Plenary session IV:

Suggestions for estimating general-dataset elasticities for MAMS

Marco V. Sanchez

(UN-DESA/DPAD)

Presentation prepared for the second training workshop of the project "Assessing Development Strategies to Achieve the MDGs in Asia", Manila, 24-27 August, 2009. 1

What elasticities are defined in "test-data-general.xls"?

- **savelas(ins):** elasticity of savings rate with respect to percapita income rate for institution *ins*
- tradelas(ac,trdelas): Armington-CET-export demand elasticities by commodity c (c∈AC) and (sigmaq, sigmat, and rhoe ∈ trdelas)
 - sigmaq(c) = Armington-elasticity of substitution between imports and domestic output in domestic demand;
 - sigmat(c) = CET-elasticity of transformation for domestic marketed output between exports and domestic supplies;
 - *rhoe*(*c*) = constant price elasticity of export demand (<0).
- prodelasva(a): elasticity of substitution between factors at top (possibly only) level of VA nest of activity a

A quick note on the domestic price of imports and exports

• Equation: Import price

$$PM_{c,t} = pwm_{c,t} \cdot (1 + tm_{c,t}) \cdot EXR_{t} + \sum_{c' \in C} (PQ_{c',t} \cdot icm_{c',c,t})$$

$$\begin{bmatrix} import \ price \\ (LCU) \end{bmatrix} = \begin{bmatrix} import \ price \\ (FCU) \end{bmatrix} \cdot \begin{bmatrix} tariff \\ adjustment \end{bmatrix} \cdot \begin{bmatrix} exchange \ rate \\ (LCU \ per \ FCU) \end{bmatrix} + \begin{bmatrix} transaction \\ costs \end{bmatrix}$$
• Equation: Export price
$$PE_{c,t} = \overline{PWE}_{c,t} \cdot (1 - te_{c,t}) \cdot EXR_{t} - \sum_{c} (PQ_{c',t} \cdot ice_{c',c,t})$$

$$\begin{bmatrix} export \ price \\ (LCU) \end{bmatrix} = \begin{bmatrix} export \ price \\ (FCU) \end{bmatrix} \cdot \begin{bmatrix} tariff \\ adjustment \end{bmatrix} \cdot \begin{bmatrix} exchange \ rate \\ (LCU \ per \ FCU) \end{bmatrix} - \begin{bmatrix} transaction \\ costs \end{bmatrix}$$

How about the elasticity values for the country database?

- Most desirable practices
 - Use values already estimated and available
 - Make sure that estimation was up to econometric standard
 - Make sure disaggregation is useful
 - Estimate them subject to data availability
- Les desirable practices (in the absence of previous estimations or elasticity data)
 - borrow elasticity values from published data for countries at a similar level of development
 - use 'educated' guesses

- Mostly through time series, using OLS or a generalized difference equation (to correct autocorrelation)
- Also cross-section analysis and survey data
- The key is to have access to data

Estimation of elasticities of substitution

 A demand equation system can be derived as a first order approximation of the CES function:

 $\log \Phi_c = a + b \log p_c + ct$

 Φ : quantity ratio in the CES function *p*: relative price index that measures the ratio of the implicit price deflators of the quantities in Φ (in inverted order) *t*. time trend term.

• For example (without some subscripts to simplify):

 $\log QM/QQ = a + b \log \left[(PQ/PQ_{cons}) / (PM/PM_{cons}) \right] + ct$

 $\log QFS_{flab}/QVA = a + b \log [(PVA/PVA_{cons})/(WFA/WFA_{cons})] + ct$

Estimation of (cont.) The quantity ratio is basically the following:

- In Armington function: the ratio of imports at constant prices to total supply at constant prices
 - implicitly accounts for the share of domestic market output at constant prices in gross output at constant prices.
 - Total supply: gross output + imports
- In value-added function: the ratio of total employee compensation in real terms to value added at constant prices
 - implicitly accounts for the share of operating surplus at constant prices (for all other factors) in value added at constant prices

Commodity group	0>a>0	0> <i>b</i> >0	0> <i>c</i> >0	0> <i>d</i> ₁	0> <i>d</i> ₂ >0	R^2	DW [*]	$\sigma = b + 1$
	-11.7417	-0.0460	0.0064	-0.0797	-0.1948			
Domestic-consumption agriculture	(-1.6119)	(-9.5402)	(1.6208)	(-1.7178)	(-2.0885)	0.96	1.98	0.9540
	-85.9972	0.4155	0.0432	-1.3613	-0.9366			
Traditional export agriculture	(-1.9300)	(1.8173)	(1.9253)	(-2.4269)	(-2.4918)	0.24	1.93	1.4155
	-24 1522	0 8382	0 1086	-0 2166				
Non-traditional export agriculture	(-4.5511)	(1.7687)	(4.5618)	(-1.7040)		0.98	1.84	1.8382
	-12 0/77	-0 18/1	0.0065	-0.0428	0.0922			
Food industries	(-1.9314)	(-2.4647)	(1.9298)	(-1.7010)	(1.8941)	0.32	1.80	0.8159
	40.4004		0 0050	0.0500	0.00.47			
Oil and chemicals	-10.4864 (-1.7029)	(1.3221)	(1.7027)	-0.0589 (-1.9769)	0.2047 (2.6089)	0.44	1.90	1.0282
Manufacturing (other)	-17.9709 (-2.4826)	0.1966 (1.7977)	0.0091 (2.4891)		0.0114 (1.6993)	0.49	1.87	1.1966
	. ,	. ,	. ,		. ,			
- .	9.3524	-0.0498	-0.0047			0.40	4 00	
Iransport	(4.8013)	(-1.3488)	(-4.8707)			0.46	1.69	0.9502
	22.8217	-0.5246	-0.0115					
Financial services ^{2/}	(6.6606)	(-2.7171)	(-6.6868)			0.62	1.91	0.4754
	-47.2174	-0.5117	0.0239					
Other services	(-2.7834)	(-1.3146)	(2.9223)			0.46	1.94	0.4883

Activity group	0> <i>a</i> >0	0> <i>b</i> >0	0> <i>c</i> >0	0> <i>d</i> ₁	0> <i>d</i> ₂ >0	R^2	DW^*	$\sigma = b + 1$
	19.5930	-0.5780	-0.0093		0.0673			
Agriculture	(5.9944)	(-11.6791)	(-5.8090)		(3.7788)	0.92	1.78	0.4220
	0.9557	-0.4959			0.0164			
Manufacturing	(7.4575)	(-10.8559)			(1.7480)	0.84	1.80	0.5041
	-17.1997	-0.5051	0.0095		0.0498			
Construction	(-3.7349)	(-12.7371)	(4.0402)		(1.7802)	0.91	1.77	0.4949
	30.2910	-0.4695	-0.0148		0.0511			
Basic services	(13.7542)	(-18.3524)	(-12.9880)		(3.3149)	0.99	1.88	0.5305
	-6.3211	-0.5995	0.0034					
Trade and services	(-2.1018)	(-6.6087)	(2.2947)			0.77	1.80	0.4776
	40.0637	-0.5920	-0.0198	0.0659	0.1957			
Other services	(5.6398)	(-13.6558)	(-5.4984)	(1.7635)	(3.0414)	0.95	1.98	0.4080

Estimation of elasticities of transformation

 Based on the CET transformation function, whereby producers maximize per unit revenue from domestic and export sales, a restricted form for the export supply can be estimated as follows (omitting superscripts):

 $\log(QE/QX) = a \log \delta 0 - b \log(PD/PE) + c\varepsilon t$

QE: quantity of exports (or exports at constant prices)
QX: quantity of output produced by the economy (or gross output at constant basic prices)
PD: wholesale price index
PE: implicit price deflator of exports
b: elasticity of transformation
a: captures effect of the function share parameter over time
t. time trend term that captures exogenous change in time and reduces misspecification

Commodity group	0> <i>a></i> 0	0>b	0> <i>c</i> >0	0>d ₁	0>d ₂ >0	R^2	DW
	88.8301	-1.9199	-0.0447	-0.4164	-0.9109		
Domestic-consumption agriculture	(6.2939)	(-12.5401)	(-6.2388)	(-3.5143)	(-5.7686)	0.99	1.83
	99.3825	-1.6825	-0.0497	-0.3441	-0.5142		
Traditional export agriculture	(7.8291)	(-3.4903)	(-7.8929)	(-6.3942)	(-5.1631)	0.97	1.81
	74.7054	-1.5075	-0.0389		0.2463		
Non-traditional export agriculture	(3.9404)	(-1.7544)	(-4.1751)	(-)	(1.7653)	0.78	1.98
	95.9466	-0.8075	-0.0485	-0.0790			
Food industries	(32.1503)	(-1.7886)	(-32.7979)	(-1.8640)	(-)	0.97	1.99
	73.5254	-4.0300	-0.0355	-0.0918			
Oil and chemicals	(6.9427)	(-7.8313)	(-6.7443)	(-1.7503)	(-)	0.75	1.85
	73.0299	-1.7856	-0.0354	-0.2447			
Manufacturing (other)	(9.5055)	(-1.7151)	(-8.6787)	(-1.8638)	(-)	0.76	1.87
	83.6617	-0.4099	-0.0424	-0.1418	-0.2173		
Transport	(14.5071)	(-3.3881)	(-14.7123)	(-3.3851)	(-3.8675)	0.99	1.86
	-96.9942	-0.7987	0.4856	-2.0114	-9.4855		
Financial services	(-3.5512)	(-1.7617)	(3.5514)	(-1.9816)	(-3.2608)	0.34	2.06

Estimation of elasticity of savings rate

• The following simple logarithmic equation can be estimated:

 $\log S_t = a + b \log Y_t + \varepsilon t$

 S_t : per capita savings at time t, calculated using an historical series of total saving from the NA which is divided by the total population (of the institution *ins*).

 Y_t disposable income from the NA divided by the total population.

t: time trend term

• Some results for Jordan's economy (1976-2006):

 $\log S_t = 0.69 \log Y_t + 0.93 \varepsilon t - 1 - 1.39 D95 - 0.83 D90$

<text><text><text><equation-block><text>

N	activity group	o, 1977-1997	7 (t-values in	parentheses	s)	
Activity group	0> <i>D</i> ₀ >0	<i>S</i> >0	0> <i>τ</i>	0>d ₁	R	DW
Aariculture	-0.1519	0.0133	-0.2065	-0.0700		
ignoundio	(-1.8735)	(2.8157)	(-2.8302)	(-2.3799)	0.55	1.92
	-0.0986	0.0109	0.0144	-0.0700		1.92 2.13
Manufacturing	(-0.6012)	(0.9200)	(0.6842)	(-2.1642)	0.43	

Estimation of expenditure elasticities of demand

- These elasticities are most likely estimated using data from an income an expenditure household survey.
- The following logarithmic commodity-wise expenditure demand function can be estimated using the OLS method:

$$\log C_{ch} = b_0 + b_1 \log Y_h + \varepsilon$$

 C_{ch} : total consumption of commodity *c* in household *h* b_1 : Engel elasticity

 Y_h : total income of household type *h* (excl. taxes and savings)

- Most likely, household income data need to be corrected
 - to remove excesses over consumption expenditure
 - to impute incomes when expenditure exceed income

Consumption commodity and up	Urban	households	Rural households			
Consumption commonly group	0> <i>b</i> ₀ >0	<i>b</i> ₁ >0	R ²	0> <i>b</i> ₀ >0	<i>b</i> ₁ >0	R^2
Food industries	0.2067 (2.1243)	0.7529 (33.1814)	0.42	0.0123 (2.1561)	0.7963 (41.3753)	0.43
Textiles, clothing and leather fabrics	-1.2055 (-6.7165)	1.0225 (24.6085)	0.30	-1.2161 (-9.6669)	1.0271 (33.5733)	0.36
Wood products and furniture	-0.4735 (-1.7796)	0.6962 (8.1113)	0.21	0.7050 (4.9909)	0.6861 (13.1110)	0.29
Oil, chemicals, and rubber and plastic products	-0.2933 (-3.3298)	0.9673 (39.6761)	0.50	-0.0459 (-1.7318)	0.9642 (49.5076)	0.51
Paper, non-metallic minerals and basic metals	-1.8212 (-11.5448)	1.0322 (27.6028)	0.34	-1.4174 (-10.8551)	1.1266 (28.1588)	0.28
Other manufacturing	-2.8593 (-10.7168)	1.4896 (20.7281)	0.25	-2.6238 (-13.1137)	1.4327 (24.8964)	0.25
Restaurants, hotels and lodgings	-1.4492 (-5.9441)	1.4399 (18.8066)	0.28	-0.9407 (-4.4243)	1.6598 (18.3899)	0.22
Transport, storage and communication	-1.4254 (-6.8514)	1.2400 (20.9668)	0.27	-0.5084 (-2.7506)	1.5477 (18.0555)	0.21
Electricity, gas and water	1.1967 (10.7240)	0.7594 (17.3146)	0.16	0.4040 (3.7814)	0.6979 (19.9541)	0.18
Financial services and insurance	0.7385 (1.6670)	0.9912 (3.5808)	0.09	1.0306 (2.8709)	1.5866 (5.8605)	0.11

