whereas non-linearities occur when all countries share a common model with 
non-linear effects.  However, when the heterogeneity depends on one or more variables (as in the cases 
studied by the authors cited) then parameter heterogeneity and non-linearities share the same 
mathematical representation.  
4 See also Hausmann and Rodrik’s (2005) more in-depth discussion of the Salvadoran case within this 
framework. 
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 The relevance of this discussion has not been lost among applied economists and 
policymakers.  In a recent comprehensive appraisal of the results of a decade of 
economic reforms published by the World Bank, the role of interactions between 
policies, institutions and economic structure is not only recognized but made to play a 
central role.  In their words: 

 “To sustain growth requires key functions to be fulfilled, but there is no unique 
combination of policies and institutions for fulfilling them…different polices can 
yield the same result, and the same policy can yield different results, depending on 
country institutional contexts and underlying growth strategies…Countries with 
remarkably different policy and institutional frameworks – Bangladesh, Botswana, 
Chile, China, Egypt, India, Lao PDR, Mauritius, Sri Lanka, Tunisia and Vietnam – 
have all sustained growth in GDP per capita incomes above the U.S. long-term 
growth rate of close to 2 percent a year.” (World Bank, 2005, p. 12) 
If these two examples are any indication of the state of present theoretical and policy 

discussions, then the linear growth framework seems to be completely divorced from it.  
But are the claims made by these authors accurate representations of the post-war 
evidence on economic growth?  Before we throw the baby out with the bath water, it 
appears desirable to evaluate whether the simplifying assumptions embodied in the 
linear growth model can actually be rejected by the cross-national data.  That is the 
purpose of this paper. 

In what follows, I use semi-parametric and semi-nonparametric tests in order to 
adequately test the hypotheses of non-linearity and non-separability on commonly used 
cross-country growth data sets.  These tests allow us to estimate the potential non-
linearities in question without making strong ex ante assumptions about the form they 
may take, enabling us to test the null hypotheses of linearity and separability against a 
much broader set of alternative hypotheses than those commonly used in the data.  As I 
show below, the tests decisively reject the hypothesis of linearity.  A preponderance of 
the tests also rejects the hypothesis of separability.  

Absent separability, the growth function becomes extremely difficult to estimate with 
any degree of precision given the existing number of observations in conventional 
growth data sets.  The implication of this fact cannot be understated.  If the growth 
function cannot be precisely estimated, inferences about the effect of variables such as 
policies, institutions and economic structure on growth cannot be made with the level of 
precision that the linear regression framework attributes to them.  Below, I illustrate the 
implications of this fact with an empirical exercise: I use appropriate non-parametric 
tests that take full account of existing non-linearities to evaluate whether growth is a 
monotonic function of its determinants.  Generally, these tests are inconclusive as 
respects the effects of policies, institutions or structure on economic growth.   

Such results should not surprise us. It is one thing to try to distinguish between the 
hypothesis that openness is equally good for all countries and the hypothesis that 
openness is equally bad (or equally irrelevant) for all countries than trying to distinguish 
among a broad set of potential hypotheses that allow for complex interactions between 
openness and a host of country-specific characteristics such as its primary export 
dependence and the effectiveness of its government spending.   In order to do the 
former one may be able to get away with using a small number of observations; this is 
unlikely to be feasible if one is attempting the latter.  The problem is that if the latter 
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specification is the better reflection of reality, attempting to use the former is likely to 
lead to results that are at best misleading and at worse meaningless. 

The rest of the paper proceeds as follows.  Section 2 lays the theoretical groundwork. 
Section 2.1 discusses the theoretical underpinnings of the linear growth regression and 
establishes the assumptions that are necessary to obtain a specification that is linear in 
the production function shifters.  Section 2.2 discusses the econometric effects of failure 
of these assumptions, and particularly of attempting to estimate a non-linear function 
by fitting a linear specification.  Section 3 then shifts to empirical analysis, discussing 
the data set used (section 3.1) and then going on to  present the tests of linearity (section 
3.2), separability (section 3,3), and monotonicity (section 3.4).  Section 4 concludes. 
 

 
2. Theoretical Framework 
 

2.1. Is there a theoretical basis for the Kitchen Sink Regression? 
 

 
In this section I discuss the theoretical basis for the linear growth regression.  

This regression, often referred to as a “Barro” regression because of the deep influence 
of Robert Barro’s 1991 Quarterly Journal of Economics article, was proposed almost 
simultaneously by several other authors including Mankiw, Romer and Weil (1992) and 
Sala-i-Martin (1991).  It consists of a growth regression that is linear in the log of initial 
GDP, some measures of investment or the stock of human capital, population growth 
and a set of “production function shifters” that commonly includes policy, institutional 
and structural controls. Formally, the specification often looks like:  

 Znssy hktY βαααααγ +++++= − 432110 ln      (2.1) 

where Yγ  is the rate of per capita GDP growth,  is initial GDP,  and  refer 

respectively to the rate of investment in physical and human capital, n is the rate of 
population growth and Z is a vector of potential production function shifters that 
commonly includes measures of policies, institutions, and structural characteristics.   

1−ty ks hs

Given the ease of running this regression with readily available data sets and the 
obvious interest of exploring whether a particular set of policies, institutions or 
structural variables are harmful or beneficial for growth, the proliferation of applied 
work using equation (2.1) is not surprising.  For obvious reasons, I will not discuss this 
voluminous literature here; the reader is referred to Durlauf, Johnson and Temple ( 
forthcoming) for a recent comprehensive survey.  It suffices to note for our purposes 
that this analysis tends to take the form of varying the subset of variables included in Z 
and using conventional significance tests to evaluate the effect of potential determinants 
on economic growth. 

Equation (2.1) is not a purely ad-hoc specification.  Its analytical foundations 
were elaborated early on in the literature and, to my knowledge, were first presented 
systematically in Mankiw, Romer and Weil’s (1991) augmented Solow model.  It is 
useful to recall this derivation.  Let output Yt  be a Cobb-Douglas function of human and 
physical capital Ht and Kt: 

 
ttt HAKY βα= .        (2.2) 
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Letting lower case letters denote units per worker, “hatted” lower case letters 

units per effective labor ALt and assuming constant rates of accumulation for physical 
and human capital sk and sl, the model’s equations can be written as: 

 

ttt hky βα ˆˆˆ =          (2.3) 

ttkt kgnysk ˆ)(ˆˆ δ++−=&        (2.4) 

ttht hgnysh ˆ)(ˆˆ δ++−=&        (2.5) 

 

Setting gives us the steady-state solution to the model: 0ˆˆ == tt hk &&

 
           (2.6) 
  

 

From (2.3), the rate of growth of  can be written as ŷ
dt

hd
dt

kd tt
ˆlnˆln

βα + .  

Approximating each of these terms around the steady state gives us: 
 

)ˆ/ˆln()1)(()(ˆln
ˆ ssY yygn

dt
tyd αβδγ −−++−== .     (2.7) 

  
Equation (2.7) is a first-order linear differential equation in ln( ŷ t).  Solving it 

gives: 
  

ss
tt

t yeyey ˆln)1(ˆlnˆln 0
λλ −− −+= ,      (2.8) 

  
from which we can derive the approximated expression for the growth rate 

between  and as: 0ŷ tŷ
  

.ˆln)1(ˆln)1()ˆ/ˆln( 00 ss
tt

t yeyeyy λλ −− −+−−=      (2.9) 

  
Empirically, we do not observe growth rates in units of effective labor.  Therefore, 

in order to have an empirically estimable equation, we must put (2.9) in terms of per 
capita output : ty

 
.ln)1()ln(ˆln)1(ln)1()/ln( 0000 AeAAyeyeyy t

tss
tt

t
λλλ −−− −+−+−+−−=  (2.10) 

 
Finally, substituting for from (2.6) leads to: ssŷ
 

)ln()ln()ln( δ
111

)ˆ
βα

βα
βα

β
βα

α
++

−−
+

−+= g
−−−−

nssy hkssln(
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           (2.11) 
  

There is an alternative formulation which can be arrived at by substituting for 
 from the steady-state condition for human capital accumulation, which is: hsln

 

.ln)1(

)ln(
1

ln
1

ln
1

)1(ln)1()/ln(

0

00

Aeg

gnhseyeyy

t

ssk
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α
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α

−

−−

−++

⎥⎦
⎤

⎢⎣
⎡ ++

−
−

−
+

−
−+−−=

     

           (2.12) 
Note that I have normalized the time interval t to 1 in the derivation of these last 

two equations. Equations (2.11) and (2.12) are linear in lny0, lnsk, lnsh (or lnhss), 
ln(n+g+δ), g and lnA0 and would thus be estimable as a linear equation  if we had 
observations on all of these variables.  

I now concentrate on equation (2.12) (the derivation for equation (2.11) is 
analogous). Mankiw, Romer and Weil (1992) assume that g and δ are constant and 
equal across countries and that differences in the initial level of technology vary 
randomly according to: 

 

iAA ε+= )ln()ln( 0          (2.13) 

 
with iε  representing a country-specific shock.  Given these assumptions as well 

as a value for the common g+δ, equation (2.12) can be estimated by fitting the linear 
regression: 

 
.)ln(lnlnln 432010 isskt gnAhAsAyAA ηδγ +++++++=    (2.14) 

 
to the data.  This is, indeed, what Mankiw, Romer and Weil do. 
Equation (2.12) would also seem to open the door to a more general approach.  

As Mankiw, Romer and Weil note, “the A(0) term reflects not just technology but 
resource endowments, climate, institutions and so on.” If differences across countries 
are not simply randomly distributed but iε  is correlated with any of the regressors in 

(11) or (12), its omission would bias the estimated coefficients.  Even if omitted variable 
bias is unimportant, equations (11) and (12) seem to offer a ready framework to evaluate 
the effect of multiple measures of policies, institutions and economic structure on 
growth.  One simply needs to reason that the variables of interest could affect the growth 
rate by shifting the production function, so that we could rewrite (2.2) as: 

 
         (2.15) ttt LKZAY βα)(=
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,where Z is a vector of our potential explanatory variables.  The above derivation 
would then follow except for the fact that A0 would now be replaced by A(Z0) and that 
g=ln(At/A0) is now .  Equation (2.12) would become: [ )(/)(ln),( 00 ZAZAZZg tt = ]

).(ln)1(),(

)),(ln(
1

ln
1

ln
1

)1(ln)1()/ln(

00

000

ZAeZZg

ZZgnhseyeyy

t
t

tssk
tt

t

λ

λλ δ
α

α
α
β

α
α

−

−−

−++

⎥⎦
⎤

⎢⎣
⎡ ++

−
−

−
+

−
−+−−=

 

          (2.16) 
It is important to note that, as it stands, (2.16) is not a linear equation in the 

components of Z.  In order to make it into a linear function of Z one would need to add 
in two additional assumptions.  In the first place, one needs to assume that the log of 
A(Z) is linear in the production function shifters, i.e., that ZZA β=)(ln .  Additionally, 
one needs to assume that the growth rate of A over time is the same for all countries, 
that is, that igZZg ti ∀=  ),( 0 .  Given these assumptions, (2.16) reduces to: 

.)1(

)ln(
1

ln
1

ln
1

)1(ln)1()/ln(
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00

Zeg

gnhseyeyy
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ssk
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t

β
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β
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α
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−

−−

−++

⎥⎦
⎤

⎢⎣
⎡ ++

−
−

−
+

−
−+−−=

 

          (2.17) 
, leading to the conventional “kitchen sink” specification often used in applied 

work: 
  

....)ln(lnlnln 0101432010 innsskt ZZgnAhAsAyAA ηχχδγ ++++++++++= 5

          (2.18) 
Summarizing, what this discussion has shown is that the following assumptions 

are necessary in order for specification (2.18) to be valid: 
A1.  Savings rates for human and physical capital are constant. 
A2.  Production is Cobb-Douglas in physical and human capital. 
A3.  The economy is sufficiently close to the steady state for (2.9) to be a valid 

approximation. 
A4.  All countries have the same level of growth of A(Z), i.e.: igZZg ti ∀=  ),( 0 . 

A5.  The log of production is linear in all of its shifters, i.e.: ZZA β=)(ln . 
 
Assumptions A1 and A2 have been the source of an extensive discussion in the 

literature.  Replacing constant savings rates by the solution to an intertemporal 
optimization problem was a focus of the early growth literature going back to Ramsey’s 
(1928) seminal contribution.  Barro and Sala-i-Martin (2004) show that a log-linearized 
version of the Ramsey optimization problem will lead to a first-order linear differential 
equation like (2.7), but with a more complex expression for the parametric convergence 
coefficient. Relaxing the Cobb-Douglas specification leads to non-linearities in sh,sk  and 
hss  and has been explored empirically, among others, by Liu and Tsengos (1999) and 
Massanjala and Papageorgiou (2004).  Failure of the Taylor approximation leads to 

                                                 
5 Equation (2.1) also differs from this regression in that it uses levels of sk, h  and n as regressors instead of 
the terms in equation (2.17).  Regrettably, these easily corrigible flaws are pervasive in most applied work.
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differing convergence rates across countries as discussed, among others, by Dowrick 
(2004). 

Assumption A4 seems at first (and at second and third) glance bizarre.  Why 
would one expect all countries to have the same rate of change in A(Z) if they differ in 
the fundamental Z’s?  One possible line of defense, taken by Mankiw, Romer and Weil, 
is to see g as capturing only the effects of technological change, which is assumed to be 
public and available to all countries, while A(Z0) is held to be fixed at its initial level.  
Research exploring the failure of this hypothesis often looks at varying rates of diffusion 
of technologies across countries (Coe and Helpman, 1995, Coe, Helpman and 
Hoffmaister 1997).  This leaves unanswered the questions raised by the terms of Z that 
have no relation to technological diffusion.  While the assumption that they are time-
invariant may be adequate for thinking about some production function shifters such as 
economic geography and perhaps institutions, it is much less useful if one wants to 
understand the effect of variables like economic policies, institutional reform or 
structural change.  Given the pervasive use of equation (2.18) to draw inferences used in 
the process of policy reform, it is ironic that its theoretical foundation actually restricts 
these policies to be time invariant. 

I know of no systematic treatment of the effects of failure of assumption A5.  This 
is surprising, given that, unlike A1-A4, A5 is almost completely atheoretical.  There is no 
reason why one would expect variables as diverse as economic policies, institutions and 
structural characteristics to have separable, linear effects on the log of the production 
function.  Indeed, to the extent that one sees the “production-shifting” effect of the Z 
variables on the production function as reflecting the efficiency effects of relaxing 
different distortions, the Theorem of the Second-Best tells us that there is no reason to 
expect that relaxing one distortion would lead to an increase in efficiency when another 
distortion is present; in other words, it tells us that the effects of distortions on 
efficiency are unlikely to be separable. 

Ultimately, the validity of any of these assumptions will be given by their 
usefulness in explaining the data.  Despite its lack of theoretical appeal, assumption A5 
may prove useful if it allows us to account for existing differences in growth rates across 
countries in a parsimonious way.  To lay such a claim, however, the patterns in the data 
must be consistent with those predicted by the theory.  I turn to exploring whether this 
is the case in section 3.  To do this I will test (2.18) against the more general semi-
parametric form: 

 
.),...()ln(lnlnln 010432010 insskt ZZfgnAhAsAyAA ηδγ ++++++++=  (2.19) 

 
The next section studies the empirical tenability of A5 through a battery of 

semiparametric and semi-nonparametric tests of the hypothesis embodied in equation 
(2.18) against the more general alternative (2.19).  Before going on, however, it makes 
sense to discuss the econometric implications of (2.19) actually being the true data 
generating process. 
 
2.2. The Econometric Effects of Throwing In the Kitchen Sink 
 

2.2.1. The Effects of Misspecification Bias 
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Estimating (2.18) if (2.19) is the true function will lead to misspecification bias.  This 
issue has received considerable attention in the econometrics literature.  Estimating 
(2.19) when (2.18) is true consists in imposing an invalid restriction.  Its implications 
can be easily seen within the framework of omitted variable bias. 

To see this, rewrite (2.19) as: 
.),...(...)ln(lnlnln 01011101432010 ipnnsskt ZZhDZCZCgnAhAsAyAA ηδγ +++++++++++=

 (2.20) 

Where ( 0101010
1

010 ...),...,(1)...( pnpp ZCZCZZf
D

ZZh −−−= ).Estimating (2.18) by OLS is 

therefore the same as estimating (2.20) subject to the restriction that D1=0, that is, the 
same as inappropriately excluding  from the regression.  The limit in 

probability of the OLS estimators will be: 

),...,( 010 pZZh

)(/)),...,(,(ˆlim

}4,3,2,1,0{,0ˆlim

001001 ipiii

ii

ZVarZZhZCovDCCp

iAAp

+=

∈==
    (2.21) 

 
Even if f(.) is independent of lny0, lnsk, lnsh  and  ln(n+g+δ), all of our estimates of Ci 

will be inconsistent  unless h(.) is independent of Zi (that is, unless g(.) is linear in Zi).  It 
is impossible to predict the sign of this bias unless we know the sign of the covariance of 
Zi  with the omitted term.  There is thus no reason to believe that our estimated  s will 

be accurate indicators of the linear effects of changing a variable. 
iĈ

Example 1. Let p=2  and 2121 ),( ZZZZf =   .  Let Ci=D1=1.Equation (21) gives: 

iZZZZZCovCp 2
212111 /)),(1ˆlim σ−−+=      (2.22) 

 If Z1 and Z2 are independent, this becomes: 
1)(ˆlim 21 ≠= ZECp .        (2.23) 

The linear estimator returns the average partial derivative of f(.) with respect to Zi.  
As has been emphasized recently by Helpman (2004), the linear estimator serves as a 
device to calculate an “average effect” over the data.  In many cases, this average may 
not be particularly meaningful.  For example, if 0

2
=zµ , then  even though 

the mass of countries for which   is different from zero equals one.  Standard errors of 

the coefficients will capture only one source of uncertainty (the variation around the 
estimated average value) but will omit a second source of uncertainty (the variation of 
countries around that average), making them poor guides for decision making □   

0lim =iCp

iC

 
The fact that we can deal with the misspecification bias arising from ignored non-

linearities in the context of omitted variable bias may lead us to think about dealing with 
it through the use of instrumental variables.  Regrettably, this will generally not be 
possible.  The reason is that is any candidate instruments that is correlated with Z is also 
likely to be correlated with .  Since the misspecified regression treats h(.) as 

part of the disturbance term, our instrument will be correlated with the residual in the 
second-stage regression, rendering it invalid.  For the same reason, ignored non-
linearities will generally make instruments that would be valid in a linear framework 
yield biased estimates.  The next example makes this clear. 

),...,( 010 pZZh
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Example 2.  Let   (2.20) now collapses to: .(.);0...... 2
1240 ZhCCAA p =======

.         (2.25) 2
11 it ZDZC ηγ ++=

Note that we have omitted the intercept to keep the algebra as simple as possible.  
We have also dropped unnecessary subscripts on the only Z variable.  We assume there 
is a simple structural relationship between the endogenous variable and the candidate 
instrument: 

iii uXZ += .         (2.26) 

Our assumptions on the DGP are .0),(),(,0),( ==≠ ηη XCovuXCovuCov   The OLS 
estimator (without a constant) will be: 
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Taking probability limits gives us: 

)(
)()(ˆlim 2

23

111 XE
XEXEDCCp ησ+

+= .      (2.28) 

This expression depends on the first through third moments of X and does not 
appear to admit a simple intuitive interpretation.□ 

This result is particularly important in light of recent interest in the use of 
instrumental variables techniques to study the causes of cross-country variations in 
growth and income.  Recent contributions (Frankel and Romer, 1999, Acemoglu, 
Johnson, and Robinson, 2001) tend to argue for the validity of their instruments based 
on their exogeneity, their causal relationship with the endogenous variable, and their 
lack of a direct effect on the dependent variable.  To this list of requirements one should 
add the assumption that the dependent variable depends linearly on the endogenous 
variable.   

 
  
2.2.2. Non-linearities and the Curse of Dimensionality 
 
A second effect of attempting to estimate (2.18) when (2.19) is true is that the rate of 

convergence associated with the probability limits  calculated in (2.21) can become 
much slower. Succinctly put, the basic problem is that estimating a non-linear function 
is much more demanding in terms of data than estimating a linear function, because we 
must sample it at many more points to be certain of its shape.6  If there were no 
sampling error, we would need only two observations to fit a linear function xy 10 ββ +=  

to the data.  However, if the function is a non-linear function of the form ),( βxf  with β 
a k-dimensional vector, then even in the absence of sampling error we will need at least 
k points to infer β.  

What if, as is the case in non-parametric estimation, we do not know the functional 
form taken by ?  Suppose all we know is that it has a bounded first derivative.  For 
concreteness and without loss of generality, let  be defined on the unit interval and 
the bound on its first derivative to be L.  If f is sampled at n equidistant points  and is 

)(xf
)(xf

                                                 
6 The following discussion closely follows Yatchew (2004). 
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approximated by the closest point at which we have an observation, then the 
approximation error cannot exceed L/2n, which is of order O(1/n).  In other words, the 
approximation error goes to zero at a rate O(1/n).  

What if f is a function of two variables?  Suppose that we have the same n 
observations as before, evenly sampled over the domain.  Then the average distance 
between two points will be 1/n1/2 instead of 1/n.  The average approximation error will 
now be O(1/n1/2)>O(1/n).  The argument can be extended to any dimension: if f(.) is a 
function of k variables then the approximation error will be O(1/n1/k ).  In other words, 
the order of the approximation error grows with dimensionality at a rate that is 
proportional to the number of observations. 

To illustrate, suppose that we have 100 observations, which is close to the average 
number of observations commonly used in growth regressions.  Then the approximation 
error for a one-dimensional function will be O(0.01). If the function is two-dimensional, 
however, it will be O(0.1) and if it is three-dimensional it will be O(0.21).  Having 100 
observations to estimate a one-dimensional relationship is tantamount to having 10 
observations (1001/2) to estimate a two-dimensional specification and to having 4.64 
observations (1001/3) to estimate a three-dimensional specification.  To be consistent, a 
researcher should place the same faith on a regression estimate of a general non-linear 
function in three dimensions that is run with 100 observations than she should put on a 
correctly specified linear regression that was run with 5 observations.  This result is 
known as the curse of dimensionality in the literature on non-parametric econometrics 
and it underlines the difficulty in making appropriate inferences about unknown non-
linear functions with few observations.   

More generally, let d denote the dimensionality of x and g(x) be differentiable up to 
the m-th derivative.  Then the optimal rate at which a non-parametric estimator can 
convege to the true regression function is (Stone 1980): 

[ ] ⎟
⎠
⎞

⎜
⎝
⎛=− +∫ )2/(2

2 1)()(ˆ
dmmn

Odxxfxf .      (2.23) 

One possible mechanism for attenuating the curse of dimensionality is the use of 
additively separable specifications.  For example, suppose that we can split Z in I 
disjoint subsets such that the maximum dimension of each of these subsets is l<d and 
where .  Then it can be established (see Hastie and Tibshirani 

1990) that the rate of convergence of the optimal estimators is 

)(...)()(
11 nInI ZfZfZf ++=

⎟
⎠
⎞

⎜
⎝
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+ )2/(2

1
lmmp n

O , 

representing a significant improvement over (2.23).  One could hope that this result 
would allow us to make valid inferences in growth empirics without falling into the 
curse of dimensionality.  This is the route taken, for example, by Liu and Tsengos 
(1999).  I discuss this approach in section 3.3. 

 
3. Empirical Evidence 

 
The argument set out in the preceding section can be briefly summarized as follows: 

(i) The theoretical basis for the linear kitchen-sink growth regression is quite tenuous. It 
does not emerge directly from a linear approximation to the steady-state, but rather 
requires directly assuming that the log of the production function is linear in the 
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variables of interest, i.e. that it takes the form [ ] ),()...exp( 111 ttnt HKFZZY ββ ++= .  (ii)  

Assuming that the valid regression equation is linear when it is not leads to 
misspecification bias which is akin to that caused by restricting all non-linear terms to 
having coefficients equal to zero when that is not the case, causing the estimated 
coefficients to be biased and inconsistent. (iii)  Unless f(Z) is an additively separable 
function, the data requirements necessary to precisely estimating it may far outstrip 
existing data availability. 

 In the end, of course, the problems posed by these facts are empirical.  Whether 
Assumption A5 is an adequate characterization of the data or not is a question that can 
ultimately be answered by the data itself.  Therefore, a relevant starting point for 
answering this question is to ask whether the linearity hypothesis explicit in A5 can be 
rejected in existing cross-country data sets. That is the first task taken up in this section. 

Assuming that one can reject the linear specification (as I will argue can very easily 
be done) then one must ask to what extent non-linearities can be accounted for through 
an additively separable specification, and thus the curse of dimensionality can be 
attenuated, or, on the other hand, to what extent the data says that the phenomenon 
under study is inherently multi-dimensional and can only be captured through non-
separable specifications (implying that we must suffer the full effects of the curse).  That 
is the second task that I will take up in this section. 

Lastly, I address the issue of how much can be recovered in terms of evidence from 
the existing data given pervasive problems of multidimensionality.  I will argue that the 
relevant and useful analogue to a significance test on a linear coefficient is a 
monotonicity test.  To that effect, I will present a set of tests of the monotonicity of 
growth as a function of a set of commonly used indicators of economic policies, 
institutions and structural variables. I will argue that these tests point in the direction of 
a severe complexity of existing interactions which is very much at odds with the idea 
that there are policies, institutions or varieties of structural transformation that are 
unequivocally good or bad for all countries. 

 
3.1 The Data 
 

Our analysis will use a standard cross-sectional data set of economy-wide measures 
of growth and its potential determinants for the 1975-00 period.  Despite the recent 
expansion of use of panel-data methods in cross-country growth analysis, I restrict 
attention to the cross-sectional framework for several reasons. First, the cross-sectional 
approach is still broadly used and characterizes some of the most relevant recent 
contributions.7 Second, relevant methodological questions remain about the 
applicability of the panel data approach to study questions of long-term economic 
growth. For example, it is not clear that segmenting the data into ten or five-year 
intervals is appropriate when the phenomenon of interest is long-run growth, and most 
methods used require the introduction of fixed effects, impeding the analysis of the 
effect of potential growth determinants, such as institutions or geography, which exhibit 

                                                 
7 Some examples are Frankel and Romer (1999), Acemoglu, Johnson and Robinson (2000), and Sala-i-
Martin, Doppelhoffer and Miller (2004).  The first two articles use a levels specification, whereas the third 
uses the growth specification that we reproduce here.  For a recent critique of the levels approach, see 
Sachs (2005).  
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little or no variation over time.8   Third, the theory behind the specification tests 
presented in this section is not at this moment fully developed for its application to a 
panel context. 

I use Penn World Tables (PWT) and World-Bank PPP-adjusted per capita GDP 
Growth Rates from the World Development Indicators (WDI) as our dependent 
variables.  I restrict the period of estimation to 1975-00 both because the WDI data is 
only available for that time period and because this is also the period over which many 
of the right-hand side variables are available. Results are broadly similar for the 1960-
00 PWT series. 

Estimation starts out from the semi-linear growth equation (2.19): 
.),...()ln(lnlnln 010432010 insskt ZZfgnAhAsAyAA ηδγ ++++++++=  (2.19) 

One of the most commonly expressed preoccupations in the literature about this 
regression regards the endogeneity bias that may arise out of the inclusion of  
endogenous variables such as n or s.  To this effect it is common to omit some of these 
variables from the estimated specification (see, for example, Barro, 1999), thus trading 
off a reduction in endogeneity bias against an increment in omitted-variable bias.  
Following this tradition, I present four variants of estimates of (3.1), all of which use the 
conditional convergence control for log(yt-1) but which differ in their progressive 
inclusion of the remaining variables. 

As our production-function shifters Z, I use twelve commonly used production 
function shifters, as well as three summary indicators made up of subgroups of these. 
The sample attempts to cover the three key dimensions that have played relevant roles 
in the analysis of growth empirics: policies, institutions and economic structure.  To 
measure policy distortions, I use government consumption as a percent of GDP, the 
average tax on imports and exports, the log of one plus the inflation rate and the log of 
the black market premium. To capture the role of institutions, I introduce four 
commonly used indicators: a measure of the rule of law, a measure of political 
instability, an index of economic freedom, and an index of the effectiveness of 
government spending. In the list of structural measures of the level of social 
development and economic modernization of nations, I use the share of primary exports 
in GDP in 1975, the rate of urbanization, the ratio of liquid liabilities to GDP, and the 
average years of life expectancy.  I also use three summary indicators of each of these 
three dimensions, made up by simple normalized averages of the relevant indicators.  A 
full description of the variables is provided in Table 1. 

As is common in the literature, I estimate (2.19) with a restricted subset of the 
variables available in the data set in order to economize on degrees of freedom and 
reduce possible problems of multicollinearity arising from the fact that some of 
indicators may be capturing what is essentially the same phenomenon.  Given that the 
results can be sensitive to the choice of indicators, I present estimates for all possible 
specifications with one policy indicator, one institutional variable and one measure of 
structural characteristics.  In other words, each specification is estimated 125 times and 
the emphasis is placed on the fraction of specifications for which a given hypothesis is 
rejected. 

                                                 
8 Standard random effects estimators require the random effect to be uncorrelated with the residual, 
which is by construction not the case in a growth regression.  See Durlauf, Johnson and Temple 
(forthcoming) for a discussion.  
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3.2 Linearity 
 

Econometrically, the linearity assumption is the simplest one to test in that it can 
easily be done within the framework of parametric estimation.  The basic reason is that, 
under the hypothesis that growth is a linear function of its determinants, no non-linear 
terms should be significant.  Therefore, one can evaluate this hypothesis by estimating a 
standard linear growth regression and adding on a series approximation to estimate the 
residual non-linearity: 

isipsipktty zzzpzzzsgnhy εααααδααααγ +++++++++++= −− ),,()ln(ln)ln( 7654312110

  (3.3) 
where stand, respectively, for the policy, institutional and structural 

indicators and  is the series approximation.  Under the null hypothesis of 

linearity, the coefficients on the non-linear terms should have no effect.  If we find that 
they are jointly significant, this will imply rejection of the linearity hypothesis.  If we do 
not find them to be significant, it may always be the case that the terms that we were 
including did not accurately capture the non-linearities actually present in the data, and 
we would need to look for more general non-parametric methods to approximate these 
non-linearities. 

sip zzz ,,
),,( sip zzzp

A first approach to this issue is presented in Table 2.  In it I present the result of 
estimating (2.19) through ordinary least squares using a Taylor expansion in (zp,zi,zs) as 
p(.).  The table reports the median F-Statistic and associated P-value for rejection of the 
null hypothesis that the non-linear terms are jointly zero, as would be implied by (3.2).  
It also reports the percentage of specifications (out of the 125 regressions generated by 
alternative combinations of the z variables) for which the null hypothesis is rejected. 

As we can clearly see, the rejection of linearity is quite strong.  In the Penn World 
Tables Data, linearity is rejected between 90.4 and 92.8 percent of the time, depending 
on which of the production-function controls are included.  With the World Bank data, 
the rejection of linearity is even stronger, with rejection occurring between 96.8 and 
99.2 percent of the time.  These rejections remain as strong when we use more general 
non-parametric methods to approximate possible non-linearities. 

It should also be evident that whether or not the assumptions necessary to ensure 
partial linearity of the growth function are valid is of little relevance for this exercise.  
Establishing the relevance of the non-linear terms in f(Z) is sufficient to establish the 
lack of validity of the linear specification (2.19).   The significance of any non-linear 
terms in X can only enhance, and in no way weaken, the case against the linear 
specification. 

  
3.3 Separability 

 
The results of the preceding section tell us that the linearity assumption can 

easily be rejected in existing cross-country data sets, but leave us little clue as to the 
form of the actual non-linearity.  A common approach in the literature to the estimation 
of data is to include simple quadratic and interaction terms to approximate existing 
non-linearities. In this vein, it is common to see theoretical arguments about why the 
relationship between growth and a potential determinant may be increasing for certain 
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values of the variable – or of other covariates – and decreasing for others followed by 
estimation of the regression with non-linear terms or multiplicative interactions.  
Usually linearity in the rest of the variables in the specification is maintained.  For 
example, Barro (1999) argues that democracy can be good for growth at low levels but 
starts being harmful for growth alter a certain threshold.   

The flaws in such an approach are evident.  In the first place, it requires accepting 
the assumption that growth is linear in all other covariates in the regression even when 
we are trying to discern whether it is non-linear in the variable or interactions of 
interest.  Second, even if such an assumption were to hold, the non-linearity in the 
variable of interest can be much more complex than what can be captured by a quadratic 
term or a multiplicative interaction. 

In contrast, the approach taken here is to start out from a very general form of 
the non-linearity and to study the form that it takes and the restrictions that can be 
imposed on it without excessive loss of fit.   As discussed in section 2, one key issue in 
estimation of such a non-linear multi-dimensional function is whether it can be taken to 
be additively separable.  Under additive separability, the rate of convergence of the 
optimal estimator increases significantly in comparison with the non-separable case: for 
three dimensions and two bounded derivatives, for example, the rate of convergence 

under additive separability is ⎟
⎠
⎞⎜

⎝
⎛ − 5

4
nOp   as compared with ⎟

⎠
⎞⎜

⎝
⎛ − 7

4
nOp  in the non-

separable case and ( )1−nOp  in the parametric case.  Indeed, given sufficient smoothness 

in the additively separable terms, the rate of convergence of the additively separable 
estimator can be made arbitrarily close to the parametric rate of convergence.  Therefore 
a logical starting point is to test for additive separability of the growth function. 

I start out by testing additive separability of f(Z) in the partially linear 
specification (2.19).  This is done by studying the capacity of the additively separable 
specification: 

 
)()()()ln(ln)log( 4312110 ssiippktty zfzfzfsgnhy +++++++++= −− αδααααγ    

          (3.4) 
 
to account for variations in the data.  In order to do this, I carry out four different 

specification tests that are broadly used in the literature on estimation of non-
parametric and semi-parametric methods.  These are briefly described in what follows. 

The first test consists in a simple F-test for the significance of the interaction 
terms in a Taylor series approximation.  This test uses the same regression used to test 
for non-linearity in subsection 3.2 but tests the restriction that all coefficients in terms 
that include multiplicative interactions of zi variables are zero.  The sampling theory 
associated with this test is well-known and need not be discussed here. 

The results of the F-test for significance of the interaction terms on a the Taylor 
polynomial specification are shown in Table 3.  Rejection rates for the separability 
hypothesis at the 5% level of significance oscillate between a range of 54.4-65.6% for the 
Penn World Tables data and 72.8-76.8% for the World Bank data. 

The basic problem with Taylor polynomial tests of separability is that they may 
lead to overrejection of the null by not taking account of the full level of potential 
complexity of the fi(.)  functions.  By restricting these functions to be third (or n-) order 
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polynomials, we may end up attributing to the separable interaction terms part of the 
variation that actually arises from the complex non-linearities in each of the fi(.) 
functions.  It is thus desirable to attempt estimation of these models via semi-
parametric or non-parametric methods that can allow our estimates of the fi(.) functions 
to be as complex as possible.  The next three tests address this issue in different ways. 

The second test of separability that I present consists in estimation of f(Z) by a 
flexible Fourier series approximation, that is, a polynomial expansion in quadratic and 
trigonometric terms.   There is an extensive econometric literature studying the 
properties of these estimators (Gallant, 1982, Geman and Huang, 1982 and Gallant, 
1987).  The basic benefit of a Fourier approximation is the greater flexibility of the 
trigonometric expansion to approximate highly non-linear functions.  Formally, 
estimation proceeds by estimating: 
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where I have written the parametric part of the equation compactly as Xα . The 

k’i  are known as multi-indices and are vectors whose elements are integers with 
absolute values summing to a number k* less than a pre-specified value K*.  Given a 
value of K* and J, the parameter vector }...,...,...,...,{ 3113113311310 nn JJu vvuuccbbu=β  can be 

estimated by ordinary least squares.  The choices of K* and J are given and are a 
somewhat arbitrary feature of estimation. In principle the total number of terms in the 
expansion is supposed to grow with sample size but knowing this is not terribly helpful 
since it only gives us an order of magnitude and not a specific number of observations.  
In practice, many authors tend to look to the “saturation ratio”, the ratio of the total 
number of terms in the expansion M to the number of observations N.   We can obtain a 
restricted estimator rβ  by restricting the coefficients on the terms involving interactions 
between different z variables to equal zero.  Let eu and er denote respectively the 
residuals from the restricted and unrestricted estimation.  Hong and White (1995) have 
established that under the null hypothesis that the restrictions are valid: 
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where M is the number of terms in the Fourier expansion.  Table 4 shows the 
median F-Statistic, p-values, and number of rejections of the null of separability using 
the Hong-White test.  For this estimation, I have chosen J=1 and K*=2, which gives us 
M=28 and a saturation ratio that varies between .25-.40, a range typical of the applied 
literature (see Chalfant and Gallant, 1985 and Pagan and Ullah, 2004).  The results in 
Table 4 show much lower frequency of rejections of separability than in the polynomial 
expansion.  The percentage of rejections of separability are in the range of 24.0-36.8% 
for the Penn World Tables data and 21.6-36.8% for the World Bank data.  The 
probability of rejection appears to increase when more linear terms are added to the 
specification.  These results are somewhat discouraging in that they point neither 
towards a consistent rejection nor to a consistent non-rejection of separability. 
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The choice of M in Table 4 is actually the lowest number consistent with allowing 
the Flexible Fourier Form to nest a non-separable hypothesis.  This is symptomatic of 
the fact that estimation of high-dimensional non-parametric functions requires a high 
number of observations, which is nothing else than the curse of dimensionality in a 
different guise.  In order to explore the effect of this restriction, we can try to raise the 
number of M, running the risk of having somewhat high saturation ratios.  Table 5 
shows the results of doing this by raising J to 2, giving us saturation ratios between .41 
and .66, which are near the higher end of the range of what is found in the applied 
literature.   It can be seen that shifting to the higher saturation ratio significantly raises 
the rejection rate to levels as high as 88.0%. 
 The next two tests that I discuss depend on direct estimation of the additively 
separable specification (3.4) by semi-parametric methods and analysis of its residuals.  
There are a number of econometric methods available for estimating additively 
separable functions.  In what follows, I will use the results of estimating (3.4) through 
marginal integration using local polynomial estimation9.  The residual regression test 
(Fan and Li, 1996) consists in estimating a non-parametric function of the residuals 
from the restricted estimation on the explanatory variables zi.  Under the null 
hypothesis, these variables should have no explanatory power in the auxiliary 
regression.  Formally, we calculate the U- statistic: 
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 , which, under the null hypothesis of separability, and as long as the restricted 
estimator converges sufficiently rapidly, is normally distributed with mean zero and 
variance ∫∫ )()(2 224 uKxpσ 10.  The differencing test (Yatchew, 1988, 2003) is a 

goodness of fit test that consists in comparing the restricted variance estimator to the 
variance estimator that can be obtained from first-differencing the data.  The logic of 
this approach comes from the fact that, if care is taken to ensure that the data is purged 
of the parametric effect and appropriately ordered in the non-parametric dimension(s), 
then the non-parametric effect should be negligible as long as the distance between 
different observations in the non-parametric dimension is small.   In that case, and as 
long as the restricted variance estimator converges sufficiently rapidly under the null, 
then 
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 Tables 6 and 7 report the results for residual regression and differencing 
estimators of separability respectively.  I have set the bandwidth λ to 0.7 and the order 

                                                 
9 This is carried out using the intestpl command in XploRe.  See (Fan, Haerdle and Mammen (1996) and 
Sperlich and Zelinka (2003) for a discussion.  The statistical properties of marginal integration estimators 
tend to be simpler than those of Hastie and Tsibirani’s (19xx) backfitting algorithm (Pagan and Ullah, 
1999, p.137-9). 
10 In practice, the variance term is estimated by 
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of differencing to 1. Rejection rates remain high for other bandwidth choices, even with 
considerable over-smoothing (Table A-1).  Data are ordered according to Yatchew’s 
(1988) bin-restricted nearest-neighbor algorithm.11  As one can see, the rejection rates 
are moderately high.  For the residual regression test, these oscillate between 60.8% and 
75.2% for the Penn World Tables data and between 52.0 % and 69.6% for the World 
Bank data.  In the case of Yatchew’s differencing test, rejection rates are very high: 
between 72.8% and 98.4% for the Penn World Tables data and between 79.2% and 
91.2% for the World Bank data. 
 In sum, the four proposed tests of separability give contrasting results.  
Differencing tests tend to almost unequivocally reject separability and so do the 
preponderance of residual regression and Taylor series expansion tests.  Only in the case 
of Fourier expansion tests is there is a tendency to not reject separability more often 
than not, but this result is heavily dependent on the choice of terms for the expansion: 
the higher-order Fourier expansion tends to present very high rejection rates of the 
separability hypothesis, suggesting that the lower-order expansion may not be able to 
accommodate existing complexities in the data. 
 The fact that these tests give contrasting results should not be surprising, given 
that the sampling theory behind them is completely asymptotic but the samples used, 
which range from N=70 to N=111, are quite small.  Not surprisingly, these tests have 
been found to differ in their small-sample properties in applied Monte-Carlo 
simulations (see Hong and White, 1995).  Furthermore, small-sample biases aside, they 
may differ in their power to reject the alternative, and these differences in turn may 
depend on the true form that the alternative may take in reality.  To a certain extent, this 
problem is heightened by the curse of dimensionality:  in high dimensions and with 
limited information, one is likely to be able to fit many functional forms to the data, 
including separable and non-separable specifications.  The null hypothesis of 
separability may be difficult to reject not because the world looks particularly separable, 
but rather because sparsity of data allows the world to be consistent with many views, 
among which separability is just one.12

 
3.4 Monotonicity 
 

Taken at face value, the results of the previous subsection are somewhat 
troubling.  It has been shown that there is little theoretical reason to expect  growth to 
be a separable function of production-function shifters; if anything, results based on the 
Theorem of the Second Best would seem to imply the opposite.  Section 3.3 shows that 
the hypothesis of non-separability is very hard to discount empirically.  But we have also 
seen that the curse of dimensionality implies that the informational requirements for 
precisely estimating higher-dimensional functions are way above what is available in 
existing data sets. 

                                                 
11 Given the small number of observations, one could worry that differencing will not adequately purge the 
non-parametric effect, as the distance between nearby observations is likely to be high.  As long as the 

parametric effect is adequately purged, however, this tends to inflate the estimates of  and thus to 
bias our results towards non-rejection of separability. 

diffs2

12 Our current research is focused on understanding the effect of small-sample biases on the properties of 
the alternative tests presented in this context. 
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One may be tempted to close the argument here by claiming to have 
demonstrated that cross-country growth empirics simply lack the data necessary to 
estimate the complex processes which they are attempting to study.  This conclusion 
would coincide with the view of a number of critics of the literature, who have tended to 
dismiss cross-country regressions as a futile exercise that attempts to reach broad-
ranging conclusions based on the comparison of a reduced number of widely divergent 
cases.13

However, before we throw away the baby with the bath-water, it may be useful to 
consider more carefully the full implications of the curse of dimensionality for cross-
country growth empirics.  As stated in section 2.2, the curse of dimensionality refers to 
the rate of convergence of estimators  of a general parametric function , that is, 

of the rate at which  can be said to tend to zero.  In essence, the curse of 
dimensionality tell us that we cannot expect to precisely estimate the true function , 
because in order to do that we would need to know the form that this function takes for 
many different values of z, and when z is a higher-dimensional vector and we have a 
reduced number of observations, there are many values of z which we are likely to have 
very little or no information on.  This does not mean that we cannot estimate  with 
greater confidence locally in areas in which we do have greater amount of information.  
It also does not imply that we cannot make some reasonable inferences about what  
does not look like. 

(.)f̂ (.)f

(.))(.)ˆ( ffE −
(.)f

(.)f

(.)f

In order to make these arguments more concrete, Figure 3.1 shows an example of 
a three-dimensional scatter plot of growth as a hypothetical function of two policy 
determinants based on simulated data, with a limited number of observations (N=75).  
Obviously, there is a lot that we cannot know about the true form of the underlying 
function.  Some areas of the graph are so sparsely populated so as to make inference 
about the expectation of growth impossible without very strong parametric 
assumptions.  For example, as plotted there are no data points with high values of Policy 
2 and low values of Policy 1, so that there is very little that we can say about the expected 
value of growth for a country that adopted such a policy combination.  However, that is 
not the case for low values of policies 1 and 2.  Furthermore, there are some things that 
can be safely inferred about the form of the growth function given his data.  For one, it is 
quite clear from the picture that, at least for some levels of policies, growth is not a 
monotonically decreasing function in either policy 1 or policy 2.  It would be very hard to 
argue, after having seen this picture, that policy 1 and policy 2 are unequivocally bad for 
growth. 

The preceding argument captures the intuition of the tests that I will present in 
the remainder of this section.  Through them, I will try to ask whether the growth data is 
consistent or not with certain hypotheses about the form of the f(.) function.  The basic 
idea is to attempt to present a more consistent non-parametric alternative to the 
parametric significance tests that are commonplace in cross-country regression analysis. 
A logical counterpart to parametric significance tests would be to test whether  is a 
monotonically increasing (or decreasing) function of its arguments.  In other words, we 
would try to ask of the data the following question: is there evidence that if a country 
were to carry out policy reform A, we could always expect its growth rate to rise or at the 

(.)f

                                                 
13 See, for example, Bhagwati and Srinivasan, 2000. 
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least not to fall with that policy reform?  Formally, this is implemented by testing the 
null hypothesis: 

)',...'(),...()',...'(),...(: 11110 mmmm zzfzzfzzzzH ≥→≥ 14   (3.9) 

against the alternative: 
)}',...'(),...(),,...,(),...,{(|)',...'(),,...(: 1111111 mmmmmm zzfzzfzzzzzzzzH ≤>∃ . 

          (3.10)  
We can use the same framework for testing as in the previous subsection by 

imposing monotonicity as a restriction on the estimated  and calculating the  HW, U 
and Y statistics.  The only technical issue has to do with the calculation of the restricted 
estimator.  In the case of the Fourier series expansion, we can explicitly calculate the 
derivative of the series and directly impose the restriction that  

(.)f̂

0(.)
ˆ

≥
∂
∂

iz
f

.         (3.11) 

The sum of squared residuals is minimized subject to (3.11) to obtain the 
restricted estimator  and calculate the HW statistic.  This is a non-linear 
optimization problem subject to an inequality restriction that can be solved numerically.  
For the case of the residual regression and differencing tests, however, the issue is a bit 
more complex, as (3.10) cannot so easily be summarized as one restriction.  The explicit 
parametric representation of the Fourier series expansion allows summarizing (3.11) via 
explicit calculation of the first derivative.  In the residual regression and differencing 
case, there is no such easy expedient and we must impose (3.11) locally at every point.  
Since this is not feasible computationally, as it would imply solving a non-linear 
optimization problem subject to an infinity of constraints, I approximate it by dividing 
the  space into one-thousand cubes of volume 0.1

(.)ˆ
rf

sip ZZZ ×× 3=0.001 and constraining 

 to be monotonic between any two locally adjoining cubes.  This still requires 
estimation subject to a very high number of constraints (5.920).

(.)ˆ
rf

 15 In practice, however, 
the actual number of binding constraints is much smaller, making estimation 
computationally feasible. 16

                                                 
14 There are a number of non-parametric tests of significance in the literature that consist in studying the 
results of imposing the restriction that the regression is independent of the variable in question (e.g., 
Gozalo, 1995). A problem in using such a test for policy analysis would be that it can conclude that a 
certain variable can be significant as a result of its having positive effects over some ranges and negative 
effects over other ranges, without allowing us to determine the ranges over which either effect dominates.  
A monotonicity test, in contrast, tells us whether we could expect a certain policy to always be good or at 
least not harmful for growth.  Obviously, one could also carry out local monotonicity tests, but these are 
likely to be much more demanding in terms of data requirements. 
15 Each cube has seven adjoining cubes that are characterized by one policy being strictly higher, except 
for the 270 cubes that are on the upper boundaries, which need only be compared with three adjoining 
cubes.   
16  All problems were solved using the CONOPT solver in GAMS; the code is available from the author 
upon request. For the Fourier series expansion, the sum of squared residuals was minimized subject to 
the explicit constraint that the analytic first-derivative have the prescribed sign.  For the residual 

regression and differencing tests, we first obtain a non-parametric estimate of  by penalized thin-
plate regression spline estimation using the gam command in R; we then calculate the restricted estimate 

(.)f̂
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Table 8 displays the results of the Fourier expansion tests.  As we can see in the 
upper panel, the data seems to have very little capacity to reject the “conventional 
wisdom” view that distortionary policies are bad for growth, market-preserving 
institutions are good for growth and a more modernized economic structure is good for 
growth. The hypotheses are tested separately.17 Rejection rates for all of the three 
hypotheses are invariably in the single digits, with a maximum rate of 9.6% for the 
structural variables.  For no policy is it the case that there are more rejections than non-
rejection of the monotonicity hypothesis. 

Unlike the case of standard significance tests in linear regressions, the tests 
shown in this and the next two tables treat the hypothesis that a certain variable is 
beneficial – or detrimental – to growth as the null hypothesis.  By construction, this is a 
necessity of the logical structure of the tests: in order for the specifications to be 
appropriately nested, the unrestricted specification must correspond to that in which 
any non-linear form is possible, while the restricted specification is the one in which 
only monotonic functional forms are acceptable.  Therefore, in the absence of sufficient 
information, the tendency of the tests will be to not reject the null hypothesis.  One 
likely effect of the curse of dimensionality may be to make just about any hypothesis 
difficult to reject in very small data sets.  In other words, it may be relatively simple to fit 
many highly non-linear functional forms, both monotonic and non-monotonic, to a data 
set with relatively few observations. 

The lower panel of Table 8 explores this possibility by looking at the rejection 
tests for an alternative set of hypotheses that would stand in complete contrast with the 
conventional wisdom view, consisting in the hypothesis that the functions in question 
are monotonic with the contrary sign than specified in the conventional wisdom 
hypothesis.  I call this the contrarian view.  Thus, in the policy arena, the contrarian 
view would be that increasing policy-induced distortions, say by raising tariff rates, is 
monotonically good for growth.  In the case of institution, the contrarian hypothesis will 
take the form of a statement that growth is a monotonically decreasing function of 
institutional improvements such as improvements in the rule of law.  The relevant 
question becomes whether the data has enough information so as to reject this clearly 
unorthodox view. 

The results shown in the lower panel of Table 8 are quite discouraging in this 
respect. Rejection rates of the contrarian view for policies oscillate in the range of 35.2-
39.2%, while for institutions they are slightly higher (34.4-48.8%) but still well below 
one-half.  Only in the case of economic structure do we find some cases in which the 
contrarian view is rejected for the median specification, but even here on average more 
than four out of every ten specifications cannot reject the hypothesis that a less modern 
economic structure is always good for growth.  Although rejections of the contrarian 
view are much more common than those of the conventional wisdom, it is still the case 
that in the majority of specifications one can refute neither the hypothesis that they are 
monotonically beneficial for growth nor the hypothesis that they are monotonically 
harmful for growth. 

The tendency for greater rejection of the contrarian hypothesis disappears once 
we consider the residual regression and differencing tests on the partially linear 
                                                                                                                                                             
by finding the closest set of points to the fitted function that satisfy the monotonicity constraints in 
GAMS. See Mammem (1991) for a discussion of this method for construction of monotonic estimates. 
17 Joint testing of the three hypotheses yiedls very simlar results. 
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specification, which show rejection rates in the low single digits for both the 
conventional wisdom and the contrarian view.  The results of these tests, shown in 
Tables 9 and 10, can be succinctly summarized as follows: there appears to be nothing in 
the data that allows these tests to refute the hypothesis of monotonicity in either 
direction for any of the production function shifters.  

Given the high dimensionality of the function estimated, and the small number of 
observations available, these results are not surprising.  Taken together, these two facts 
imply that it is very easy to incorporate many restrictions into a non-linear function 
without suffering much loss of fit.  Given the rejection of additive separability and the 
curse of dimensionality discussed above, these results are little more than expression of 
the very reduced informational content that is available in existing data once we accept 
the general non-linear specification.  The curse of dimensionality has come back to 
haunt us, and it appears to be here to stay.       

 
4. Concluding Comments 

 
This paper brings a discouraging message to those interested in carrying out policy 

analysis within the growth regression framework.  In essence, I have argued that (i) the 
theoretical basis for the linear kitchen-sink growth regression is tenuous; (ii)  there are 
considerable risks from misspecification bias that come from using such a specification 
when it is not valid; (iii) the data strongly supports the hypothesis that a linear 
specification is not valid; (iv) there may be too little information in existing data sets to 
allow us to appropriately make the type of inferences about the growth effects of 
particular policies or strategies for economic and structural reforms that the profession 
has become used to drawing. 

The basic reason behind these results is that, once we recognize the true multi-
dimensionality of the growth process, existing data is clearly insufficient to allow us to 
understand it in a statistical sense.  It is one thing to try to distinguish between the 
hypothesis that openness is equally good for all countries and the hypothesis that 
openness is equally bad (or equally irrelevant) for all countries than trying to distinguish 
among a broad set of potential hypotheses that allow for complex interactions between 
openness and a host of country-specific characteristics such as its primary export 
dependence and the effectiveness of its government spending.   In order to do the 
former one may be able to get away with using a small number of observations; this is 
unlikely to be feasible if one is attempting the latter.  The problem is that if the latter 
specification is the better reflection of reality, attempting to use the former is likely to 
lead to results that are at best misleading and at worse meaningless. 

Does this mean that the empirical analysis of growth data sets is a worthless 
endeavor?  I do not think so.  Actually, this paper has shown that one can use existing 
data sets to make non-trivial inferences about the growth process.  The tests presented 
in section 3 present a decisive rejection of the linearity hypothesis.  We do not seem to 
be in a world where any country can expect to have the same effect from a proportionate 
change in a particular policy, institution or structural characteristic irrespective of its 
starting level.  Furthermore, the preponderance of the evidence seems to weigh against 
the hypothesis of separability: we do not appear to be in a world in which the effect of a 
particular policy does not depend on the state of institutions or the economy’s structural 
characteristics.  These conclusions are in themselves very important: they show that we 
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do not live in a simple world, where the same rules can be use to design growth 
strategies in China and in Chile.  In the dimension of policy, institutional and structural 
effects, the world does not seem to be very flat.  Rather, it appears to be a pretty rocky 
place. 

What this paper does suggest is that the conventional mode of analysis that relies on 
using partial coefficients from cross-national growth regressions to evaluate the growth 
effects of policies is mistaken and can produce highly misleading results.  Since these 
exercises are premised on the assumption that the effects of policies will not differ 
between countries, they provide biased and inconsistent estimates of the effects that one 
seeks to estimate.  The empirical exercise presented in section 3.4 shows that, once we 
take full account of existing non-linearities, we are unlikely to be able to obtain 
reasonably precise estimates of the growth effect of policies from this type of analysis.  
In other words, the cross-country empirical growth framework may not be a particularly 
adequate one for conducting analysis on the growth effects of policies. Attempting to use 
it in this way amounts to trying to make the data say more than it can.   

This research suggests that applied growth economists may need to turn to more 
context-specific modes of empirical analysis if they seek to understand the interactions 
between policies, institutions and economic structure in the determination of economic 
growth.  There is a wealth of alternative methods that can be used at the country level 
and have been underexploited in the study of economic growth.  Detailed 
microeconomic studies can exploit the availability of information in labor and industrial 
surveys to help us understand the causes of productivity and human capital 
accumulation.  Time-series studies of macroeconomic interactions can help us make 
sense of an economy’s reaction to monetary and fiscal policy shocks.  Historical and 
institutional analyses can help us understand the complex links between political 
alliances and economic policy design.  It is regrettably rare to see serious attempts at 
putting these different pieces of a country’s growth puzzle together.  
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Table 1: Variable Description 
  
Policy Indicators  
1. Trade Policy Openness (1+tm)(1+te)-1, with tm (te) the ratio of 

import (export) tax revenue in total 
imports (exports); Data from World 
Bank (2004) 

2. Log of Black Market Premium Dollar and Kraay (2002) 
3. Government Consumption as a 
Percentage of GDP 

World Bank (2004) 

4. Log of (1+Inflation Rate) World Bank (2004) 
5.Summary Policy Indicator Sum of 1-4, normalized over the unit 

interval 
Institutional Indicators  
6. Rule of Law Dollar and Kraay (2002) 
7. Political Instability Average Variation in POLITY variable, 

Polity IV Data Set. 
8. Effectiveness of Government 
Spending 

Glaeser et al. (2004) 

9. Economic Freedom Index Heritage Foundation 
10. Summary Institutions Indicator Sum of 6-9, normalized over the unit 

interval 
Economic Structure Indicators  
11. Share of Primary Exports in Total 
Exports 

World Bank (2004) 

12. Urbanization Rate World Bank (2004) 
13. Share of liquid liabilities in GDP International Monetary Fund (2004) 
14, Life Expectancy World Bank (2004) 
15. Summary Structure Indicator Sum of 10-14, normalized over the unit 

interval 
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Table 2: Linearity Tests, Taylor Polynomial 
Expansions   

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 
Investment 

Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Penn World Tables, 
1975-00     
Median F-Statistic 4.90 4.92 4.62 5.01 
Median P-Value 0.00 0.00 0.00 0.00 
Number significant 
(/125) 116 113 114 114 
Percent Significant 
(5%) 92.8% 90.4% 91.2% 91.2% 
World Bank, 1975-03     
Median F-Statistic 5.00 4.72 4.74 4.71 
Median P-Value 0.00 0.00 0.00 0.00 
Number significant 
(/125) 123 124 124 121 
Percent Significant 
(5%) 98.4% 99.2% 99.2% 96.8% 

Reported results refer to conventional F-test of the null hypothesis that all coefficients on 
non-linear terms in a 3rd-order polynomial expansion are equal to zero.  Number and 
percent significant are calculated using a significance level of 5%. 
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Table 3: Separability Tests, Taylor Polynomial Expansions  

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Penn World Tables, 
1975-00     
Median F-Statistic 2.62 2.09 2.20 2.40 
Median P-Value 0.01 0.04 0.03 0.02 
Number significant 
(/125) 82 68 72 75 
Percent Significant 
(5%) 65.6% 54.4% 57.6% 60.0% 
World Bank, 1975-03     
Median F-Statistic 2.70 2.90 2.75 2.88 
Median P-Value 0.01 0.01 0.01 0.01 
Number significant 
(/125) 91 92 96 96 
Percent Significant 
(5%) 72.8% 73.6% 76.8% 76.8% 

Reported results refer to conventional F-test of the null hypothesis that all coefficients 
involving inter-variable interactions in a 3rd-order polynomial expansion are equal to zero.  
Number and percent significant are calculated using a significance level of 5%. 
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Table 4: Hong- White Separability Tests, Flexible Fourier Form, J=1, 
K*=2 

Equation (1) (2) (3) (4) 

Controls 
1975 
GDP 

1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 
Investment 

Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Penn World Tables, 1975-00    
Median F-Statistic -0.02 0.60 0.59 0.87 
Median P-Value 0.51 0.27 0.28 0.19 
Number significant 
(/125) 30 41 46 46 
Percent Significant 24.0% 32.8% 36.8% 36.8% 
World Bank, 1975-03     
Median F-Statistic -0.07 0.89 0.87 0.84 
Median P-Value 0.53 0.19 0.19 0.20 
Number significant 
(/125) 27 41 45 46 
Percent Significant 21.6% 32.8% 36.0% 36.8% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 5: Hong- White Separability Tests, Flexible Fourier 
Form, J=2, K*=2  

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Penn World Tables, 1975-00    
Median F-Statistic 3.22 4.15 4.83 5.38 
Median P-Value 0.00 0.00 0.00 0.00 
Number 
significant (/125) 87 102 108 110 
Percent Significant 69.6% 81.6% 86.4% 88.0% 
World Bank, 1975-
03     
Median F-Statistic 2.37 3.76 3.92 4.37 
Median P-Value 0.01 0.00 0.00 0.00 
Number 
significant (/125) 74 107 105 106 
Percent Significant 59.2% 85.6% 84.0% 84.8% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 6: Residual Regression Tests, Marginal Integration 
Estimates of Additively Separable Function  

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, Schooling, 
Investment Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Penn World Tables, 1975-00    
Median F-Statistic 2.85 2.19 2.03 2.63 
Median P-Value 0.00 0.01 0.02 0.00 
Number significant 
(/125) 94 78 76 86 
Percent Significant 75.2% 62.4% 60.8% 68.8% 
World Bank, 1975-03     
Median F-Statistic 2.73 1.87 1.69 2.14 
Median P-Value 0.00 0.03 0.05 0.02 
Number significant 
(/125) 87 69 65 74 
Percent Significant 69.6% 55.2% 52.0% 59.2% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 7: Differencing Tests, Marginal Integration 
Estimates of Additively Separable Function  

Equation (1) (2) (3) (4) 

Controls 
1975 
GDP 

1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 

Investment Rate, 
Population 

Growth 
Penn World Tables, 1975-
00    
Median F-
Statistic 18.98 17.99 7.90 33.27 
Median P-Value 0.00 0.00 0.00 0.00 
Number 
significant 
(/125) 118 118 91 123 
Percent 
Significant 94.4% 94.4% 72.8% 98.4% 
World Bank, 
1975-03     
Median F-
Statistic 13.54 18.13 9.86 34.01 
Median P-Value 0.00 0.00 0.00 0.00 
Number 
significant 
(/125) 112 99 100 114 
Percent 
Significant 89.6% 79.2% 80.0% 91.2% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 8: Fourier Expansion Tests of Monotonicity 
(PWT Data)  
Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 

Investment Rate, 
Population Growth 

Conventional Wisdom 
Policies     
Median F-
Statistic -2.00 -1.90 -1.50 -1.62 
Median P-Value 0.98 0.97 0.93 0.95 
Number 
significant 
(/125) 6 9 7 9 
Percent 
Significant 4.8% 7.2% 5.6% 7.2% 
Institutions     
Median F-
Statistic -2.37 -2.20 -1.84 -1.91 
Median P-Value 0.99 0.99 0.97 0.97 
Number 
significant 
(/125) 6 5 7 4 
Percent 
Significant 4.8% 4.0% 5.6% 3.2% 
Structure     
Median F-
Statistic -2.52 -2.36 -2.15 -2.09 
Median P-Value 0.99 0.99 0.98 0.98 
Number 
significant 
(/125) 8 12 12 10 
Percent 
Significant 6.4% 9.6% 9.6% 8.0% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 8: Fourier Expansion Tests of Monotonicity (PWT Data) (Continued) 
 

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 
Investment 

Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Contrarian View 

Policies     
Median F-
Statistic 0.61 0.90 0.70 0.76 
Median P-Value 0.27 0.18 0.24 0.22 
Number 
significant 
(/125) 45 49 44 44 
Percent 
Significant 36.0% 39.2% 35.2% 35.2% 
Institutions     
Median F-
Statistic 0.31 1.56 0.63 0.87 
Median P-Value 0.38 0.06 0.27 0.19 
Number 
significant 
(/125) 43 61 52 52 
Percent 
Significant 34.4% 48.8% 41.6% 41.6% 
Structure     
Median F-
Statistic 2.81 2.18 1.62 1.44 
Median P-Value 0.00 0.01 0.05 0.08 
Number 
significant 
(/125) 75 68 62 62 
Percent 
Significant 60.0% 54.4% 49.6% 49.6% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 9: Residual Regression Tests of Monotonicity 
(PWT Data)  

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, Schooling, 
Investment Rate, 

Population Growth 
Conventional Wisdom 

Policies     
Median F-
Statistic -1.44 -1.45 -1.70 -1.74 
Median P-
Value 0.92 0.93 0.96 0.96 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 
Institutions     
Median F-
Statistic -1.44 -1.42 -1.54 -1.58 
Median P-
Value 0.93 0.92 0.94 0.94 
Number 
significant 
(/125) 3 3 2 2 
Percent 
Significant 2.4% 2.4% 1.6% 1.6% 
Structure     
Median F-
Statistic -1.55 -1.48 -1.75 -1.72 
Median P-
Value 0.94 0.93 0.96 0.96 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 9: Residual Regression Tests of Monotonicity (PWT Data) ( Continued) 
 

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Contrarian View 

Policies     
Median F-
Statistic -1.42 -1.41 -1.61 -1.62 
Median P-
Value 0.92 0.92 0.95 0.95 
Number 
significant 
(/125) 2 1 0 0 
Percent 
Significant 1.6% 0.8% 0.0% 0.0% 
Institutions     
Median F-
Statistic -1.32 -1.27 -1.38 -1.51 
Median P-
Value 0.91 0.90 0.92 0.93 
Number 
significant 
(/125) 4 3 2 2 
Percent 
Significant 3.2% 2.4% 1.6% 1.6% 
Structure     
Median F-
Statistic -1.34 -1.30 -1.54 -1.60 
Median P-
Value 0.91 0.90 0.94 0.95 
Number 
significant 
(/125) 4 3 3 2 
Percent 
Significant 3.2% 2.4% 2.4% 1.6% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 10: Differencing Tests of Monotonicity (PWT 
Data)  

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, Schooling, 
Investment Rate, 

Population Growth 
Conventional Wisdom 

Policies     
Median F-
Statistic -4.92 -4.57 -4.48 -4.43 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 
Institutions     
Median F-
Statistic -4.57 -4.50 -4.48 -4.20 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 
Structure     
Median F-
Statistic -4.62 -4.69 -4.64 -4.38 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 

Number and percent significant are calculated using a significance level of 5%. 
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Table 10: Differencing Tests of Monotonicity (PWT Data) (Continued) 

Equation (1) (2) (3) (4) 

Controls 1975 GDP 
1975 GDP, 
Schooling 

1975 GDP, 
Schooling, 

Investment Rate 

1975 GDP, 
Schooling, 
Investment 

Rate, 
Population 

Growth 
Contrarian View 

Policies     
Median F-
Statistic -4.60 -4.66 -4.43 -4.13 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 1 0 0 1 
Percent 
Significant 0.8% 0.0% 0.0% 0.8% 
Institutions     
Median F-
Statistic -4.50 -4.59 -4.22 -4.26 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 1 0 0 0 
Percent 
Significant 0.8% 0.0% 0.0% 0.0% 
Structure     
Median F-
Statistic -4.59 -4.60 -4.32 -4.20 
Median P-
Value 1.00 1.00 1.00 1.00 
Number 
significant 
(/125) 0 0 0 0 
Percent 
Significant 0.0% 0.0% 0.0% 0.0% 

Number and percent significant are calculated using a significance level of 5%. 
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Table A-1: Sensitivity to Bandwidth Choice, Residual 
Regression and Differencing Tests of Separability 

Equation (1) (2) (3) (4) 
Bandwidth 0.25 0.5 0.75 1 

Residual Regression Tests     
Penn World Tables, 1975-00     
Median P-Value 0.01 0.00 0.00 0.08 
Percent Significant 71.4% 91.8% 64.0% 46.4% 
Penn World Tables, 1975-00     
Median P-Value 0.00 0.00 0.03 0.12 
Percent Significant 66.3% 90.0% 56.0% 36.8% 

Differencing Tests     
Penn World Tables, 1975-00     
Median P-Value 0.00 0.00 0.00 0.00 
Percent Significant 100.0% 99.1% 89.6% 68.0% 
Penn World Tables, 1975-00     
Median P-Value 0.00 0.00 0.00 0.00 
Percent Significant 100.0% 100.0% 88.0% 63.2% 
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Figure 3.1: Simulated Data, Growth and Two Policy Determinants 
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