Human health effects of micro- and nano- plastics

Tamara Galloway

UNIVERSITY OF EXETER
Current state of knowledge

• Currently *no published data* to indicate that marine micro- and nano-plastics pose a risk to human health

• Much evidence for the *plausibility* that such a risk exists
Plastics attract contaminants

- Microplastics rapidly sorb organic material, metals, bacteria and persistent, bioaccumulating, toxic substances

Leaching of additives

<table>
<thead>
<tr>
<th>Polymer type</th>
<th>Hazard ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene</td>
<td>1</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>11</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1,628 – 1,630</td>
</tr>
<tr>
<td>polyamide</td>
<td>63 - 50</td>
</tr>
<tr>
<td>Polyethylene teraphthalate</td>
<td>4</td>
</tr>
<tr>
<td>polyvinylchloride</td>
<td>10,5001 – 10,551</td>
</tr>
</tbody>
</table>

Polymers identified in marine debris, relative hazard derived from constituent monomers and additives, from Lithner et al 2011 and Galloway 2015
Ingestion

• Uptake across gut: via microfold (M) cells, optimum size < 200nm

Particles accumulate in liver and gall bladder before excretion via faeces and urine

Galloway 2015 in Marine Anthropogenic Litter

Inhalation

• Inhaled fibres induce inflammation, esp. >20 μm high aspect ratio persistent fibres

• Further uptake requires avoidance of mucociliary clearance

Pauly 1998 Cancer Epidemiol Biom prev
Dermal uptake

- Uptake of particles across skin requires penetration of striatum corneum, limited to <100nm

Sykes et al 2014 Nature Commun 5: 3796
Exposure through seafood?

- mean 0.36 ± 0.07 particles g$^{-1}$ mussel, 0.47 ± 0.16 g$^{-1}$ oyster

- European shellfish consumer could ingest 50 particles per plateful, 11,000 particles per year

Van Cauwenberghe and Janssen, 2014 Env Poll 193:65-70
Atmospheric fallout

- 29-280 particles / m³ / day on urban rooftops in Paris
- Mostly fibres, optimum size 200-600 μm

Dris et al 2015 Environ Chem
‘the internal dose is at the heart of the relationship between exposure and health effects’..(Needham et al., 2007)
National Health and Nutrition Examination Survey NHANES

Chemicals measured in 3000+ respondents

<table>
<thead>
<tr>
<th>Chemical Category</th>
<th>2001/2</th>
<th>2003/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxins, Furans, and Coplanar PCBS</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Non-Dioxin-Like Polychlorinated Biphenyls (PCBs)</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Urinary Polycyclic Aromatic Hydrocarbons (PAHs)</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Volatile Organic Compounds</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Organochlorine Pesticides</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Urinary Phthalates</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Urinary Heavy Metals</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Urinary Organophosphate Insecticides</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Urinary Perchlorate</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Environmental Phenols</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Polyfluorinated compounds</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Urinary Total Arsenic and Speciated Arsenics</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Polybrominated diphenyl ethers</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Totals</td>
<td>176</td>
<td>201</td>
</tr>
</tbody>
</table>
Research questions

• How prevalent is seafood contamination with microplastics?
• Do microplastics constitute a significant source of persistent, bioaccumulating and toxic contaminants of pathogens to humans?
• How does this compare with direct exposure to seafood? To water?
• What methods can be used to identify and characterise microplastics in human tissues?
Novel methods

- Novel techniques for studying human biopsy samples.

Raman Imaging using Renishaw Streamline

Peak Height Map

Control Beads

Beads in Tissue
Coherent anti-stokes Raman spectroscopy

Raman scattering image at 2845 cm$^{-1}$ (C-H bond resonance)

Polystyrene microsphere

Watts et al., 2014 ES&T
Thank you

Acknowledgements

• Dr Stephanie Wright, Professor Frank Kelly, King’s College, London
• Dr Andrew Watts, Exeter

CleanSea

www.cleansea-project.eu

NERC

www.defra.gsi.gov.uk

Wellcome Trust

plasticpollution.co.uk

t.s.galloway@exeter.ac.uk