The Problem Not-So-Attractive Solutions

A 10

. ⊒ →

The Standardized World Income Inequality Database

Frederick Solt University of Iowa

18 September 2013

Frederick Solt The SWIID

The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income)
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income)
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

∃ ► < ∃ ►</p>

The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

(4月) イヨト イヨト

The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

- 4 同 6 4 日 6 4 日 6

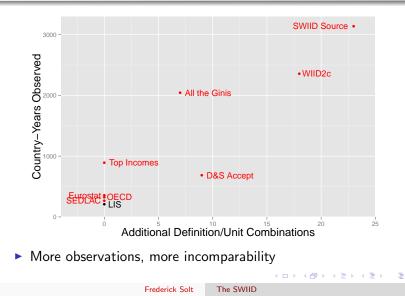
The Problem Not-So-Attractive Solutions

The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income)
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

- 4 同 6 4 日 6 4 日 6

The Problem Not-So-Attractive Solutions


The Problem: Quantity vs. Quality

- Goal: To make valid comparisons of levels and trends in income inequality across countries and over time
- Need: Comparable data for many countries and years
- Issue: Most of the available data is incomparable
 - 1. Income definition (e.g., market income, consumption)
 - 2. Unit of analysis (e.g., household, adult equivalent, individual)
 - 3. Harmonization (e.g., treatment of non-monetary income)
 - 4. Coverage (entire population vs., e.g., major cities, rural, adults)

- 4 同 6 4 日 6 4 日 6

The Problem Not-So-Attractive Solutions

A Tradeoff

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

Comparable Data for a Few Countries and Years

- Luxembourg Income Study (208)
- ► All the Ginis (590)
- SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

 Incomparable Data for Many Countries and Years

- Just ignore incomparability, or
- Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

< 17 > <

∃ >

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

Incomparable Data for Many Countries and Years

- Just ignore incomparability, or
- Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

< A > <

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

< A > <

∃ >

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

< A >

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

A 10

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options

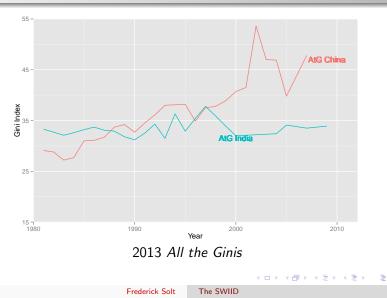
- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

< A >

The Problem Not-So-Attractive Solutions

Two (Not-So-Attractive) Options


- Comparable Data for a Few Countries and Years
 - Luxembourg Income Study (208)
 - All the Ginis (590)
 - SWIID Source Data (962)
- But this entails giving up on many comparisons and throwing away a lot of data

- Incomparable Data for Many Countries and Years
 - Just ignore incomparability, or
 - Make a fixed adjustment for different definitions and units
- But crudely reducing these differences to constants means any comparisons are extremely dubious

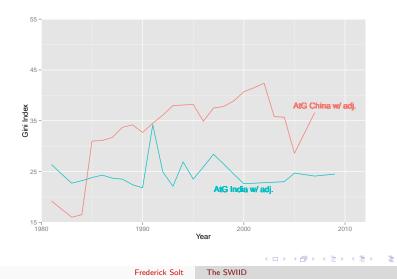
A 1

The Problem Not-So-Attractive Solutions

All the Ginis

The Problem Not-So-Attractive Solutions

(日) (同) (三) (三)


All the Ginis with Adjustments

Source	SS	df		MS		Number of obs	
Model	58090.3265	3				F(3, 1891) Prob > F	= 0.0000
Residual	143524.027	1891	75.8	984808		R-squared Adj R-squared	
Total	201614.354	1894	106.448972			Root MSE	= 8.712
Giniall	Coef.	Std.	Err.		P>ItI	[95% Conf.	Interval
Di	1.737537	.4671	214	3.72	0.000	.8214097	2.653665
Dhh	-1.469912	.513	049	-2.87	0.004	-2.476113	4637103
Dg	11.15089	.4060	547	27.46	0.000	10.35453	11.94725
_cons	32.17105	.4423	607	72.73	0.000	31.30349	33.03862

 Use included dummy variables to calculate adjustments per Milanovic (2013, 8) ...

The Problem Not-So-Attractive Solutions

All the Ginis with Adjustments

The Problem Not-So-Attractive Solutions

All the Ginis and the LIS

The Logic An Illustration Constructing the SWIID

SWIID: The Logic

How to maximize comparability for the widest possible coverage?

▶ This is a missing-data problem, fit for multiple imputation:

- LIS gives high comparability, but with ~98% missing country-years
- Other data informs imputations of these missing observations
- 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

- 4 同 ト 4 ヨ ト 4 ヨ ト

The Logic An Illustration Constructing the SWIID

SWIID: The Logic

- How to maximize comparability for the widest possible coverage?
- This is a missing-data problem, fit for multiple imputation:
 - LIS gives high comparability, but with ~98% missing country-years
 - Other data informs imputations of these missing observations
 - 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

- 4 同 6 4 日 6 4 日 6

The Logic An Illustration Constructing the SWIID

SWIID: The Logic

- How to maximize comparability for the widest possible coverage?
- This is a missing-data problem, fit for multiple imputation:
 - ▶ LIS gives high comparability, but with ~98% missing country-years
 - Other data informs imputations of these missing observations
 - 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

The Logic An Illustration Constructing the SWIID

SWIID: The Logic

- How to maximize comparability for the widest possible coverage?
- This is a missing-data problem, fit for multiple imputation:
 - ▶ LIS gives high comparability, but with ~98% missing country-years
 - Other data informs imputations of these missing observations
 - 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

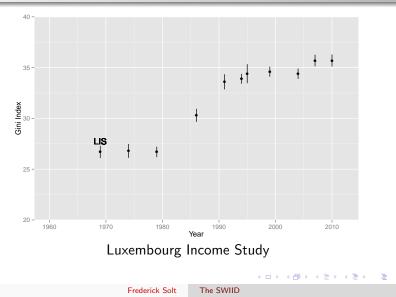
The Logic An Illustration Constructing the SWIID

SWIID: The Logic

- How to maximize comparability for the widest possible coverage?
- This is a missing-data problem, fit for multiple imputation:
 - ▶ LIS gives high comparability, but with ~98% missing country-years
 - Other data informs imputations of these missing observations
 - 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

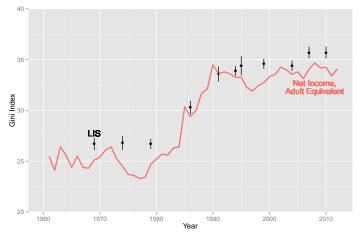
- 4 同 6 4 日 6 4 日 6

The Logic An Illustration Constructing the SWIID


SWIID: The Logic

- How to maximize comparability for the widest possible coverage?
- This is a missing-data problem, fit for multiple imputation:
 - ▶ LIS gives high comparability, but with ~98% missing country-years
 - Other data informs imputations of these missing observations
 - 'Adjustment' modeled as varying across countries and over time, relying as much as possible on proximate years in the same country

- 4 同 6 4 日 6 4 日 6

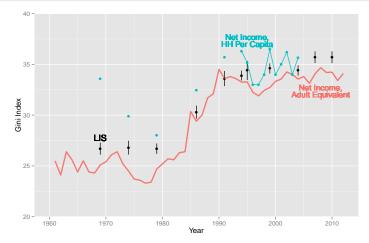

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

SWIID Source Data: A Complete Annual Series for the UK

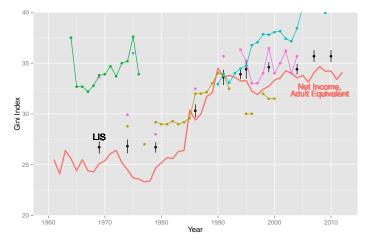

< 17 ▶ <

Frederick Solt The SWIID

The Logic An Illustration Constructing the SWIID

< □ > < 🗇 >

An Illustration: Inequality in the United Kingdom

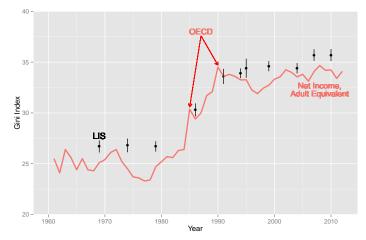


1. Counting across all countries, another series is actually more plentiful

Frederick Solt The SWIID

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom



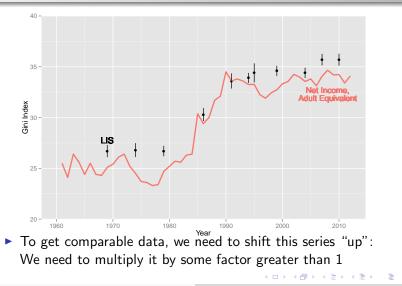
2. Using only the complete series discards a lot of other data

Frederick Solt T

The Logic An Illustration Constructing the SWIID

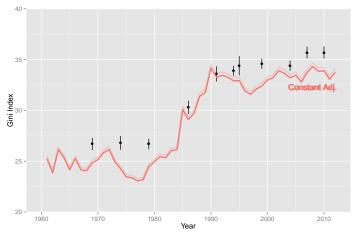
An Illustration: Inequality in the United Kingdom

3. Harmonization is important ...


Frederick Solt The SWIID

ъ

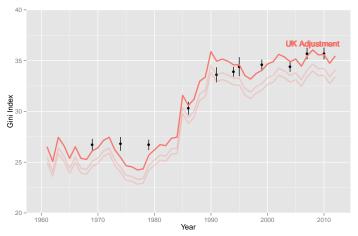
17 ▶


The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom


SWIID Source Data, Global Fixed Adjustment: $G \times .98$

Frederick Solt T

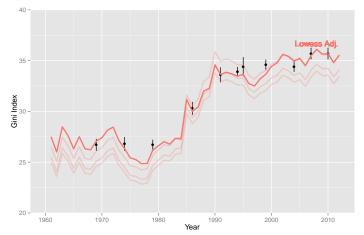
< 17 ▶

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

SWIID Source Data, UK Fixed Adjustment: $G \times 1.04$

Frederick Solt T


The SWIID

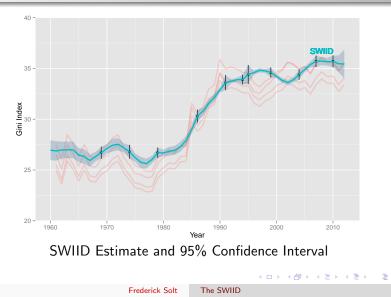
< 17 ▶

-

The Logic An Illustration Constructing the SWIID

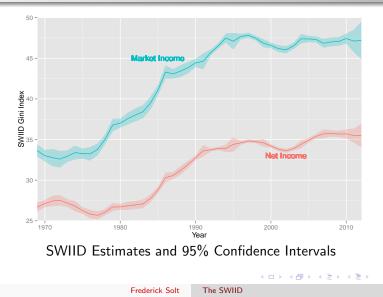
An Illustration: Inequality in the United Kingdom

SWIID Source Data, Loess Estimate Adjustment: $G \times 1.00$ to 1.08


< 4 → < 三

э

Frederick Solt The SWIID


The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

The Logic An Illustration Constructing the SWIID

An Illustration: Inequality in the United Kingdom

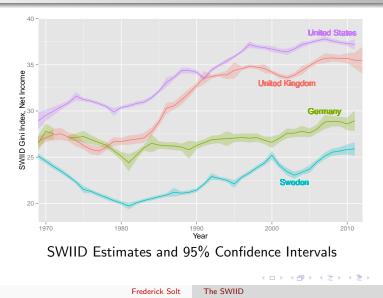
The Logic An Illustration Constructing the SWIID

Constructing the SWIID

- 1. Collect all available Gini data
- 2. Categorize observations by combination of income definition and unit of analysis
- 3. Calculate all observed adjustment ratios $\rho_{abit} = \frac{G_{bit}}{G_{ait}}$
- 4. Predict unobserved $\hat{\rho}_{abit}$ using:
 - a. Loess by country over time
 - b. Regression by country-decade
 - c. Regression by country
 - d. Regression by 'region'
 - e. Regression by advanced or developing world

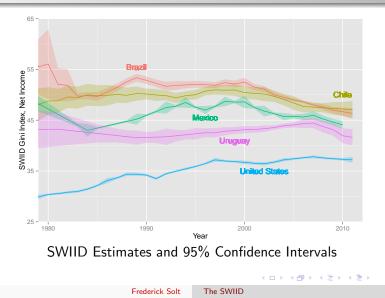
글 > - < 글 >

The Logic An Illustration Constructing the SWIID


Constructing the SWIID

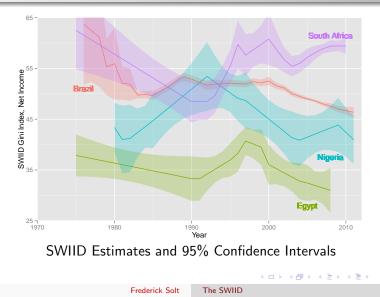
- 5. Make two-step predictions: $\hat{\rho}_{1bit} = \hat{\rho}_{abit} \times \hat{\rho}_{1ait}$
- 6. Use $\hat{\rho}$ and all observed Ginis to estimate standardized Ginis
- 7. If multiple estimates exist for a country-year, combine them:
 - a. Start with best-fitting estimate for each country-year
 - b. Incorporate additional estimates if they reduce error
- 8. Inform with estimates from surrounding country-years:
 - a. Apply weighted moving-average smoother (with exceptions)
 - b. Interpolate completely unobserved country-years

B b d B b

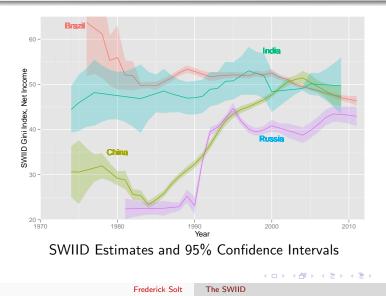

Graphical Comparisons Statistical Comparisons

Inequality in Net Income in Four Rich Countries

Graphical Comparisons Statistical Comparisons


Inequality in Net Income in Latin America

Graphical Comparisons Statistical Comparisons


э

Inequality in Net Income in Africa

Graphical Comparisons Statistical Comparisons

Inequality in Net Income in the BRICs

Graphical Comparisons Statistical Comparisons

Statistical Analysis with the SWIID

Remember, the SWIID estimates are estimates

- Taking the standard errors into account is crucial to making well-grounded, defensible comparisons
- ▶ Fortunately, this is easier to do than it used to be . . .

医下子 医下

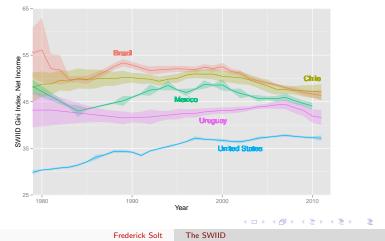
Graphical Comparisons Statistical Comparisons

Statistical Analysis with the SWIID

- Remember, the SWIID estimates are estimates
- Taking the standard errors into account is crucial to making well-grounded, defensible comparisons
- ▶ Fortunately, this is easier to do than it used to be . . .

医下子 医下

Graphical Comparisons Statistical Comparisons


Statistical Analysis with the SWIID

- Remember, the SWIID estimates are estimates
- Taking the standard errors into account is crucial to making well-grounded, defensible comparisons
- ▶ Fortunately, this is easier to do than it used to be . . .

Graphical Comparisons Statistical Comparisons

CCTs in Brazil

Has inequality declined in Brazil since the introduction of national conditional cash transfers in 2001?

Graphical Comparisons Statistical Comparisons

CCTs in Brazil

. mi estimate: reg gini_net year if country=="Brazil" & year>=2001

Multiple-imputation estimates				Imput	tations	_	100
Linear regression				Numbe	er of obs	s =	11
				Avero	age RVI	_	3.7471
					est FMI	_	0.8895
				•	Lete DF		g
DF adjustment:	Small samp	ole		DF:	min	=	1.28
					avg	_	1.28
					max	_	1.29
Model F test: Equal FMI				FC	1, 1.	.3) =	61.93
Within VCE typ		Prob	=	0.0483			
gini_net	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
year	5262775	.0668735	-7.87	0.048	-1.038	384	0141711
_cons	1104.367	134.0916	8.24	0.046	78.99	686	2129.737
		E L LL C K	TL CM/III				
		Frederick Solt	The SWIIE	2			

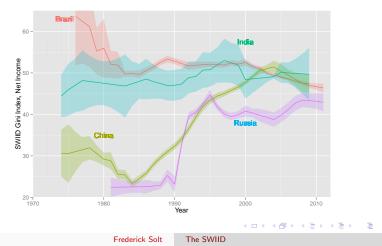
Introduction Constructing the SWIID Using the SWIID

Graphical Comparisons Statistical Comparisons

CCTs in Brazil

▶ Has the *trend* in inequality changed in Brazil since 2001?

. use "/Users/	fredsolt/Down	nloads/SWIID	v4_pre-re	elease-1/	SWIID∨4_0_	100	pre.dta", cl
. gen no_cct=(country=="Bro	azil" & year	<2001)				
. xi: mi estim i.no_cct i.no_cct*year	_Ino_cct	_0-1		y coded;	ry=="Brazi _Ino_cct_		
Multiple-imput	ation estimat	tes		Imput	ations		100
Linear regression				Numbe	r of obs		27
				Avera	ge RVI		0.9517
				Large	st FMI		0.5545
				Compl	ete DF		23
DF adjustment: Small sample					min		10.04
					avg		10.62
					max		11.21
Model F test:	Equal				3, 17.1)		37.89
Within VCE typ	ie: (DLS		Prob	> F		0.0000
gini_net	Coef.	Std. Err.		P>ItI	[95% Co	onf.	Interval]
_Ino_cct_1	-1210.569	218.0292	-5.55	0.000	-1696.0	8	-725.0585
year	5262775	.0897359	-5.86	0.000	723349	91	3292059
_Ino_Xyear_1	.6056418	.1089116	5.56	0.000	.363088	35	.8481951
_cons	1104.367	179,9681	6.14	0.000	709.156	16	1499.577


Frederick Solt

<ロ> <同> <同> < 同> < 同> э

Graphical Comparisons Statistical Comparisons

Post-Communism

Since 1989, has inequality been increasing more rapidly in China than in Russia?

Graphical Comparisons Statistical Comparisons

Post-Communism

Since 1989, has inequality been increasing more rapidly in China than in Russia?

. gen china =									
. drop if year (1595 observat		`							
(1555 05361 440	cons dereced	,							
. xi: mi estim > on"	ate: reg gin	i_net i.chi	na*year i	f country	=="Chind	a" c	ountry=="Ru	ssian Federat	
		<pre>(naturally coded; _Ichina_0 omitted)</pre>							
i.china*year	_IchiXyear_#		(coded as above)						
Multiple-imput	ation estima	tes		Imput	ations		100		
Linear regression				Numbe	r of obs		44		
				Avera	ige RVI		0.1204		
				Large	st FMI		0.1322		
				Compl	ete DF		40		
DF adjustment:	DF adjustment: Small sample			DF:	min		33.23		
					avg		33.26		
					max		33.29		
Model F test: Equal FMI				FC	3, 37.	5) =	21.92		
Within VCE typ	e: (OLS		Prob			0.0000		
gini_net	Coef.	Std. Err.		P>ItI	[95%	Conf.	Interval]		
_Ichina_1	-809.946	394.6244	-2.05	0.048	-1612.	548	-7.343584		
year	.4740573	.1298514	3.65	0.001	. 2099	9419	.7381727		
_IchiXyear_1	.4079588	.1974129	2.07	0.047	.0064	452	.8094723		
_cons	-908.7984	259,6369	-3.50	0.001	-1436.	004	-380,7126		

Frederick Solt

The SWIID

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 = の < @

The Standardized World Income Inequality Database

► The SWIID maximizes comparability for the widest possible sample

- It multiply-imputes missing data in the LIS, using as much information as possible from the same country in proximate year
- Residual incomparability is represented as uncertainty
- Incorporating the standard errors is therefore crucial
- ...and is now relatively easy

- ► The SWIID maximizes comparability for the widest possible sample
- It multiply-imputes missing data in the LIS, using as much information as possible from the same country in proximate years
- Residual incomparability is represented as uncertainty
- Incorporating the standard errors is therefore crucial
- ...and is now relatively easy

- ► The SWIID maximizes comparability for the widest possible sample
- It multiply-imputes missing data in the LIS, using as much information as possible from the same country in proximate years
- Residual incomparability is represented as uncertainty
- Incorporating the standard errors is therefore crucial
- ...and is now relatively easy

伺 ト イ ヨ ト イ ヨ ト

- ► The SWIID maximizes comparability for the widest possible sample
- It multiply-imputes missing data in the LIS, using as much information as possible from the same country in proximate years
- Residual incomparability is represented as uncertainty
- Incorporating the standard errors is therefore crucial
- ...and is now relatively easy

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► The SWIID maximizes comparability for the widest possible sample
- It multiply-imputes missing data in the LIS, using as much information as possible from the same country in proximate years
- Residual incomparability is represented as uncertainty
- Incorporating the standard errors is therefore crucial ...
- ...and is now relatively easy