Metodología de microsimulaciones: teoría e interpretación de resultados

Marco V. Sánchez Naciones Unidas

Presentación para el taller de introducción del proyecto "Fortalecimiento de la Coherencia entre las Políticas Macroeconómicas y Sociales mediante un Modelado Macro-Micro Integrado", organizado por UDAPE, PNUD y UN-DESA en La Paz, 27-28 de abril de 2011.

Marco Analítico Integrado

Modelo EGC Determinantes Microdinamico **ODM** simulations (MAMS) y costeo **Caracteristicas estructurales** Contexto Infraestructura macroeconomico **Restricciones financieras** v estructura **Encadenamientos** productiva Precios macroeconomicos Oferta y demanda factores Mercados de Grado segmentacion y movilidad factorial factores Forma ajuste salarial Pobreza Gasto **Determinacion remuneracion factores** publico Empleo, productividad, distribucion ingreso factorial desigualdad requerido **Progreso** para los hacia ODM **ODM Capital humano:** Hogares y Dinamica demografica **Preferencias** otras Acceso a servicios y mercadoss instituciones

¿Por qué una metodología de microsimulaciones?

- El MAMS solo permite analizar la distribución del ingreso entre grupos de trabajadores y hogares.
 - Distribución del ingreso al <u>interior</u> de los grupos fija.
 - Insuficiente detalle distributivo para analizar la pobreza.
- Aún si se conociera tal detalle distributivo: ¿cómo se sabría quién cambia de posición en el mercado laboral y hacia qué segmento?
 - Ejemplo: caen los precios de las exportaciones → aumenta la tasa de desempleo: ¿quién en la distribución pierde su trabajo?
- Se propone usar la metodología de microsimulaciones para enfrentar tal limitación metodológica.

Modelado "de arriba hacia abajo"

- Resultados del mercado de trabajo del MAMS imputados a una base de datos micro (encuesta de empleo o hogares).
- No hay retroalimentación del nivel micro al macro.
- Dos enfoques alternativos:
 - Modelo microeconométrico del comportamiento de la oferta laboral (método "Bourguignon y otros ").
 - se estiman funciones oferta y participación laboral y funciones de remuneraciones
 - Método del mercado de trabajo segmentado con mobilidad aleatorea entre segmentos (método "Paes de Barros y otros ") → ¡enfoque del proyecto!

Interesan los efectos en el ingreso

Ingreso per cápita:

$$ypc_h = \frac{1}{n_h} \left[\sum_{i=1}^{n_h} yp_{hi} + yq_h \right]$$

- $-n_h$ = tamaño del hogar h,
- $-yp_{hi}$ = ingreso laboral del miembro *i* del hogar *h*,
- $-yq_h$ = la suma del ingreso no laboral
 - yp_{hi} cambia a través del mercado de trabajo
 - yq_h puede cambiar en respuesta a una simulación de transferencias y remesas

¿Qué hacer si la pobreza se calcula en base al consumo?

- ¿Usar indicadores de incidencia de la pobreza medidos por el lado del ingreso?
 - Diferentes a los indicadores oficiales.
- O, para que los indicadores de pobreza del año base medidos por el ingreso sean idénticos a los indicadores oficiales medidos por el consumo, dos opciones:
 - ¿Recalcular el ingreso per cápita para equipararlo con el consumo per cápita?
 - ¿Recalcular las líneas de pobreza?
- Usar el consumo, determinando cómo se ve afectado dada una variación del ingreso.

Método "Paes de Barros y otros"

Estructura del mercado de trabajo (λ) en función de los siguientes parámetros, en secuencia:

$$\lambda = \lambda (P, U, S, O, W_1, W_2, M)$$

- P tasa de participación para grupos j
- U tasa de desempleo para grupos j
- S estructura del empleo según sector económico
- O estructura del empleo según categoría ocupacional
- W_1 estructura de las remuneraciones
- W_2 nivel promedio de remuneración
- M composición educativa de la población empleada
 - Grupos j: definidos por sexo y calificación
 - Segmentos k: según sector económico y categoría ocupacional (asalariados – no asalariados)

Clasificación de la PEA (8 grupos *j*)

		Hom	ıbre	Mujer		
		Calificado	No calificado	Calificado	No calificado	
Activo	Empleado					
	Desem- pleado					
No activo						

Clasificación de empleados (16 categorías, 8 grupos *j*, 8 segmentos *k*)

		Hon	nbre	Mujer		
		Calificado	No calificado	Calificado	No calificado	
Sector agrícola	Asalariado					
	No asalariado					
Sector no agrícola	Asalariado					
	No Asalariado					

Modelado macro-micro (1)

- Simulación macro en el modelo de EGC → λ* contrafáctica.
- λ* se le imputa a la base de datos micro.
- Se asignan número aleatorios a cada individuo y se ordenan para reflejar los cambios secuenciales en los parámetros: P,U,S,O y M.
- Se asigna un ingreso (YPI) a las personas que según λ*
 pasan a ser empleados o cambian su posición ocupacional
 y/o nivel de calificación.
- Se anula la remuneración de las personas que pasan a ser desempleados/inactivos.

Ejemplo: efecto de cambios en la tasa de desempleo inicial de los hombres calificados (N=100)

		Simulación '	1	Simulación			
	N	↓ tasa de desempleo a 6%	Simu- lado	↑ tasa de desempleo a 12%	Simu- lado		
Empleados	90	No cambio	90	↓ Últimos 2 ↓ empleados pasan a ser	88	Empleado	
		Primeros 4 desempleados pasan a ser	4	desempleados	2	Des- empleado	
Des- empleados	10	empleados	6	No cambio	10		

Modelado macro-micro (2)

- Cambio en W₁: se multiplican los YPI dentro de cada una de las categorías laborales por un factor de ajuste, manteniendo fijo el nivel promedio general de YPI.
- Cambio en W₂: se multiplican todos los YPI por un factor de ajuste, de tal modo que se llegue al nivel promedio general de YPI de acuerdo con λ*.
- Aplicados todos los efectos de λ*, se determinan los YPI simulados y se calculan nuevos YPC → nueva distribución.
- Supuesto: decisiones de oferta laboral y movilidad entre segmentos se pueden aproximar como un proceso aleatorio.
- Se aplica procedimiento de Monte Carlo → intervalos de confianza para los indicadores de pobreza y desigualdad → estadísticamente significativos.

Modelado macro-micro (3)

- Se puede estimar la pobreza con diferentes líneas.
 - Nacionales moderada y extrema
 - Internacionales de 1 y 2 dólares diarios
- Se pueden estimar diferentes indicadores de desigualdad.
- Se pueden definir perfiles de pobreza y desigualdad por diversas variables socioeconómicas
 - zona, sexo del jefe del hogar, etnia, etc.; según lo permitan los datos.
 - ¿Cuáles queremos en el proyecto?
- ¿Queremos calcular la vulnerabilidad de los hogares a convertirse en pobres?
 - cercanía con respecto a la línea de pobreza

Modelado macro-micro (4)

Ventajas:

- Permite analizar el impacto de un rango completo de parámetros en forma aislada o secuencial.
- No es necesario estimar modelos econométricos.

Posibles desventajas:

- No hay modelado de comportamiento.
- En una simulación secuencial, los resultados pueden depender de:
 - año base (¿evolucionó el mercado de trabajo de manera atípica en el año base?).
 - orden en que se analiza el impacto de cambios en los parámetros (P,U,S,O,W₁,W₂,M).
- Otras asociadas con la aplicación dinámica.

¿Cómo se aplica el método en un contexto dinámico?

- Microsimulaciones son estáticas, según metodología original:
 - se imputan λ y λ^* a base micro del año base.
 - -t=1
- En el proyecto son dinámicas: t > 1
 - $-\lambda_t$ sólo se calcula para t=1 (el año base)
 - $-\lambda_t^*$ se calcula para t=1 solo si la simulación macro afecta al año base.
 - λ_t* se imputa a base micro del año base, para un número de t períodos/años
 - los parámetros de λ_t * se expresan con respecto a los parámetros de λ_t (t = 1)

Limitaciones de la aplicación en contexto dinámico

- Supone que no hay cambios demográficos endógenos en el tiempo → solo ajustes relativos en el mercado laboral (participación, empleo, remuneraciones, etc.)
 - justificable si tales cambios demográficos no se modelan en el modelo de EGC (tal como sucede con el MAMS)
- De estar incluidos en el modelo de EGC, habría que modelarlos a nivel micro → ¡generar datos micro por año!
 - proyecciones poblacionales por rangos de edad
 - se minimiza la distancia entre los ponderadores observados y los que permitirían replicarlos por rangos de edad
 - decisiones de participación y comportamiento de la PEA (de la oferta laboral) y otros resultados del mercado de trabajo (desempleo...) → ¿vinculados al modelo de EGC o imputados de manera exógena?

Ejemplo (Nicaragua)

	Población que vive con menos de 1 dólar diario (%)				Coeficiente de Gini del ingreso familiar per cápita			
	2000	2005	,	2015	2000	2005	2010	2015
Escenario base								
1) U	43,0	39,5	39,0	40,0	0,540	0,520	0,510	0,470
2) $U + S$	43,0	39,9	38,7	39,9	0,540	0,520	0,510	0,470
3) $U + S + W1$	43,0	40,7	40,5	41,1	0,540	0,530	0,530	0,480
4) $U + S + W1 + W2$	43,0	37,1	35,2	33,1	0,540	0,530	0,530	0,480
5) $U + S + W1 + W2 + M$	43,0	36,6	34,6	32,3	0,540	0,530	0,530	0,480
Escenario ODM con:								
- endeudamiento externo								
1) U	43,0	40,7	39,0	40,5	0,540	0,530	0,510	0,490
2) U + S	43,1	40,2	39,0	40,1	0,540	0,520	0,520	0,490
3) $U + S + W1$	42,1	41,3	40,5	41,8	0,530	0,540	0,530	0,510
4) $U + S + W1 + W2$	42,1	37,2	33,2	31,6	0,530	0,540	0,530	0,510
5) $U + S + W1 + W2 + M$	42,1	36,8	32,5	30,7	0,530	0,540	0,540	0,520
- impuestos al ingreso								
1) U	43,2	39,7	39,2	40,5	0,540	0,510	0,490	0,500
2) $U + S$	43,2	39,7	39,3	39,9	0,540	0,520	0,490	0,500
3) $U + S + W1$	43,2	40,2	40,5	42,5	0,540	0,520	0,500	0,520
4) $U + S + W1 + W2$	43,2	35,1	34,7	34,9	0,540	0,520	0,500	0,520
5) $U + S + W1 + W2 + M$	43,1	34,9	34,4	33,8	0,540	0,520	0,510	0,530
- endeudamiento interno								
1) U	43,4	40,8	44,0	45,6	0,540	0,530	0,510	0,510
2) U + S	43,4	40,4	43,9	45,5	0,540	0,530	0,510	0,510
3) $U + S + W1$	43,3	41,5	45,0	46,9	0,540	0,540	0,520	0,540
4) $U + S + W1 + W2$	43,3	37,7	37,9	38,5	0,540	0,540	0,520	0,530
5) $U + S + W1 + W2 + M$	43,3	37,2	36,7	37,9	0,540	0,540	0,520	0,540

¿Y los cambios en los ingresos no laborales?

- Reto metodológico adicional a nivel micro:
 - ¿a qué hogares se les asignan las transferencias?
- Además, las encuestas podrían tener información insuficiente.

Recursos

Mecánica

- Método está codificado en STATA
- Exportación resultados MAMS para microsimulaciones facilitado mediante hojas predeterminados en Excel
- Importación resultados de STATA a Excel también automatizados

Literatura:

- Ganuza, Enrique, Ricardo Paes de Barros, and Rob Vos (2002).
 "Labour Market Adjustment, Poverty and Inequality during Liberalisation". In: *Economic Liberalisation, Distribution and Poverty: Latin America in the 1990s*, Rob Vos, Lance Taylor and Ricardo Paes de Barros, eds. Cheltenham (UK) and Northampton (US): Edward Elgar Publishers, pp. 54-88.
- Rob Vos & Marco V. Sanchez (2010) 'A Non-Parametric Microsimulation Approach to Assess Changes in Inequality and Poverty', *International Journal of Microsimulations*, Vol. 3(1).
- Guías metodologías prácticas