

Presentation
By Dr Arjoon Suddhoo
Executive Director
Mauritius Research Council
29 May 2012

Overview

- A small Island in a Big Ocean
- Economic & Social Challenges
- Energy Landscape
- Marine Renewable Energy Devices— Conventional & non-conventional
- Implications for Mauritius
- Challenges in implementation
- A way forward

Languages used in Mauritius (The Rainbow Nation) Muticultural

French

Kreol

English

CHINESE

بهال

त्रितात

Size 2000 kms
Population: 1.3 million

From Sugar to textile, tourism, financial services and ICT sector

New Economic Order

- Past Economic development supported by preferential trade agreements
- Erosion of long-standing preferences (sugar, textiles)
- Regionalisation & Globalisation
- Euro-Centric Economy
- Consolidation of existing economic sectors
- Paradigm shift in economic strategy
- Let us turn to the Ocean !!!

Exclusive Economic Zone of Mauritius

The Blue Evolution

- Exclusive Economic Zone 2.4 million sq km
- 1100 x land space of Mauritius
- 4 x size of France
- One Third size of Europe
- Mauritius is a big OCEAN STATE

"We've barely scratched the surface of that Ocean"

'Blue' Developments

- Seafood Hub (Processing + logistics)
- Aquaculture (lagoon based)

- Seaweed Industry
- Ocean Economy
- Ocean State
- "The Ocean for Energy"

The Ocean State

Ocean for Energy Ocean for Food

Ocean for Water

Ocean for Minerals

Ocean for Leisure

Ocean for Health

Marine Based Renewable Energy Potential

- □ Solar
- Offshore Wind
- Wave
- □ Tidal
- Saline Power
- Marine under water Currents
- Marine Deep Sea Currents
- Deep sea water thermal gradients
- Marine Biomass
- Integrated Approach

Ocean Wave Energy / Wells Turbine

Ocean Wave Energy – Oscillating water column

Ocean Wave Energy (CETO)

CETO

TIDAL ENERGY

© 2008 Encyclopædia Britannica, Inc.

Ocean Tidal Energy

Ocean Current Energy

Ocean Salinity Gradient Power

Offshore Energy Conversion Devices Power Rating

Offshore Wind Turbines

3-5 MW

Pelamis Wave Energy Converter 0.75 MW

500 kW

WaveGen Oscillating Wave

Column

PowerBuoy

150 kW

SeaGen Turbine

1.2 MW

OpenHydro Turbine

1 MW

DEEP SEA WATER STRATEGY

Deep Ocean Water, Mauritius

Because of the Great Conveyor Belt that arrives in our EEZ, our Deep (>1000m) Sea Water is:

very cold (5 to 6 C)
very old
free from pathogens/pollutants
very pure
rich in minerals
rich in nutrients

Mauritius Deep Sea Water

Mineral content - Mauritius

DEED

0.37

< 0.005

MINERALS (mg/L)	SEAWATER (Averaged)
Calcium	400
Magnesium	1,367
Sodium	10,667
Potassium	420
Bicarbonate	137
Sulphate	2300
Chloride	19,670

Nitrate

Nitrite

Age of Deep Sea Water

Carbon 14 Dating in Perth, Australia (94.18%MC)

500 Years Old

5 Centuries

A Land Based Oceanic Industry

Electricity from Deep Sea Water (OTEC)

The Energy Landscape in Mauritius

Electricity Consumption 2000 – 2010- 2025

Electricity Generation 2012

Mauritius Offshore Wind Power Density [W/m²]

Height h = 80m								
	Longitude	57.00 E	57.25 E	57.50 E	57.75 E	58.00 E		
Latitude		Α	В	С	D	E		
19.75 S	1	442.498		495.551	515.574	522.690		
20.00 S	2	458.301		500.606	524.400	539.237		
20.25 S	3	462.001		510.847	570.753	569.039		
20.50 S	4	475.254	485.738	521.429	570.129	558.399		
20.75 S	5	475.815	506.190	534.517	542.900	536.577		

Simulation of small Offshore wind farms

Conceptual Offshore Wind Farm Flic en Flacq

Sea surface area <50m deep	~	5	Square km
Turbine Type		Repower 5M	
No. of turbines		11	
Rated power	PeR	5075	kW
Diameter	D	126	m
Offshore cut-in wind speed	Vc	3.5	m/s
Offshore cut-out wind speed	Vf	30	m/s
Rated wind speed	Vr	14	m/s
Site Mean Weibull wind speed	Vavgw	9.189103486	m/s
С		9.704479395	
k		8.984847526	
Capacity Factor	CF	0.4797871	
Annual No. of Operating hours		2000	hrs
Average power output		27	MW
Annual Energy Output		54	GWh

30%* of power consumption for Black River

Conceptual Offshore Wind Farm Mahebourg

Sea surface area <50m deep	~	16	Square km
Turbine Type		Repower 5M	
No. of turbines		22	
Rated power	PeR	5075	kW
Diameter	D	126	m
Offshore cut-in wind speed	Vc	3.5	m/s
Offshore cut-out wind speed	Vf	30	m/s
Rated wind speed	Vr	14	m/s
Site Mean Weibull wind speed	Vavgw	9.763878391	m/s
С		10.3812766	
k		7.791622483	
Capacity Factor	CF	0.529792517	
Annual No. of Operating hours		2000	hrs
Average power output		59	MW
Annual Energy Output		118	GWh

71%* of power consumption for East of Mauritius

* Assuming average islandwise load distribution to be same as peak power demand

Conceptual Offshore Wind Farm Southern Coast of Mauritius

Sea surface area <50m deep	~	12	Square km
Turbine Type		Repower 5M	
No. of turbines		15	
Rated power	PeR	5075	kW
Diameter	D	126	m
Offshore cut-in wind speed	Vc	3.5	m/s
Offshore cut-out wind speed	Vf	30	m/s
Rated wind speed	Vr	14	m/s
Site Mean Weibull wind speed	Vavgw	9.763878391	m/s
С		10.3812766	
k		7.791622483	
Capacity Factor	CF	0.529792517	
Annual No. of Operating hours		2000	hrs
Average power output		40	MW
Annual Energy Output		81	GWh

32%* of power consumption for South of Mauritius

Offshore Wave Energy Potential for Mauritius

- 180 km of waveline at 1km from the reef
- Average wave power density of about 40 kW/m
- Theoretical wave power potential of 7.2 GW

Conceptual Offshore Wave Farm South Coast of Mauritius

- 20 km of shoreline with an average wave power density of 41.5 kW/m
- Depth of 10 50 m which allows a number of different devices
- Few ship traffic
- No coral reef and no lagoon
 so no interference with the tourism sector
- It has the best statistics for wave power

Conceptual Offshore Wave Farm South Coast of Mauritius

Based on **Pelamis Wave Technology**

Source: www.marinet.org.uk

Total installable power = 37.5 MW

About 90% of power requirement for the south of

Mauritius

Land-Based Strategy for Renewable

Ocean Energy Predictability

- Solar Semi-predictable
- Wind Semi predictable
- Wave Semi-predictable
- Marine current predictable
- OTEC Predictable
- Tidal Predictable
- Saline Power predictable

Challenges & Way Forward

■ Reduce Waste Change Mindset for Ocean Technology ☐ Disinvest in land-based fossil fuel — Compensate ■ Sorted out Grid Balancing Issues Promote Portfolio of Energy Sources ■ Need for Ocean Energy Resources Assessments ■ Need Scientific knowhow, data, & equipment Require international collaboration ☐ Adjust legal framework for offshore development ■ Adopt the precautionary principle. ■ An island Role-Model ??

Critical Success Factors

- A Change Management Exercise
- □ A Situation of Emergency
- A Champion
- Unfreeze old ways of doing things
- Introduce new ways Communications

SCIENCE + POLICY + FUNDING + EQUITY = TECHNOLOGY + BUSINESS (WEALTH & JOBS & LESS CO2)

Community/Participating
Approach with shared
responsibilities

Global & Regional Responsibilities

Managing for uncertainty/Adaptive Management

Informed policymaking based on scientific evidence Guiding Principles Ecosystem integrity with economic/social/environ mental/cultural concerns

Duty of care & Stewardship

Polluter Pay Principle

Precautionary Principle

Integrated in Lisbon Principles for Sustainable Ocean Governance in 1999 (USA, Sweden, Australia, Solomons, UK, Portugal)

The Ocean Economy

- Government's Programme (2012 2015)
 - Clauses 15-24 (Chapter 1, Prosperity)
- EEZ of 2.3 million Km²
- Further submissions to the UN with respect to other parts of our continental shelf
- Expansion of our spatial boundaries, development of scientific knowledge and business opportunities
- Exercise of our rights can give us access to vast natural and mineral resources
- Extending the economic space for investors, businesses, workers, entire population by setting out a concrete and practical plan for developing the Ocean economic space
- High productivity jobs and improving living standards
- Exploitation of land/marine resources, land/sea transportation, cargo/port services
- Need for effective regulatory regime and skills

